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Abstract

Despite progress in developing small molecule inhibitors, a quantitative understanding of drug action in

the physiological context of cells is lacking. Here, we apply single-cell analysis of signal transduction and

proliferation to probe cellular responses to small molecule inhibitors. We use the model of cellular activation

of T lymphocytes responding to cytokines and antigens. We uncover two distinct modes of drug action, in

terms of signaling inhibition: digital inhibition (e.g. when the fraction of activated cells diminishes upon drug

treatment, but cells remaining active appear unperturbed), and analog inhibition (e.g. when the fraction of

activated cells is unperturbed while their overall activation is diminished). We introduce a computational

model of the signaling cascade in order to account for such dichotomy. We test the predictions of our model in

terms of the phenotypic variability of cellular responses under drug inhibition. Finally, we demonstrate that

the digital/analog dichotomy of cellular response as revealed on short timescales with signal transduction,

translates into similar dichotomy on long timescales. Overall, our analysis of drug action at the single cell

level illustrates the strength of quantitative approaches to translate the promise of in vitro pharmacology

into functionally-relevant cellular settings.

Introduction

Individual cells rely on biochemical signaling pathways to translate environmental cues into physiological

responses. Spurious activation of these pathways results in a cell’s mischaracterization of environmental

conditions and aberrant cellular behavior. This behavior can, in some cases, be detrimental to the health

of the organism - causing ailments such as inflammatory diseases (e.g. ulcerative colitis [1]), auto-immune

disorders [2, 3] and cancer [4]. Inhibiting specific dysfunctional components with small-molecule chemical

inhibitors has been successful in reducing aberrant signals and ultimately ailments [5]. Examples include

Imatinib in treating Chronic Myelogenous Leukemia [6] and Gefitnib for patients with EGFR mutant non-

small-cell lung cancer [7, 8]. However, despite these successes, inhibitory drug development remains slow
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and can benefit from new techniques to aid screening of candidate compounds [9, 10].

Fundamentally, an effective chemical inhibitor acts on a signaling pathway by binding to the targeted

enzyme and shutting down its enzymatic activity. In this context, optimizing a drug inhibitor abounds to

optimizing its specific binding to the enzyme target of choice. Recent technological advances have focused

efforts to development of pipelines that characterize drug specificity with respect to all human kinases in vitro

[11, 12, 13] and in cell lines as models for physiological settings [14]. The emphasis on protein kinases is due

to their prominence in signal transduction pathways, where they serve as information relays by transferring

a phosphate from ATP to their target substrate. The technological advances in drug screening often fall

short of anticipating the downstream consequences of drug inhibition: whereas kinase inhibition is optimized

at the local (molecular) level, the response at the level of the entire pathway often remains sub-optimal.

Consequently, it is difficult to predict cellular response to chemical inhibition. To gain some understanding

of this response, emphasis has been placed on high throughput characterization of the response of cell lines

[15, 16].

Despite these significant advances in drug screening, many poorly performing compounds proceed to,

and often fail at, the organismal stage of drug discovery. This suggests that we may need to re-evaluate the

relevance of bulk measurements on cell line models to drug development, emphasizing instead a more mech-

anistic understanding of individual primary cell responses to inhibition (“Whats wrong with drug screening

today” [17]). This need has been partially addressed by pioneering studies that characterized biochemical

networks of primary cells [18, 19] and canonical cell type responses to inhibition [20, 21, 22]. Yet, while

these studies have been illuminating, mechanistic principles of cellular responses to small-molecule chemical

inhibition have remained elusive. It is precisely this gap in knowledge that this Communication attempts to

address.

We conjecture that one needs to resolve diverse enzymatic states (e.g. phospho-status) at the single

cell level in order to identify the complex nonlinear responses of signaling networks to inhibition. Nonlinear

responses are often dominated by a subset of enzymes that determine the behavior of the pathway. Identifying

these key enzymes uncovers novel vulnerabilities of the signaling network to inhibition [23]. Examples of

nonlinear responses uncovered by single cell measurements are numerous: flow cytometry measurements

of double-phosphorylated ERK (ppERK) accumulation in stimulated T lymphocytes exhibit a highly non-

linear bimodal response to antigen [24]; by imaging ERK in live cells, individual cell response to growth

factors was shown to be pulsatile [25]; administration of either the tyrosine kinase inhibitor Gefitnib or the

MEK inhibitor PD325901 yielded either a frequency or a mean reduction in ppERK signaling, respectively

[26]. Similarly, epidermal-growth-factor (EGF) stimulation of 184A1 cells, a mammary epithelial cell line,

revealed oscillatory ERK nuclear localization with a period invariant to EGF dose; at the same time the

number of cells exhibiting oscillatory behavior reduced markedly with increased cell density and decreased

EGF concentration [27]. These are but few examples of the dynamic complexities of biochemical signaling

networks under stimulation, as revealed by single-cell measurements. In all these examples, by directly
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revealing different modes of inhibition, inaccessible by “high-throughput” population level measurements,

single-cell measurements added crucial understanding to the structure of a signaling pathway.

In this study, we integrate single cell multi-parametric phospho-flow cytometry measurements, Cell to

Cell Variability Analysis (CCVA, [28]), and mechanistic modeling to dissect the mechanism of action of

kinase inhibitors in primary mammalian cells. We provide both experimental and theoretical evidence that

the network structure, in which the targeted enzyme is embedded, determines the signaling response to

inhibition. Furthermore, we investigate the influence of protein expression variability on the sensitivity of

single cells to inhibition. Following up on these insights we present experimental results demonstrating the

functional relevance of our model of drug inhibition to cell proliferation, thereby bridging the short molecular

timescale with the longer functional one. Taken together, in this Communication we demonstrate how, by

combining mechanistic models and single cell measurements of primary cells, it is possible to predict cellular

behavior in response to targeted molecular inhibition. We present a general and easily extendable framework

for modeling the response at the molecular level together with a simple and robust method to analyze the

experimental data. Applied together, these amount to a powerful prescription to probe the effect of inhibitors

on signaling cascades.

Our study is multi-disciplinary by its nature, bridging cell biology, quantitative biology, and pharmacol-

ogy. Therefore, to make our work as accessible as possible, we have suppressed the mathematical details

from the main body of the text; instead - they are laid out in the supplementary materials section. The rest

of this is organized as follows: we begin by studying a simpler signaling cascade, the JAK-STAT pathway, to

demonstrate that cell-to-cell variability correlates with variable response to inhibition. Once we acknowledge

the importance of cell-to-cell variability when studying inhibition, we then shift our attention to the more

complex MAP kinase cascade, where we explicitly demonstrate the existence of two qualitatively different

modes of inhibition. To understand the origin of the different modes of inhibition, we develop a coarse-

grained model of CD8+ T-lymphocyte activation and inhibition and compare it to our data. We conclude

the results section by demonstrating that the different modes of inhibition of the signaling network map to

different functional fates, as measured by a simple cell proliferation assay. We thus establish the link between

inhibiting a heterogeneous cell population, the targeted signaling network structure and role of the specific

inhibited enzyme in it, and the functional consequences of such inhibition.

Results

Endogenous variability of STAT5 creates variability in phospho-STAT5 response

to JAK inhibition

A reductionist approach posits that the properties of a signal transduction pathway in living cells should

be deductible from the biochemistry of its components working in concert. However, traditional methods

such as in vitro assays of enzyme extracts and ensemble average measurements (e.g. western blot) do not
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incorporate the inherent biological complexity of cells or the required resolution, and therefore fall short

of a detailed biochemical characterization of chemical inhibitors. To illustrate this issue, we investigated

the biochemistry of JAK-induced STAT5 phosphorylation in individual T lymphocytes stimulated with

the cytokine Interleukin 2 (IL-2, Fig. 1A). We focus on this pathway for three reasons: (i) its biological

function is important, corresponding to anti-apoptotic and proliferative signals [29]; (ii) its clinical relevance

in inflammatory diseases [2, 3] and cancer [30]; (iii) its the molecular components are well documented [31].

In order to monitor the JAK/STAT signaling response to JAK inhibition - we prepared ex vivo mouse

primary T cell blasts and exposed them to saturating amounts of the cytokine IL-2 (2 nM), followed by

two-fold serial dilutions of AZD1480 (IJAK). We found that the average response follows an inhibitory hill

function with an estimated half effective inhibition concentration (IC50) of 8.2 ± 0.5 nM (Fig. 1B). In this

preliminary characterization we assumed that the hill coefficient is exactly one. A hill coefficient of one

indicates that the inhibition of STAT5 phosphorylation can be described by the drug simultaneously binding

and deactivating the kinase.

The phospho-STAT5 (pSTAT5) response of individual cells to JAK inhibition decreases smoothly and

unimodally with increasing doses of drug (Fig. 1B). We characterized the variability of cell responses by

the coefficient of variation (CV), a measure of the standard deviation with respect to the mean pSTAT5

response. In the absence of drug the CV is 0.77 ± 0.004, and depreciates with increasing doses of inhibitor

(Fig. 1B inset). The concomitant decrease in the mean response and CVpSTAT5 contradicts the stochastic

properties of chemical reactions. Indeed, diversity in the abundance of pSTAT5 originating from physico-

chemical mechanisms is expected to exhibit Poisson statistics, meaning that the CVpSTAT5 should behave

as the inverse square root of the mean [32, 33]. Therefore, in contrast to our observations, if the origin of

the noise were Poissonian, CVpSTAT5 originating from these simple Poisson properties would increase, rather

than decrease, with increasing inhibitor dosage. Consequently, we conclude that individual clones generate

diverse levels of pSTAT5, not because of the intrinsic stochasticity of chemical reactions, but rather because

of unique internal parameters.

Next we asked whether the variable abundance of STAT5 can explain pSTAT5 variability in response

to JAK inhibition. We simultaneously monitored both STAT5 and pSTAT5 in individual cells, and then

applied cell-to-cell variability analysis (CCVA) [28]. We found that the geometric mean of pSTAT5 correlates

with STAT5 abundance in the absence of JAK inhibitor (Fig. 1C). We then investigated how varying abun-

dances of STAT5 influence both the JAK inhibitor dose response amplitude and the half effective inhibitor

concentration (IC50). We found that the amplitude of pSTAT5 response increased with STAT5 expression,

while the IC50 reduced exponentially with a scale of approximately -2.0 (STAT5 a.u., Fig. 1D). Hence, by

monitoring the extent of drug inhibition at the single cell level, we establish new experimental observations

regarding signal inhibition.

CCVA established the dependence of pSTAT5 on the endogenous (variable) STAT5 abundance. We lever-

aged this observation to develop a biochemical model of inhibition in live cells. Specifically, we tested three
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simple biochemical models that may account for the transmission of STAT5 variability to pSTAT5 levels per

cell, and the biochemical mechanism of JAK inhibition by AZD1480 (Fig. 2A, see supplement for deriva-

tions). We find that a noncompetitive inhibition model for AZD1480 action best described our experimental

observations (Fig. 2B). This observation is supported by the fact that AZD1480 acts by competing with ATP

for occupancy of the ATP binding pocket of JAK, and does not compete with STAT5 [34]. Furthermore,

it was necessary to account for the physiological variability in STAT5 substrate availability to account for

the cell-to-cell variability in pSTAT5 inhibition (Fig. 2C). We further quantified the agreement of our model

fit by measuring a coefficient of determination (R2) of 0.95 (Fig. 2D) of the data linearized according to

our model equation (see supplement for details). Lastly, we validated that our model could account for the

small dependence of the IC50 on STAT5 expression. We found agreement between our IC50 measurements

in Fig. 1D with the estimated IC50 from our model (Fig. 2E).

To summarize, in this section we demonstrated how CCVA parses single-cell phospho-profiling data to

validate models of drug inhibition. We employed CCVA here on the JAK-STAT pathway, and found an

optimal model of non-competitive binding of inhibitor to kinase, as supported by the literature.

Single cell measurements reveal diverse modes of inhibition

We proceed by investigating inhibition of a more complex signaling cascade, namely antigen-driven MAP

kinase activation in primary T cells. Upon exposure with activating ligands (e.g. complex of a peptide with

Major Histocompatibility Complex, peptide-MHC presented on the surface of antigen presenting cells), T

cells activate their receptors through activation of a SRC Family kinase (Lck). This then triggers a cascade

of kinase activation leading to ERK phosphorylation. We chose this model system because its complex

network topology and its functional relevance: aberrant activation in the ERK pathway is often involved

with oncogenesis [4], making it a key pathway to be targeted with drug inhibitors in multiple tumor settings.

It is possible to decompose T cell receptor mediated ERK signaling into two smaller sub-networks: (i)

a receptor proximal signaling cascade with positive and negative feedback regulation, and (ii) the unidi-

rectional MAP Kinase (MAPK) cascade. We now demonstrate that inhibiting enzymes specific to each

signaling sub-network produces a unique response in terms of ERK phosphorylation. To show this, we sub-

jected activated T lymphocytes to inhibitors targeting the two signaling sub-networks separately: a SRC

inhibitor (Dasatinib) for the receptor proximal component, and a MEK inhibitor (PD325901) for the MAPK

component (see Fig. 3A). Importantly, the population-mean response of the cells to each inhibitor resulted

in amplitude reduction and a trivial inhibition model (see Fig. 3B,C insets). However, going down to the

single-cell resolution, the ppERK response to SRC inhibition (Dasatinib) resulted in an all-or-nothing re-

sponse (“digital” inhibition, Fig. 3B). Conversely, application of a MEK inhibitor (PD325901) resulted in

graded responses (“analog” inhibition, Fig. 3C) [35]. SRC and MEK inhibitors exhibit markedly different

modes of inhibition which do not rely on the exact chemical identity of the administered inhibitor but rather

its role in the signaling cascade (see supplemental information).
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We characterized the two modes of inhibition by fitting the distribution of ppERK amount per cell to a

mixture of two Gaussians. The relevant statistics can be summarized by only two parameters - α+ which

represents the fraction of activated cells (Fig. 3D) and µ+ representing the mean ppERK levels among

activated cells. We carried out this analysis for each dose of inhibitor. In Fig. 3E, we report that the MEK

inhibitor operates solely upon the mean, µ+, of ppERK abundance among activated cells, which we define

as analog inhibition of ERK activation. In contrast, the SRC inhibitor operates solely upon the fraction of

active cells, α+, which we define as digital inhibition. To summarize, by utilizing single-cell measurements,

we were able to demonstrate that there exist two modes of inhibition in the MAPK signaling cascade, digital

and analog, each of which are associated with the sub-network the targeted kinase belongs. Each mode of

inhibition can be associated with the unique inhibition of proximal and distal kinases respectively within

the ERK cascade. We proceed to examine if this effect can be captured by the properties of the respective

sub-networks and whether it maps to a functional output.

Sub-network context of the targeted enzyme determines response to inhibition

We explored whether the two distinct modes of inhibition observed in Fig. 3 originate in the context of the

targeted enzymes, i.e. by the position of the enzyme undergoing inhibition within the transduction cascade.

For this, we developed a coarse grained model which accounts for ERK phosphorylation downstream of

SRC activation [24, 36, 37]. Our model explicitly incorporates measurable quantities, control parameters,

and the inhibitor targeted species; the model is coarse in that it replaces some of the biological complexity

of this signaling cascade with a phenomenological species of “activated SRC” associated with the engaged

ligand/receptor complex, which we denote as SRC∗. The graphical representation of our model (Fig. 4A)

emphasizes the two sub-networks acting here: (i) SRC∗ is controlled by competing positive and negative

feed-backs from itself, whereas (ii) MEK and ERK are activated upon formation of SRC∗ in a unidirectional

manner, without feedback. These modeling components encompass key features of ERK activation in the

context of antigen activation in T lymphocytes.

To assess the properties of our competing feedback model we constructed phase diagrams of active SRC

that demonstrate how varied quantities of active SRC map to ERK phosphorylation. Active SRC accumulates

upon engagement of the activating ligand with its kinase-bearing receptor. This subsequently activates both

positive and negative feedbacks driving further accumulation or extinction of SRC∗. The dynamics of

accumulation of SRC∗ can be summarized in a phase diagram (Fig. 4B), that illustrates the influence of

both feedbacks (for details and the derivation of these phase diagrams see the supplemental information).

The model parameters are set so that the negative flux (i.e. the change in time of SRC∗ levels) rises and

saturates at lower levels of SRC∗ than the positive flux. This staggering of the positive and negative fluxes

as a function of SRC∗ causes them be equal at three points in the phase diagram, i.e. there are three “steady

states” or fixed points in our model. By plotting the net flux as a function of the active complex SRC∗, we

assessed the stability of the fixed points. The dynamics are such that SRC∗ always converges to the extreme
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points SRC∗
low and SRC∗

high (stable fixed points), while diverging from the center point SRC∗
med (unstable

fixed point). Hence, our coarse-grained model encapsulates the bistability in SRC∗ formation.

We model ERK activation by assuming that the active complex SRC∗ triggers the enzymatic phosphory-

lation of MEK, which then phosphorylates ERK (Fig. 4C). In Fig. 4D, we represent the dynamic trajectory

of this signaling pathway for varied initial conditions: such a flow diagram illustrates the stability of the low

and high states in the (SRC∗,ppERK) plane and the instability of the intermediate point. Overall, our coarse

grained model of ERK activation upon ligand engagement generates two stable fixed points corresponding

to either zero or maximum ppERK, consistent with our experimental results.

Next, we tested whether our coarse-grained model can predict ppERK response to drug inhibition.

Application of the MEK inhibitor to our model (Fig. 4E) supports our experimental observations, as MEK

inhibition does not influence the bistability of the activated kinases SRC∗ (Fig. 4F). Increasing the MEK

inhibitor dose shows continuous reduction in the amplitude of ppERK response (Fig. 4G), without affecting

the bistability in ppERK. The dynamic properties supporting the bistability in ppERK are preserved in the

presence of the MEK inhibitor (Fig. 4H). Our model is validated with the experimental observation in that

the MEK inhibitor only reduces the mean quantity of ppERK over the population of activated cells, i.e. it

inhibits the ERK pathway in an analog manner.

Our model highlights that SRC is the kinase crucial for the bistability of the active complex SRC∗,

resulting in a signaling context fundamentally distinct to that of MEK. Inhibition of SRC reduces the

positive flux which generates SRC∗(Fig. 4I), and consequently reduces SRC∗ at the high fixed point. We

find that increasing the dose of the SRC inhibitor decreases SRC∗ until, at a critical dose, the high fixed point

and the unstable fixed point annihilate one another (Fig. 4J). Therefore, a dose of SRC inhibitor greater

than the critical dose leaves the system with only a single fixed point, SRC∗= 0 (Fig. 4J). Interestingly,

despite the continuous reduction of the SRC∗
high stable fixed point with increased dosage of SRC inhibitor,

the quantity of ppERK remains essentially unchanged until the inhibitor is greater than the critical dose

(Fig. 4K). For doses of SRC inhibitor beyond the critical dose the signaling network only supports a single

quantity ppERK at zero (Fig. 4L). Hence, SRC inhibition results in a binary output that is identical to that

observed in the data: our model is consistent with the digital nature of Dasatinib as a SRC inhibitor.

Our model assumes that interactions of molecular inhibitors with their target enzyme all act as noncom-

petitive inhibitors (consistent with in vitro characterization of these small molecules). Yet, despite these

locally identical mechanisms of inhibition, the model successfully accounts for the two distinct modes of in-

hibition of ERK in our experimental findings. Thus, taken together, the experimental results and theoretical

model demonstrate that enzymatic context is essential to understand and parameterize inhibitor function.
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Variability in protein abundance diversifies sensitivity of signaling pathway to

targeted inhibition

Using our mechanistic model, we sought to explore how the endogenous variability of SRC abundance would

diversify the response of individual cells to inhibition. Our model predicts that the effective quantity of

SRC determines whether the (SRC, ppERK) phase diagram has a single or three fixed points - as a result it

represents a bifurcation parameter. By analogy, endogenous variation of SRC positions cells either above or

below the critical threshold of SRC required for bistable signaling (Fig. 5A). We tested this model prediction

by correlating CD8 and ppERK of activated T lymphocytes. In T lymphocytes, Lck - a SRC family kinase,

is recruited together with CD8 to trigger response to antigen, therefore we treat CD8 abundance as a proxy

for the effective abundance of SRC in individual cells. Indeed, measuring CD8 for a single dose of SRC

inhibitor shows that cells with elevated quantities of CD8 are more likely to have ppERK signal (Fig. 5B),

a result that is consistent with previous experimental and theoretical observations [36].

Extending this observation, our model suggests an interesting possibility: that variability of CD8 ex-

pression in single cells is sufficient to generate disparate sensitivities to drug inhibition. The bifurcation

diagram for each drug dose, Fig. 5C, shows that the minimum quantity of SRC sufficient for the bistability,

SRCc, increases with increasing drug dose. Consequently, a cell with a higher abundance of SRC will be

more tolerant to inhibition because of simple dosing of the effective abundance of available SRC (Fig. 5D)

- requiring higher inhibitor dosage to experience any reduction in signaling. We confirmed this prediction

by correlating the critical amount of CD8, labeled CD8c, with drug dose; the MEK inhibitor reduced ERK

activation independently of the abundance of CD8 whereas higher concentrations of SRC inhibitor were

required to inhibit (Figs. 5E,F).

Diverse cell signaling responses to inhibition translates to diverse proliferative

responses to inhibition

Having established the existence of distinct modes of inhibition of the ERK pathway, we conclude the results

section of this Communication by posing an important challenge to our finding: do these distinct modes

of inhibition entail a functional ramification? Upon phosphorylation, ppERK migrates from the cytosol to

the cell nucleus where it induces the expression of the immediate and early genes (IEGs, e.g. cFOS). IEGs

constitute a set of genes that facilitate cell cycle entry and cell division [38]. Hence it is reasonable to expect

that inhibiting the ERK pathway will impact cell proliferation. But will cell proliferation, which happens

on the scale of days, be sensitive to the different modes of inhibition, which happen on the scale of minutes

? Our signaling results (Fig. 3) suggest the following hypothesis: that MEK inhibition, which produces

intermediate levels of ppERK, will slow down induction of IEGs, and as a result would increase the time to

cell division. In contrast, SRC inhibition, which reduces the fraction of cells getting activated, will reduce

the number of cells entering cell cycle, without affecting the overall cell division in activated cells (cf Fig. 3).
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We tested this hypothesis by quantifying the proliferation of T cells after 48 hours of in vitro culture under

concomitant antigen stimulation and drug exposure. We used flow cytometry to monitor cell activation and

division by measuring cell size (FCS-A), the levels of the CD8 co-receptor on the surface of cells (proportional

to fluorescence intensity), and the fluorescence of T cells that were tagged before activation with an amine-

reactive fluorescent dye (CTV or CFSE, the dye gets diluted by 2 fold at each cell division). Upon activation,

T cells increase both their size and CD8 expression, providing a clear criterion (Fig. 6A) that separates

inactive and active cell populations, whose numbers can be quantified as N− and N+, respectively. Among

the active fraction of cells we analyze the number of cells (N+
i for i = {0, 1, 2, 3, . . . }) undergoing i divisions

as measured by CTV or CFSE dilution (Fig. 6B). By computing both the mean number of divisions and

the fraction of activated cells for each dose of each drug, we could plot the two hypothesized modes of long

timescale inhibition.

Representing the data as fraction activated vs. mean divisions, demonstrates that the disparate modes

of inhibition for signal transduction map to the proliferative timescale (Fig. 6C). To be more explicit, we

found that dosing of MEK inhibitor reduces the average number of divisions among activated cells, while

the dominant feature of the SRC inhibition is the distinct reduction of the number of activated cells. This is

not the exclusive feature observed in our data, since intermediate doses of SRC inhibitor do also reduce the

mean divisions (possibly because of the unaccounted signaling transduction pathways dependent on TCR

activation, e.g. PI3K and AKT [39]). Crucially, application of MEK and SRC inhibitors shows grouping

of the proliferation data when represented as fraction activated vs. mean division number. We then found

these results to be a general property of MEK and SRC inhibitors in our system by including the following:

Bosutinib, PD325901, PP2, Trametinib and AZD6244; most these drugs are either presently clinically used

or in various stages of clinical trials. Indeed, Fig. 6C shows an astonishing degree of agreement in-between

the SRC inhibitors, in-between the MEK inhibitors, and at the same time, a very clear divergent behavior of

the two families. We conclude that our measurements support the hypothesis that the impact of MEK/SRC

inhibition on cell proliferation recapitulate the two modes of inhibition that we documented with short-term

signaling response in Fig. 3.

Discussion

In this study we combine theoretical and experimental approaches to probe mechanisms of inhibition in

signal transduction. We used single cell phospho-profiling and Cell-to-Cell Variability Analysis (CCVA) [28]

to characterize the biochemical details of small molecule chemical inhibitors within living cells; such detail

was so far limited to in vitro enzymatic assays. We uncovered a generic mechanism in which targeted enzyme

inhibition manifests in two distinct patterns of inhibition, which we label “digital” vs. “analog”. Lastly,

we probed the biological significance of these results by correlating short timescale signaling behavior with

unique modes of inhibition of cellular proliferation.
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Using single cell phospho-profiling and CCVA we were able to perform detailed and mechanistic charac-

terization of cellular responses to targeted inhibition in primary cells. Specifically, we show how to utilize

CCVA to mechanistically characterize the biochemical interaction between the enzyme target and the in-

hibitor. We confirmed that AZD1480 is a potent non-competitive, with respect to STAT5, inhibitor of

JAK-STAT signaling in IL-2 stimulated primary T lymphocytes (Fig. 2) and that pSTAT5 levels and drug

efficacy depend on varied levels of endogenous STAT5. In addition, we demonstrated how the organization

of reactions in biochemical networks in a more complex signaling cascade can determine markedly different

cellular responses to inhibition (Figs. 3,4).

Although Albeck et al. also found that inhibition of different enzymes manifest to digital or analog

signaling responses [26], we propose a mechanistic model which attributes these disparate responses to the

context of the targeted enzyme. Essentially, the overall network response to inhibition is determined by

the dynamic properties associated with the targeted enzymes’ location in the larger biochemical network

(Fig. 4). Furthermore, we show how our short timescale signaling behavior translates to novel long timescale

proliferative response to inhibition (Fig. 6). As a result, our method extends the characterization of inhibitors

from the current state-of-the-art in vitro assays to primary single cells, and sheds light on the nonlinear

signaling responses of the biochemical network structure being perturbed.

Building upon our initial findings, we extended our mechanistic models and used CCVA to demonstrate

how cells utilize the endogenous variability of protein abundance to generate disparate responses to singular

perturbations. In context to inhibition, we found that variation in enzyme substrate (STAT5) abundance

established diverse signaling amplitudes and varied the sensitivity of single cells to inhibition (Figs. 1,2). We

then extended our mechanistic model of SRC inhibition and found that the variability of SRC expression

operates on cells as a bifurcation parameter, which controls the number of possible steady states of the

signaling network. As a result, cells that had elevated abundance of SRC were more tolerant to inhibition

(Fig. 5). The extent in which these mechanisms of diversity provide resilience of populations to inhibition

at longer timescales remains an open question. However, our findings are of practical importance: there are

numerous examples of biological systems that utilize protein abundance to generate phenotypic variability, as

noted in e.g. [40, 41, 42, 43, 44]. Similarly, there exist abundant single cell observations showing heterogeneous

responses to inhibition [16, 21, 22].

Our method facilitates the extension of in vitro kinase assays to cellular systems and motivates a tran-

sition from phenomenological characterization of drug response at the single cell level, into mechanistic

and functional understanding. By using our combined approach of CCVA and development of mechanistic

models to characterize drugs in primary cells, we were able to unravel fundamental chemical and biologi-

cal processes. In particular, our method is especially useful when probing the functional consequences (on

long timescales) of molecular perturbations (as experienced by cells on short timescales). When applied,

we successfully showed how the SRC and MEK inhibitors cluster on two distinct curves, which are easy

to interpret as distinct modes of inhibition. Since it is unlikely that the ERK pathway is the only cellular
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pathway exhibiting distinctly different modes, we expect that our method will prove useful in characterizing

other inhibitor-pathway combinations, hopefully teasing out more novel modes of inhibition.

Methods and Methods

Mice and Cells

Primary splenocytes and lymphocytes were harvested from C57BL/6N (B6; Taconic Farms), B10A wild

type (B10A; Taconic Farms), OT-1 TCR transgenic RAG2-/- (Taconic Farms), and 5C.C7 TCR transgenic

RAG2-/- (Taconic Farms) mice and cultured up to 10 days. Mice were bred, maintained, and euthanized at

Memorial Sloan Kettering Cancer Center (MSKCC) in compliance with our animal protocol. The animal

protocol was reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) of the

Memorial Sloan Kettering Cancer Center (New York NY). The protocol number is 05-12-031 (last renewal

data: December 23rd 2013). RMA-S TAP-deficient T cell lymphoma cell line was used as antigen presenting

cells for signaling experiments [24].

Antibodies and Cell Stains

Cells were labeled with primary antibodies against doubly phosphorylated ERK 1/2 (p-T202, p-Y204; clone

E10), phosphorylated MEK 1/2 (p-S221; clone 166F8), or phosphorylated STAT5 (p-Y694; clone C11C5) -

purchased from Cell Signaling Technology (Beverly, Massachusetts). The primary antibody against STAT5

was purchased from Santa Cruz Biotechnology (Santa Cruz, California). Secondary antibodies tagged with

fluorescent molecules were purchased from Jackson ImmunoResearch (West Grove, Pennsylvania). Surface

markers CD8α (clone 53-6.7) and CD4 (clone RM4-5) tagged to fluorescent molecules were purchased from

Tonbo biosciences (San Diego, California). Cell proliferation was measured by dilution of either CellTrace
TM

Violet (CTV) or Carboxyfluorescein N-succinimidyl ester (CFSE) proliferation kits purchased from Molecular

Probes. Cell viability was assessed with Live/Dead R© Near-IR kit purchased from Molecular Probes.

Small Molecule Chemical Inhibitors

The SRC inhibitors PP2 and Bosutinib as well as the MEK inhibitor PD0325901 (PD325901) were purchased

from Sigma-Aldrich. The MEK inhibitors Trametinib and AZD6244 were generous gifts from Neal Rosen

(MSKCC). The JAK inhibitor AZD1480 and SRC inhibitor Dasatinib were purchased from Selleckchem.

Additional Reagents

Supplemented RPMI-1640 media was prepared by MSKCC core media preparation facility and was used for

all cell cultures and experiments. Media was supplemented with 10% fetal bovine serum, 10 µg/mL penicillin

and streptomycin, 2 mM glutamine, 10 mM HEPES (pH 7.0), 1 mM sodium pyruvate, 0.1 mM non-essential
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amino acids, and 50 µM β-mercaptoethanol. Cell were stimulated with with interleukin 2 (IL-2; eBioscience).

TCR activating ligands K5 MCC peptide (K5): ANERADLIAYFKAATKF (T lymphocyte 5C.C7 agonist)

and ovalbumin peptide SIINFEKL (T lymphocyte OT-1 agonist) were purchased from GenScript. Cells

were chemical fixed and permeabilized following signaling experiments with 2% paraformaldehyde (PFA;

Affymetrix) and 90% methanol (MeOH). Cells were stained with antibodies and suspended in FACS buffer

for flow cytometry measurements. FACS buffer consists of 10 % fetal bovine serum (MSKCC core media

preparation facility) and 0.1% sodium azide in PBS. Ficoll-Paque PLUS (GE) was used to purify live cells

in culture.

Primary cell culture

5C.C7 and OT-1 primary cells were cultured ex vivo with peptide pulsed antigen presenting cells (APCs)

from irradiated (3,000 RAD) B10A and B6 mice, respectively. APCs were pulsed overnight with 1 µM

K5 peptide for 5C.C7 activation and 1 µM SIINFEKL for OT-1 activation prior to irradiation. Cells were

purified by Ficoll-Paque gradient centrifugation and given exogenous IL-2 (1 nM) every other day. All cells

were cultured at 37◦C and 5% CO2 in supplemented RPMI and used for experiments within 7 days of

activation.

Single cell inhibition of signal transduction assay

JAK inhibition : The pSTAT5 response to JAK inhibition was measured using primary 5C.C7 derived T

lymphocytes. Cells were aliquoted in 96 well v-bottom plates with exogenous IL-2 (working dilution 2 nM)

for 10 minutes and kept at 37◦C. The cells were then treated the JAK inhibitor AZD1480 for 15 minutes at

37◦C. Followed by 15 minutes of fixing in 2% PFA on ice. The cells were then permeabilized in 90% MeOH

and stored at -20◦C until staining for flow cytometry.

SRC and MEK Inhibition : The ppERK response to SRC and MEK inhibition was measured using

primary OT-1 T lymphocytes activated with RMA-S antigen presenting cells. RMA-S cells were suspended

in culture with 1 nM SIINFEKL peptide for 2 hours at 37◦C, 5% CO2, and on a rotator to guarantee mixing.

During this time we labeled OT-1 cells with an amine reactive dye, CTV, according to the manufacture’s

protocol (Molecular Probes). This fluorescent tag was used to identify OT-1 cells in silico. We rested the

OT-1 cells one hour after CTV staining, and then distributed them in a 96 well v-bottom plate. Each well

was given various doses of SRC inhibitor and MEK inhibitor and kept at 37◦C for 5 minutes. Following the

5 minute exposure to the inhibitors, we added the peptide pulsed RMA-S (10 RMA-S to 1 OT-1 T cell) and

pelleted by centrifugation for 10 seconds at 460 rcf at room temperature. This step guaranteed that both

cell types, OT-1 and RMA-S, came into contact. The cells were allowed to activate for 10 minutes, followed

by fixing on ice in 2% PFA, and then permeabilized and stored in 90% MeOH at -20◦C.
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Proliferation assay

The proliferative response of OT-1 T lymphocytes to SRC and MEK inhibitors was measured by the dilution

of the amine reactive dyes CTV or CFSE. Splenocytes from B6 mice were used as antigen presenting cells

(APCs). Once harvested, the APCs, were given exogenous SIINFEKL peptide (1 nM) for 2 hours and

kept at 37◦C, in 5% CO2, and placed on a rotator to guarantee mixing. During this time, lymphocytes

and splenocytes were harvested from an OT-1 mouse, and labeled with either CTV or CFSE according to

the manufacture’s protocol (Molecular Probes). After the 2 hours of incubation, the B6 splenocytes were

irradiated with 3,000 rad. Irradiated B6 splenocytes and CTV or CFSE stained OT-1 lymphocytes and

splenocytes were mixed, 10 B6 derived cells per OT-1 derived cell, in sterile 96 well v-bottom plates. The

inhibitors were then administrated and the plates were kept at 37◦C and in 5% CO2 for 48 hours. After the

48 hours, cells were labeled with a fixable Live/Dead stain according to manufacture’s protocol (Molecular

Probes), fixed in 2% PFA, and suspended in 90% MeOH at -20◦C until staining for flow cytometry.

Data analysis

Flow cytometry measurements were compensated and gated using FlowJo software. All other data analysis

was performed using the scientific python software suite (SciPy), figures were produced in matplotlib [45],

and Gaussian mixture modeling performed using scikit-learn [46].
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Figure 1: Variability of endogenous protein abundance correlates with single cell response to

chemical inhibition. (A) IL-2 stimulation of the JAK-STAT pathway. (B) Single cell pSTAT5 abundance

in response to JAK inhibitor AZD1480. Inset, the coefficient of variation (CV) response to inhibition. (C)

Single cell contour plot of total STAT5 abundance and pSTAT5 in cells not treated with inhibitor, [IJAK] =

0. Curve shows the resulting geometric mean of the pSTAT5 abundance conditioned on STAT5 abundance

per cell. (D) Cell-to-Cell Variability Analysis reveals that the pSTAT5 response amplitude is correlated

with STAT5 abundance. In addition, the sensitivity of cells to inhibition (IC50) exhibits a small negative

correlation with STAT5 abundance (errorbars are standard deviation of experimental duplicates).
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Figure 2: CCVA reveals the most likely mechanism of AZD1480 in live single cells. (A) Model

diagrams that represent three possible mechanisms of inhibition. (B) Each model was tested against our

data by measuring the sum of squared residuals (Total Residuals) between our model predictions and the

data points - a lower value means better agreement between model and data. The model was fit to all the

data point presented in (C). (C) Overlay of data (circles) with the optimal model and parameter set from

fit (lines). (D) A linear transform of the data was derived from the optimal model and the corresponding

parameters reveal agreement between model (line) and the data (open circles), R2 = 0.95 (See supplement for

details). (E) Overlay of measured IC50 with respect to STAT5 abundance as measured from CCVA analysis

of data (triangles; errorbars standard deviation experimental duplicates) and predicted by our optimal model

(line).
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Figure 3: Inhibitor target specific modes of inhibition. (A) The implicit model of inhibitor action. (B)

Histograms of single cell response to TCR stimulation and SRC inhibition with Dasatinib. (C) Histograms

of single cell response to TCR stimulation and MEK inhibition with PD325901. (D) Single cell dose response

of Dasatinib - the inset represents the mean response of all cells to a single dose of inhibitor. (E) Single cell

dose response of PD325901 - the inset represent the mean response of all cells to a single dose of inhibitor.

(F) Single cell data were modeled as a mixture of Gaussian distributions. α+ parameterizes the fraction of

activated cells, while µ+ parameterizes the average abundance of ppERK among activated cells. (G) The

(µ+,α+) plane shows the orthogonal modes of inhibition (errorbars are standard error of mean from 100

samples of 500 T cells per dose of inhibitor chosen randomly and with replacement).
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Figure 4: Sub-network context of the targeted enzyme determines response to inhibition. (A)

Model diagram of signaling network. (B) Phase plane of SRC∗, inset shows the behavior of both the

positive and negative model fluxes. (C) Functional response of ppERK to changes in SRC∗ abundance. (D)

Instantaneous reaction velocities given ordered pairs of (SRC∗, ppERK) shows the dynamic behavior of the

model system. (E) Model diagram for MEK inhibition of signaling. (F,G) Analogous to representations of

model behavior as (B,C) but for different doses of MEK inhibitor. (H) Instantaneous reaction velocities for

maximal MEK inhibition. (I) Model diagram for SRC inhibition. (J,K) Analogous representations of SRC

inhibition as (F,G) for MEK inhibition. (L) Instantaneous reaction velocities for maximal SRC inhibition

show that the dynamics support a single fixed point at (SRC∗, ppERK) = (0,0).
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Figure 5: Protein variability tunes sensitivity of cells to inhibition. (A) Mechanistic model reveals

that the endogenous expression of SRC functions as a bifurcation parameter. (B) Flow cytometry measure-

ments of T cells concomitantly labeled for CD8 (a proxy SRC) and ppERK (pT202, pY204) shows signaling

dependence to endogenous expression of CD8. (C) Model predictions of SRCc dependence on SRC inhibitor

dose. (D) Model predicts scaling of SRCc with increased SRC inhibitor doses. Intuitively, MEK inhibitor

does not influence SRCc. (E) CCVA of T cells concomitantly labeled for CD8 and ppERK (pT202, py204)

treated with various doses of the SRC inhibitor Dasatinib. (F) Quantification of the half effective abundance

of CD8 (CD8c) required for ppERK activation in T cells treated with either MEK inhibitor (PD325901) or

SRC inhibitor (Dasatinib).
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Figure 6: Short timescale modes of inhibition translate to long timescale proliferative response.

(A) Identification of activated T cells after 48 hours of concomitant treatment with antigen and the respective

inhibitor measured by flow cytometry. Upon activation, cells increase size, measured by forward scatter area

(FSC-A), and upregulation of CD8. (B) CellTrace Violet (CTV) dilution identifies active cells that have

divided n times. (C) Quantification of fraction of active cells and mean number of divisions for each inhibitor

(See supplement for more information).
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