
	   1	  

Signatures of positive selection and local adaptation to urbanization in white-footed mice 1	  

(Peromyscus leucopus)  2	  

 3	  

Stephen E. Harris (S.E.H)1* and Jason Munshi-South (J.M.-S.)2 4	  

 5	  

1The Graduate Center, City University of New York (CUNY), New York, NY 10016 USA 6	  

 7	  

2Louis Calder Center—Biological Field Station, Fordham University, 31 Whippoorwill Road 8	  

Armonk, NY 10504 USA 9	  

 10	  

*Corresponding author: Stephen E. Harris 11	  

E-mail: harris.stephen.e@gmail.com 12	  

Current address: Department of Biology, Purchase College, State University of New York 13	  

(SUNY), Purchase, NY 10577 USA 14	  

 15	  

Running title: Local adaptation in urban white-footed mice 16	  

17	  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2017. ; https://doi.org/10.1101/038141doi: bioRxiv preprint 

https://doi.org/10.1101/038141
http://creativecommons.org/licenses/by/4.0/


	   2	  

ABSTRACT 18	  

Urbanization significantly alters natural ecosystems and has accelerated globally.  Urban wildlife 19	  

populations are often highly fragmented by human infrastructure, and isolated populations may 20	  

adapt in response to local urban pressures.  However, relatively few studies have identified 21	  

genomic signatures of adaptation in urban animals.  We used a landscape genomics approach to 22	  

examine signatures of selection in urban populations of white-footed mice (Peromyscus 23	  

leucopus) in New York City.  We analyzed 154,770 SNPs identified from transcriptome data 24	  

from 48 P. leucopus individuals from three urban and three rural populations, and used outlier 25	  

tests to identify evidence of urban adaptation. We accounted for demography by simulating a 26	  

neutral SNP dataset under an inferred demographic history as a null model for outlier analysis. 27	  

We also tested whether candidate genes were associated with environmental variables related to 28	  

urbanization. In total, we detected 381 outlier loci and after stringent filtering, identified and 29	  

annotated 19 candidate loci. Many of the candidate genes were involved in metabolic processes, 30	  

and have well-established roles in metabolizing lipids and carbohydrates.  Our results indicate 31	  

that white-footed mice in NYC are adapting at the biomolecular level to local selective pressures 32	  

in urban habitats. Annotation of outlier loci suggest selection is acting on metabolic pathways in 33	  

urban populations, likely related to novel diets in cities that differ from diets in less disturbed 34	  

areas.   35	  

 36	  

Keywords: transcriptome, Peromyscus leucopus, genotype-environment association, urban 37	  

evolutionary biology, genome scans, positive selection, landscape genomics, urbanization 38	  
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INTRODUCTION 39	  

Urban habitats are one of the fastest growing and most rapidly changing environments 40	  

around the world.  While urbanization has been traditionally viewed as a driver of declining 41	  

habitat quality in and around cities, there is growing interest in the idea that urban areas represent 42	  

novel environments with unique selective pressures (Donihue & Lambert 2015). The recently 43	  

developed but burgeoning field of urban evolutionary biology aims to determine how 44	  

urbanization leads to evolutionary change through mutation, genetic drift, gene flow, and natural 45	  

selection in urban populations. 46	  

The ecological changes that occur within cities are likely to have many evolutionary 47	  

implications. Human infrastructure causes habitat loss and fragmentation and changes resource 48	  

availability, novel species interactions occur because human movements and commerce 49	  

introduce a diverse array of nonnative species, and human activity increases exposure to 50	  

chemical, light, and noise pollution (McKinney 2002; Chace & Walsh 2004; Shochat et al. 2006; 51	  

Sih et al. 2011).  These changes lead to unique pressures in novel urban habitats that may rapidly 52	  

drive evolutionary change over short timescales. Increased genetic drift in relatively isolated 53	  

urban populations, genetic differentiation between populations with restricted gene flow from 54	  

urban infrastructure, or allele frequency shifts due to local urban adaptation, are all likely 55	  

outcomes of evolution in cities (Munshi-South 2012; Merilä & Hendry 2014; Donihue & 56	  

Lambert 2015). 57	  

Urban populations are potentially excellent systems for examining how species respond 58	  

to anthropogenic environmental change, what genes and traits are involved, and how quickly 59	  

populations locally adapt to changing environments. Local adaptation is a common phenomenon 60	  

in nature (Stinchcombe & Hoekstra 2008; Bonin 2008; Linnen et al. 2009; Hohenlohe et al. 61	  
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2010a; Turner et al. 2010; Ellison et al. 2011; De Wit & Palumbi 2013), and often results from 62	  

the operation of selection on standing genetic variation as opposed to novel mutations over 63	  

relatively short time scales (Barrett & Schluter 2008; Stapley et al. 2010).  Additionally, the 64	  

quantitative traits involved in local adaptation may involve many genes of small effect working 65	  

to produce the desired phenotype (Orr 2005; Rockman 2012), and these ecologically relevant but 66	  

non-conspicuous phenotypes are predicted to be those most involved in urban adaptation (Sih et 67	  

al. 2011). However, traits with relatively simple genetic architecture may also be under selection 68	  

in urban environments (Thompson et al. 2016).  Investigating the genetic basis of local 69	  

adaptation has provided insight into a variety of evolutionary processes including speciation, 70	  

maintenance of genetic diversity, range expansion, and species responses to changing 71	  

environments (Savolainen et al. 2013; Tiffin & Ross-Ibarra 2014), and holds great promise for 72	  

understanding adaptive evolution in response to urbanization.   73	  

Landscape genomics has recently produced a number of approaches for studying local 74	  

adaptation. This field is defined by the spatially explicit study of genomic variation (Sork et al. 75	  

2013) that seeks to identify environmental variables influencing adaptive genomic variation 76	  

(Rellstab et al. 2015). Landscape genomics, and more specifically genotype-by-environment 77	  

analyses (GEA), can successfully identify associations between urban environmental variables 78	  

and allele frequencies that indicate adaptation to local urban conditions. These approaches can 79	  

also help to untangle the interactions between neutral demographic processes and selection 80	  

(Rellstab et al. 2017).  Urban populations are influenced by both genetic drift through founder 81	  

effects and barriers to gene flow, and selection acting on genetic variation linked to increased 82	  

fitness in urban settings.  83	  
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A small but growing number of studies have documented how populations may locally 84	  

adapt to urban selective pressures through changes in allele frequencies and / or undergo 85	  

directional shifts in phenotypic traits.  Yeh (2004) reported that sexually-selected tail coloration 86	  

in Juncos (Junco hyemalis) was rapidly evolving in urban populations compared to rural ones. 87	  

European Blackbirds (Turdus merula) exhibit evidence of selection on genes underlying anxiety 88	  

behavior in newly established populations across multiple cities (Partecke et al. 2006; Mueller et 89	  

al. 2013).  Cheptou et al. (2008) reported that a weed (Crepis sancta) in urban vegetation plots 90	  

surrounded by paved surfaces showed heritable changes in seed morphology and dispersal. 91	  

Reduced snow cover in urban areas leads to colder minimum ground temperatures and 92	  

Thompson et al. (2016) found parallel adaptive evolution in urban white clover (Trifolium 93	  

repens) populations that had increased freezing tolerance. Several studies have also found likely 94	  

adaptive genetic and morphological changes in urban mammal populations. Suggestive of urban 95	  

adaptation, a specific mitochondrial genotype rose to fixation in white-footed mice (Peromyscus 96	  

leucopus) populations in Chicago along with morphological changes to skull shape after 97	  

urbanization (Pergams & Lacy 2008).  In urban areas of Italy, Kuhl’s pipistrelle (Pipistrellus 98	  

kuhlii) bat populations had significantly larger bodies and longer skulls than natural populations, 99	  

suggesting urban adaption to a novel diet introduced when artificial illumination attracted an 100	  

increased number of large hard-bodied moths (Tomassini et al. 2014). 101	  

Few studies in urban evolutionary biology have been able to measure phenotypic 102	  

changes, definitively link them to genetic changes, and establish fitness benefits to demonstrate 103	  

evolutionary adaptation.  One exception are urban killifish (Fundulus heteroclitus), where 104	  

selective pressure from polychlorinated biphenyls (PCBs) has led to the evolution of PCB 105	  

tolerance in urban populations (Whitehead et al. 2010; Reid et al. 2016).  Adaptation to PCB 106	  
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pollution was also reported in tomcod (Microgadus tomcod) in the Hudson River through a 107	  

deletion that similarly increases tolerance to PCBs (Wirgin et al. 2011). Urban adaptation has 108	  

also been confirmed in the well-known peppered moth (Biston betularia) system.  Recent 109	  

evidence suggests that the industrial melanism trait in this species is linked to an insertion of a 110	  

transposable element in the cortex gene in the early 1800s that spread throughout the population 111	  

in response to industrial airborne pollution (Hof et al. 2016).  The study of additional systems 112	  

will likely identify a complex array of adaptive evolutionary responses in cities (Whitehead et al. 113	  

2017).  114	  

 Here we examined signatures of selection in isolated urban populations of white-footed 115	  

mice, Peromyscus leucopus, in New York City (NYC) using a landscape genomics approach.  116	  

Peromyscus spp. (Rodentia, Cricetidae) are a group of abundant small mammals found across 117	  

much of North and Central America.  They live in a diverse array of habitats that exposes them 118	  

to a variety of selective pressures, and thus multiple Peromyscus spp. have become model 119	  

systems for studies examining ecology, evolution, and physiology in natural populations 120	  

(Munshi-South & Richardson 2017).  There is also evidence that Peromyscus spp. readily adapt 121	  

to environmental change (Storz et al. 2007, 2009, 2010; Mullen & Hoekstra 2008; Linnen et al. 122	  

2009; Weber et al. 2013; Natarajan et al. 2013; Munshi-South & Richardson 2017), making 123	  

them good subjects for the study of local adaptation. White-footed mice are one of the few native 124	  

mammals that thrive in extremely small, fragmented urban forests in North America (Pergams & 125	  

Lacy 2008; Rogic et al. 2013; Munshi-South & Nagy 2014), and tend to be found at higher 126	  

densities in urban vs. rural patches due to a thick understory providing abundant food resources 127	  

and exclusion of major predators and competitors (Rytwinski & Fahrig 2007). Increased density 128	  

may also be due to limited P. leucopus dispersal between urban sites.  Munshi-South (2012) 129	  
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found barriers to dispersal between isolated NYC parks, with migrants only moving through 130	  

significantly vegetated corridors throughout the city. There is also substantial genetic structure 131	  

between NYC parks as measured by microsatellites (Munshi-South & Kharchenko 2010), 132	  

genome-wide SNPs (Munshi-South et al. 2016) and demographic modeling (Harris et al. 2016). 133	  

We have also previously identified signatures of selection in urban populations of NYC white-134	  

footed mice (Harris et al. 2013), though we used smaller datasets and more limited approaches 135	  

than presented here.  136	  

In the current study, we examined SNPs generated from individual transcriptome 137	  

sequencing for P. leucopus from three urban sites in NYC and three rural sites from the 138	  

surrounding area. We generated a large SNP dataset and produced estimates of nucleotide 139	  

diversity (π, Tajima 1983), Tajima’s D (Tajima 1989), and FST (Wright 1951) to generate per-site 140	  

estimates and identify loci that deviate from neutral expectations. We then used a variety of 141	  

genome scan methods and outlier tests to identify genes subject to selection in an urban setting.  142	  

Our approach identified population differentiation, shifts in allele frequencies, and associations 143	  

between alleles and environmental variables.  However, neutral demographic processes such as 144	  

population bottlenecks can produce signatures of genetic variation similar to those produced by 145	  

selection (Oleksyk et al. 2010; Li et al. 2012).  We accounted for this possibility by 146	  

incorporating a simulated neutral SNP dataset from an inferred demographic history (Harris et al. 147	  

2016) directly into our null model for identifying outliers (Excoffier et al. 2009; Gutenkunst et 148	  

al. 2009; Li et al. 2012; Vitti et al. 2013; Lotterhos & Whitlock 2015). 149	  

The three specific aims of this study were the following:  1. identify candidate genes 150	  

exhibiting signatures of selection in NYC populations of white-footed mice using a variety of 151	  

genome scan methods and outlier tests; 2. distinguish genetic outliers resulting from selection 152	  
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rather than demography by incorporating demographic histories of white-footed mice in NYC 153	  

into null models of genome scans; and 3. identify genes that are statistically associated with 154	  

environmental variables representative of urbanization using landscape genomic approaches. 155	  

 156	  

MATERIALS AND METHODS 157	  

Sampling, library preparation, and transcriptome assembly 158	  

 We trapped and collected white-footed mice from 2010 - 2012.  For full details on 159	  

sampling, transcriptome sequencing, assembly and SNP calling, see Harris et al. 2013, 2015.  In 160	  

brief, we randomly chose eight adult white-footed mice (equal numbers of males and females) 161	  

from each of six sampling locations (N = 48 total) representative of urban and rural habitats and 162	  

with minimal within-site genetic structure (Fig. 1) (Harris et al. 2013, 2015). Three sampling 163	  

sites were within NYC parks: Central Park in Manhattan (CP), New York Botanical Gardens in 164	  

the Bronx (NYBG), and Flushing Meadows—Willow Lake in Queens (FM).  These sites 165	  

represented urban habitats surrounded by high levels of impervious surface cover and high 166	  

human population density, as previously quantified in Munshi-South et al. (2016).  The 167	  

remaining three sites occurred ~100 km outside of NYC in rural, undisturbed habitat 168	  

representative of natural environments for P. leucopus.  High Point State Park is in the Kittatinny 169	  

Mountains in New Jersey (HIP), Clarence Fahnestock State Park is located in the Hudson 170	  

Highlands in New York (CFP), and Brookhaven and Wildwood State Parks occur on the 171	  

northeastern end of Long Island, New York (BHWWP). Total RNA was extracted separately 172	  

from livers stored in RNA later for each of the 48 mice, treated with DNase, enriched through 173	  

ribosomal RNA depletion, fragmented, reverse transcribed, amplified and tagged with a unique 174	  

barcode, and sequenced in four lanes of one SOLiD 5500XL run (Harris et al. 2015). We called 175	  
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SNPs with the Genome Analysis Toolkit (GATK version 2.8) pipeline using a Bayesian 176	  

genotype likelihood model (DePristo et al. 2011).  In order to call a SNP, we required it to occur 177	  

in at least five individuals, have a nucleotide quality (q-score) ≥ 30, exhibit no strand bias (FS ≥ 178	  

35), and to come from only uniquely mapped reads. We also required SNPs to have an overall 179	  

depth ≥ 10X and ≤ 350X (to account for paralogous sequences), a minor allele frequency (MAF) 180	  

≥ 0.025, and removed SNPs where every individual was heterozygous.   181	  

 182	  

Summary statistics 183	  

 SNP information was stored in a VCF (variant call format) file and summary statistics 184	  

were calculated using vcftools 0.1.12b (Danecek et al. 2011).  We calculated per-site nucleotide 185	  

diversity (π), Tajima’s D, and FST.  We also calculated the statistics for each contig (per-site 186	  

statistic summed across all SNPs per contig divided by total sites) and calculated the average 187	  

estimate for each population, including all pairwise population comparisons for FST. 188	  

 189	  

Scans for positive selection based on population differentiation  190	  

We used the FST based analysis implemented in BayeScan v. 2.1 (Foll & Gaggiotti 2008) 191	  

to compare all six population-specific allele frequencies with global averages and identify outlier 192	  

SNPs. BayeScan identifies loci that exhibit divergence between groups that is stronger than 193	  

would be expected under neutral genetic processes.  Based on a set of neutral allele frequencies 194	  

under a Dirichlet distribution, BayeScan uses a Bayesian model to estimate the probability that a 195	  

given locus has been subject to selection.  To generate more realistic allele frequency 196	  

distributions, we used BayeScan for independent coalescent simulations of SNP datasets based 197	  

on a neutral demographic history inferred by Harris  et al. (2016) specifically for each P. 198	  
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leucopus population. Using the coalescent-based fastsimcoal2 software (Excoffier et al. 2013), 199	  

we generated 100 sets of 100,000 SNPs each for every population in this study from a three 200	  

population isolation-with-migration model using parameter estimates for divergence time, 201	  

effective population size, migration rate, and population size change previously inferred in Harris 202	  

et al. (2016).  In short, the model represented a deep split between an ancestral population into 203	  

Long Island, NY and the mainland (including Manhattan) 29,440 generations before present 204	  

(GBP).  A third population (representing the sampling sites in this study) later became isolated 205	  

746 GBP.  Urban populations were also modeled to include a population size change event at the 206	  

time of divergence. BayeScan was run independently on each of the 100 simulated datasets from 207	  

fastsimcoal2 using default parameters to generate a null distribution of BayeScan statistics.    208	  

BayeScan was then run on the observed SNP dataset using default parameters.  We 209	  

performed several different analyses including a global analysis, one with two populations 210	  

representing urban and rural groups, and finally analyses on all sampling site pairwise 211	  

comparisons.  We retained outlier SNPs with a q-value ≤ 0.1 (leading to a FDR of ≤ 0.1) and 212	  

with a posterior odds probability from BayeScan higher than for any value calculated from the 213	  

simulated dataset.  BayeScan also calculates alpha (α), a locus specific Fst coefficient, where a 214	  

positive value suggests diversifying selection and a negative value suggests balancing or 215	  

purifying selection. There were no SNPs with negative α values.  216	  

For comparison to BayeScan results, we used a related method, BayPass (Gautier 2015), 217	  

that identifies loci subject to selection based on allele frequency patterns that deviate from 218	  

neutral expectations. We ran BayPass using default parameters under the auxillary covariate 219	  

(AUX) model, and simulated pseudo-observed datasets (PODs) under the Inference Model in 220	  

Baypass as suggested by Gautier (2015) to calibrate neutral distributions for XtX.  BayPass uses 221	  
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the XtX statistic to identify adaptive divergence. SNPs with XtX estimates greater than the 95% 222	  

threshold determined from PODs were identified as resulting from adaptive divergence. 223	  

 224	  

Analysis for selective sweeps 225	  

 We also identified outlier regions when the observed SFS showed an excess of low 226	  

frequency and high frequency minor alleles, a signal indicative of a recent selective sweep.  The 227	  

composite likelihood ratio (CLR) statistic is used to identify regions where the observed SFS 228	  

matches the expected SFS generated from a selective sweep (Kim & Stephan 2002; Nielsen et al. 229	  

2005; Pavlidis et al. 2010).  We calculated the CLR along sliding windows across the 230	  

transcriptome using the software program SweeD (Pavlidis et al. 2013).  SweeD is an extension 231	  

of Sweepfinder (Nielsen et al. 2005) that is optimized for large next generation sequencing 232	  

(NGS) datasets.  We lacked a genome to provide high-quality linkage information so SweeD was 233	  

run separately for each population and on individual contigs.  We used default parameters except 234	  

for using a sliding window size of 200 bp and use of a folded SFS, as we lacked an outgroup to 235	  

infer ancestral alleles.  The window within each contig with the highest CLR score is considered 236	  

the likely location of a selective sweep.  Similar to the method used for BayeScan, statistical 237	  

significance was established from a null distribution generated by running SweeD on SNP 238	  

datasets simulated under the inferred demographic history for P. leucopus populations (Harris et 239	  

al. 2016).  SweeD does not inherently identify outlier regions. The CLR is computed using a 240	  

selective sweep model on the observed data and then compared to a neutral model calibrated 241	  

with a simulated background SFS.  As before, we used 100 datasets with 100,000 SNPs each, 242	  

simulated under the inferred neutral demographic history for white-footed mice in NYC.  The 243	  

CLR was calculated using SweeD for all simulated datasets.  We identified outlier contigs if their 244	  
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CLR value was greater than any produced in neutral simulations.  We also required outliers to 245	  

fall within the top 0.01% of the CLR distribution for the observed SNPs.  246	  

 247	  

Genotype-environment association tests for environmental selection 248	  

 We used the GEA approach of LFMM: Latent Factor Mixed Models (Frichot et al. 2013) 249	  

to associate our full SNP dataset with potential environmental selection pressures. LFMM 250	  

examines associations between environmental and genetic variation while accounting for the 251	  

neutral genetic background and structure between populations (Frichot et al. 2013).  We tested 252	  

three environmental variables associated with urbanization: 1) percent impervious surface (i.e. 253	  

surfaces such as roads, rooftops, and other human infrastructure that do not absorb water 254	  

calculated from USGS National Land Cover Data) within a 2 km (the approximate lifetime 255	  

dispersal distance of white-footed mice) buffer around each sampling site’s GPS coordinate, 2) 256	  

human density within a two-kilometer buffer around each sampling site’s GPS coordinate 257	  

(calculated from US Census blocks), and 3) categorization of each site as urban, within NYC 258	  

limits, or rural, undeveloped state park outside city limits (Coded as 0 or 1 in LFMM).  259	  

Calculations were made in ArcGIS v10.1 (ESRI, Redlands, CA, USA) and were previously 260	  

reported in Munshi-South et al. (2016). This previous analysis found that variables 1-2 were 261	  

significantly associated with genome-wide variation in P. leucopus populations in the NYC 262	  

metropolitan area.  LFMM requires the user to define the number of latent factors, K, that 263	  

describe population structure in the dataset.  To identify the appropriate number of K latent 264	  

factors, we performed a genetic PCA followed by a Tracy-Widom test to find the number of 265	  

eigenvalues with P values ≤ 0.01 (Patterson et al. 2006; Frichot & François 2015).  Based on this 266	  

approach, we ran LFMM with default parameters except for K = 6, number of MCMC cycles = 267	  
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100,000, and burn-in = 50,000.  Using author recommendations, we calculated the median |z|- 268	  

score from 10 replicate runs and then readjusted the p values.  LFMM uses |z|- scores to report 269	  

the probability of a SNP’s association with an environmental variable. Again, we controlled for 270	  

FDR by using a q-value threshold of ≤ 0.1.   271	  

BayPass also includes an environmental analysis, so for comparison to LFMM we used 272	  

the GEA test implemented in the BayPass AUX model that identifies genetic markers associated 273	  

with population-specific covariates (Gautier 2015). For population covariates, we used the same 274	  

environmental variables used in LFMM:  site classification (i.e. urban or rural) as a binary 275	  

covariate, human density, and impervious surface.  We used the AUX model and again simulated 276	  

pseudo-observed datasets (PODs) under the Inference Model to calibrate neutral distributions for 277	  

Bayes Factors (BFs).  BayPass uses BFs to associate SNPs with population specific covariates. 278	  

SNPs with BF estimates greater than the 95% threshold determined from PODs were considered 279	  

to be associated with population covariates. We further filtered associations by setting a cutoff 280	  

for BF ≥ 20. 281	  

 282	  

Functional annotation of candidate genes 283	  

 We used the gene annotation pipeline in Blast2GO (Conesa et al. 2005; Götz et al. 2008) 284	  

to identify sequences from the NCBI non-redundant protein database that were homologous to 285	  

our outlier contigs identified above. We then retrieved associated gene ontology (GO) terms.  286	  

Blast2GO retrieves GO terms associated with BLASTX hits and uses the KEGG database to 287	  

describe biochemical pathways linking different enzymes (Ogata et al. 1999; Kanehisa et al. 288	  

2014).  For downstream enrichment analyses, we also used the Ensembl gene annotation system 289	  

(Aken et al. 2016) to find homologous Mus musculus genes for each P. leucopus contig.  We 290	  
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further interpreted the outlier gene lists using g:Profiler (Reimand et al. 2016) to identify gene 291	  

ontology terms enriched in our outlier gene list compared to the fully annotated Mus musculus 292	  

genome. We used the g:Profiler webserver and identified enriched terms associated with outlier 293	  

genes using default parameters and the Benjamini–Hochberg correction for multiple comparisons 294	  

with an adjusted p-value < 0.05.  Finally, we used REViGO to cluster GO terms and summarize 295	  

them in a subset of terms based on semantic similarity measures (Supek et al. 2011).   296	  

 297	  

RESULTS 298	  

Genetic diversity statistics 299	  

 In total, we identified 154,770 SNPs for investigating patterns of genetic variation and 300	  

performing tests of selection. Urban populations had a 50% decrease in nucleotide diversity 301	  

compared to the rural populations, but mean Tajima’s D values for rural parks were consistently 302	  

higher than for urban parks (Table 1).  The average nucleotide diversity for all three rural 303	  

populations was 0.224 ± 0.034 SE, while the average for urban populations was only 0.112 ± 304	  

0.019 SE. The average Tajima’s D within populations did not show substantial differences 305	  

between populations (Table 1).  For all populations, Tajima’s D was slightly positive. Average 306	  

pairwise FST were the lowest between rural populations (0.018 ± 0.364 SE, CFP – HIP Table S1) 307	  

and highest between urban populations (0.110 ± 0.520 SE, CP – FM Table S1).  These FST  308	  

values were similar to FST estimated using genome-wide SNP datasets (Munshi-South et al. 309	  

2016).  310	  

 311	  

Outlier detection and environmental associations 312	  
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 We used BayeScan to identify 39 outlier SNPs exhibiting patterns of divergent selection 313	  

between urban and rural populations (Fig. 2A, Table S2).  There were no SNPs that exhibited 314	  

signatures of balancing selection.  FST values for outlier SNPs ranged from 0.21 - 0.33.  315	  

BayeScan identified zero outlier SNPs in the simulated neutral dataset, and accordingly the 39 316	  

outlier SNPs from the observed data had q-values that were smaller than the most extreme values 317	  

for the simulated data (q-value ≤ 0.6).  We ran a similar test looking for patterns of divergence 318	  

using BayPass.  This analysis identified 56 SNPs that showed evidence of divergent selection 319	  

(Table S2).  We used PODs to estimate a null distribution and outlier SNPs had XtX values ≥ 320	  

8.35 (top 5% of the null distribution).  There were 11 SNPs associated with diversifying 321	  

selection in both the BayeScan and BayPass analyses.  322	  

 To identify signatures of selective sweeps , we used the CLR statistic implemented in 323	  

SweeD. We found that CLR scores in the top 5% of the simulated distribution were generally 2-324	  

3X lower than values in the top 5% of the observed dataset.  We ran SweeD on observed SNPs 325	  

within individual contigs and identified outliers by filtering for a CLR score ≥ 3.53 (the 326	  

maximum CLR from simulated data).  We also chose regions that fell within the top 0.01% of 327	  

the observed distribution (Fig. 2B); all outliers had CLR scores ≥ 4.97.  SweeD identified regions 328	  

with SFS patterns that fit a selective sweep model in 45 contigs within urban populations (Table 329	  

S2).  There was no overlap between outlier SNPs identified by SweeD and BayeScan / BayPass. 330	  

 There were 131 SNPs associated with at least one of three environmental variables tested 331	  

using LFMM (Fig. 3A, Table S2).  There was zero overlap with outliers identified from 332	  

BayeScan and only one SNP that overlapped between SweeD and LFMM.  Three SNPs 333	  

identified in BayPass as outliers showing signatures of diversifying selection were also 334	  

associated with environmental covariates in LFMM (Table S2).  All three SNPs were within 335	  
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genes associated with human density around sampling sites and one was associated with all three 336	  

environmental covariates.  In an analysis similar to LFMM, we used BayPass to also associate 337	  

environmental variables, called population covariates, with allele frequencies.  There were 143 338	  

SNPs associated with at least one of the three environmental covariates tested using BayPass 339	  

(Table S2). From these 143, five overlapped with those showing signatures of divergent selection 340	  

in BayPass and eleven overlapped with outliers in BayeScan.   341	  

Across all tests, SNPs identified as outliers or associated with environmental variables 342	  

were found in 381 contigs.  We filtered this list down to a subset of 19 contigs (Table 2) that are 343	  

the most likely candidates for directional selection due to urban selective pressures.  We required 344	  

these filtered candidate contigs to show a signature of diversifying selection between urban and 345	  

rural populations (BayScan or BayPass) or a signature of a selective sweep (SweeD), and they 346	  

had to be associated with an environmental variable (human density around parks, impervious 347	  

surface) as identified in GEA tests (LFMM or BayPass).   348	  

  349	  

Functional annotation 350	  

 The full contig sequences containing outlier SNPs were obtained from the P. leucopus 351	  

transcriptome (Harris et al. 2015) and used for functional annotation and analysis. We first tested 352	  

the full set of 381 contigs identified by all outlier tests for overrepresented GO terms using 353	  

g:Profiler.  There were 260 overrepresented GO terms from the full outlier list (Table S3).  We 354	  

summarized this list using REViGO into 23 representative terms. The top representative term 355	  

was lipid metabolism, followed by organic substance catabolism (Table S4).  The list also 356	  

includes lipid homeostasis and immune system processes.  357	  
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 We also looked for overrepresentation in the gene annotations associated with the filtered 358	  

subset of 19 outliers and found related results (Table 3).  There were 15 contigs homologous to 359	  

known genes with functional annotation.  Metabolic pathways were the most overrepresented 360	  

group of gene ontology terms, and there were two biological functions associated with the most 361	  

overrepresented GO terms from the full list.  These included non-alcoholic fatty liver disease and 362	  

regulation of protein kinase b (AKT) signaling. 363	  

 364	  

DISCUSSION 365	  

 In this study, we investigated patterns of divergent positive selection between urban and 366	  

rural populations of P. leucopus, and identified significant associations between outlier SNPs and 367	  

environmental variables relevant to urbanization.  The majority of candidate loci were annotated 368	  

with GO terms that are significantly associated with dietary metabolism, particularly breakdown 369	  

of lipids and carbohydrates.  We discuss what these findings mean for organisms inhabiting 370	  

novel urban ecosystems, and more generally for understanding the ecological processes and time 371	  

frame of local adaptation in changing environments. 372	  

Our previous study investigated non-synonymous polymorphisms in pooled 373	  

transcriptome samples and we reported evidence for positive selection in genes dealing with 374	  

metabolism, immunity, and methylation in NYC white-footed mice (Harris et al. 2013). This 375	  

current study supports the phenotypic traits likely under selection in urban environments, 376	  

identifying outlier genes that play major roles in metabolism, and to a lesser extent, immunity, 377	  

but few outlier genes were identified in both the current and previous studies. The dataset 378	  

analyzed here was much larger, included more sampling sites, and changed the inclusion criteria 379	  

for outlier genes by using analyses that identify more recent signatures of selection, as opposed 380	  
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to longer-term evolutionary changes in non-synonymous substitutions . However, it is important 381	  

to note that our study is still relatively small, including only six populations and eight individuals 382	  

from each population.  Increasing the number of individuals and sampling sites, especially 383	  

including multiple cities as replicates, would likely greatly improve the associations found 384	  

between environmental variables and allele frequencies (Lotterhos & Whitlock 2015).  The latter 385	  

approach may be unlikely, however, with each urban setting presenting a unique set of selective 386	  

pressures leading to local adaptive responses, as shown with coat coloration in beach mice 387	  

(Peromyscus polionotus) (Hoekstra et al. 2006) and climate related adaptation in the flowering 388	  

plant (Arabidopsis halleri) (Rellstab et al. 2017).  Despite potential issues with sample size, we 389	  

did find two of the eleven previously identified candidate genes (Harris et al. 2013) to be direct 390	  

matches to outliers in this current analysis (Serine protease inhibitor a3c and Solute carrier 391	  

organic anion transporter 1A5), and two other genes were from the same gene families or 392	  

involved in the same biological processes. One gene, an aldo-keto-reductase protein, is part of 393	  

the same gene family as the aflatoxin reductase gene (Contig 10636-348) identified in this study.  394	  

The aldo-keto reductase gene family comprises a large group of essential enzymes for 395	  

metabolizing natural and foreign substances (Hyndman et al. 2003).  The other is a cytochrome 396	  

P450 (CYPA1A) gene involved in metabolism of drugs and lipids. Peromyscus directly express 397	  

CYPA1A and Hsp90 (outlier from current SweeD analysis) when exposed to environmental 398	  

toxins (Settachan 2001).  399	  

 400	  

Population genomics summary statistics 401	  

 Before performing outlier tests, we initially calculated per-site nucleotide diversity and 402	  

Tajima’s D.  The Tajima’s D statistic was calculated per contig for each population.  We found 403	  
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nucleotide diversity to be lower in all urban population compared to rural populations, 404	  

supporting previous work that found a negative association between genome-wide SNP diversity 405	  

and urbanization. That study included the six populations studied here and an additional 18 406	  

populations distributed along an urban-to-rural gradient (Munshi-South et al. 2016).  While loss 407	  

of genetic variation will reduce evolutionary potential and decrease the probability of local 408	  

adaptation, selection may still act if adequate variation is present and genetic drift is not too 409	  

strong (Donihue & Lambert 2015; Munshi-South et al. 2016).  Tajima’s D is often used to 410	  

identify signatures of selection, comparing observed to expected heterozygosity.  For all our 411	  

populations, Tajima’s D skewed positive, possibly explained by balancing selection.  While 412	  

balancing selection has been found to maintain variation in immune loci in fragmented urban 413	  

population of bobcats (Lynx rufus) (Serieys et al. 2015), it is difficult to distinguish whether 414	  

demography or selection drives Tajima’s D values in many cases (MacManes & Eisen 2014).  415	  

We have estimated the complex demographic history for P. leucopus populations in NYC (Harris 416	  

et al. 2016), suggesting Tajima’s D may not be the best tool for identifying selection in this 417	  

system.  Outlier tests are more robust to demography and we explicitly accounted for the specific 418	  

demographic history of P. leucopus in the null models used during analysis of our genome scan 419	  

methods. 420	  

 421	  

Signatures of selection in urban populations from genome-wide scans  422	  

 Over the past decade, genome scans have become feasible methods to detect and 423	  

disentangle neutral and adaptive evolutionary processes for non-model organisms (De 424	  

Villemereuil et al. 2014; Hoban et al. 2016).  One method, BayeScan (Foll & Gaggiotti 2008), 425	  

calculates the posterior probability that a site is under the influence of selection by testing 426	  
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models with and without selection. While BayeScan is relatively robust to confounding 427	  

demographic processes (Pérez-Figueroa et al. 2010; De Villemereuil et al. 2014), population 428	  

bottlenecks, hierarchical structure, recent migration, or variable times to most-recent-common-429	  

ancestor (MRCA) between populations can artificially inflate FST values (Hermisson 2009; 430	  

Lotterhos & Whitlock 2014) and may still impact BayeScan (Savolainen et al. 2013; Lotterhos & 431	  

Whitlock 2014).  We minimized false positives by incorporating population structure and a 432	  

specific demographic history for P. leucopus in NYC directly into the null distribution of FST 433	  

(Harris et al. 2016).  We only included outliers if their posterior probability was greater than 434	  

probabilities calculated from these simulations. The outliers from BayeScan comprised 0.024% 435	  

of the total number of loci analyzed from our RNASeq dataset, and 0.036% of the total loci using 436	  

BayPass.  These percentages are in line with candidates uncovered from a similar study (0.05%) 437	  

that looked at high and low altitude populations of the plant Senecio chrysanthemifolius 438	  

(Chapman et al. 2013).  Many studies find higher percentages of outlier loci using BayeScan; for 439	  

example, 4.5% in the American pika across its range in British Columbia (Henry & Russello 440	  

2013), and 5.7% in Atlantic herring across their range (Limborg et al. 2012).  Our lower overall 441	  

percentage of outliers may be due to differences in species or datasets between studies (false 442	  

positive rate, power, sampling, genome size and composition are all variables that influence 443	  

numbers of SNPs), or alternatively because of relatively recent isolation or moderate to weak 444	  

selection in urban populations. 445	  

 SweeD, another genome scan approach, examines patterns within a population’s SFS 446	  

rather than allelic differentiation between populations.  The main footprint that selective sweeps 447	  

leave on the SFS is an excess of low- and high-frequency variants (Nielsen 2005).  The 448	  

SweepFinder method (Nielsen et al. 2005), recently upgraded to the NGS compatible SweeD 449	  
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(Pavlidis et al. 2013), uses a CLR test based on the ratio between the likelihood of a neutral and 450	  

selective sweep hypothesis.  As above, the weakness of hitchhiking methods is the confounding 451	  

influence certain demographic processes have on the SFS (Hermisson 2009).  However, building 452	  

a robustly inferred demographic history into the null model substantially reduces false positive 453	  

rates (Pavlidis et al. 2013).  We included the P. leucopus demographic history into our analysis, 454	  

and found 0.019% of the sequenced loci to contain SFS patterns indicative of selective sweeps.  455	  

This rate is in line with other studies that reported that 0.5% of regions in domesticated rice 456	  

(Wang et al. 2014), 0.02% of loci in black cottonwood (Zhou et al. 2014), and 0.02% of the 457	  

gorilla genome (McManus et al. 2014) show evidence of selective sweeps or hitchhiking.   458	  

 Several studies have shown that identifying outliers with multiple tests and diverse 459	  

theoretical approaches is the best way to reduce false positives in genome outlier analyses 460	  

(Nielsen 2005; Grossman et al. 2010; Hohenlohe et al. 2010b).  We required candidate genes to 461	  

show a signature of diversifying selection or a signature of a selective sweep, and they had to be 462	  

associated with an environmental variable. We found several outliers identified in both 463	  

BayeScan and BayPass (Table S2), however, there was no overlap between BayeScan / BayPass 464	  

and SweeD outliers.  This discrepancy is likely due to the different selection scenarios 465	  

underlying each test, i.e. divergent local selection versus population-wide positive selection in 466	  

the form of selective sweeps (Hermisson 2009).  FST  based methods respond to allelic divergence 467	  

relatively quickly, while models for selective sweeps typically require nearly-fixed derived 468	  

alleles (Hohenlohe et al. 2010b).  Given the recent history of urbanization in NYC, many 469	  

selective sweeps may be ongoing or otherwise incomplete.  Selection may also be acting on 470	  

standing genetic variation in the form of soft sweeps (Hermisson & Pennings 2005) that are not 471	  

readily identified by SweeD.   472	  
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 473	  

Environmental associations strengthen evidence of local adaptation to urbanization 474	  

 GEA tests are a growing class of methods that identify loci that are associated with 475	  

environmental factors (Joost et al. 2007; Coop et al. 2010; Frichot et al. 2013), and by 476	  

accounting for underlying correlation structure of allele frequencies, may often be more powerful 477	  

than traditional outlier tests (Savolainen et al. 2013). GEA tests come from the field of landscape 478	  

genomics which incorporates tools from landscape genetics and population genomics to examine 479	  

the effects of demography, migration, and selection, and ultimately identify local adaptation 480	  

(Sork et al. 2013; Rellstab et al. 2015).  Here we used LFMM (Frichot et al. 2013) and the AUX 481	  

covariate model from BayPass on the full SNP dataset with environmental metrics of 482	  

urbanization.  LFMM performs better than other methods in the presence of hierarchical 483	  

structure and when polygenic selection is acting on many loci with small effect (De Villemereuil 484	  

et al. 2014).  Hierarchical structure in our dataset includes urban and rural differentiation (Harris 485	  

et al. 2015; Harris et al. 2016), patterns of geographic structure between mainland mice and 486	  

Long Island, NY (Harris et al. 2016), and population structure between individual urban parks 487	  

(Munshi-South & Kharchenko 2010).  Simulations also suggest that LFMM is superior when 488	  

sample size is less than 10 individuals per population, there is no pattern of IBD, and the study 489	  

compares environmentally divergent habitats (Lotterhos & Whitlock 2015).  We sampled eight 490	  

white-footed mice per population, found no evidence of IBD (Munshi-South et al. 2016), and 491	  

sampled environmentally divergent rural and urban locations. 492	  

 Using GEA tests implemented in BayPass and LFMM, we found that 17 (12 %) and 4 493	  

(2.8 %) outliers, respectively, were significantly associated with one or more urbanization 494	  

variables. These results are lower than other studies combining genome scans and GEA tests.  495	  
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Limborg et al. (2012) found 62.5% of the outliers identified in BayeScan were correlated with 496	  

temperature or salinity in Atlantic herring, and 26.3% of genome scan outliers were associated 497	  

with temperature or latitude in a tree species (De Kort et al. 2014).  The lower overlap found in 498	  

our study is likely due to the difficult nature in quantifying urbanization.  Percent impervious 499	  

surface, human population density, or binary classification as urban versus rural may not capture 500	  

the specific, causative selection pressures acting on white-footed mouse populations (See Table 501	  

S5 for environmental data). We used these metrics as general proxies for changing ecological 502	  

processes in urbanized habitats.  The percent of impervious surface around a park is likely 503	  

representative of habitat fragmentation, as urban infrastructure changes the net primary 504	  

productivity due to increasing percentages of impervious surface or artificial landscapes, parks 505	  

and yards (Shochat et al. 2006).  This fragmentation then leads to changing species interactions 506	  

as migration is impeded or organisms are forced into smaller areas (Shochat et al. 2006).  The 507	  

percent human density surrounding an urban park can serve as a proxy for the multitude of 508	  

ecological changes humans impose on their surrounding environment. Urbanization and 509	  

increasing human density change the types and availability of resources in the altered habitat 510	  

(McKinney 2002; Sih et al. 2011).  Finally, classifying our sites as urban or rural can generally 511	  

capture the main differences in urban and natural sites.  For example, pollution is a major 512	  

consequence of urbanization (Donihue & Lambert 2015), and urban areas often include 513	  

increased chemical, noise, or light pollution (Sih et al. 2011).    514	  

 Between divergent allele frequencies, a skewed SFS, environmental associations, and 515	  

overrepresented GO terms, we find several overlapping lines of evidence that support rapid 516	  

divergent selection in white-footed mice.  Our results support the growing body of evidence 517	  

(Donihue & Lambert 2015) that finds urbanization directly impacts the ecology and evolution of 518	  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2017. ; https://doi.org/10.1101/038141doi: bioRxiv preprint 

https://doi.org/10.1101/038141
http://creativecommons.org/licenses/by/4.0/


	   24	  

species. However, to fully support the hypothesis that organisms adapt to urban habitats, it is still 519	  

necessary to link genetic changes to measurable phenotypic differences and measure direct 520	  

fitness benefits.  Past urban evolutionary studies often focus solely on phenotypic (Yeh 2004; 521	  

Partecke et al. 2006; Cheptou et al. 2008; Thompson et al. 2016) or genetic (Wandeler et al. 522	  

2003; Noël & Lapointe 2010; Mueller et al. 2013; Lourenco et al. 2017) differences between 523	  

populations in and outside of cities. However, researchers are beginning to examine both the 524	  

genotype and phenotype in parallel instances of urban evolution (Whitehead et al. 2010; Wirgin 525	  

et al. 2011; Hof et al. 2016), which is key to understanding how urbanization affects the 526	  

evolution of species.  In the future, the gene annotations for our predicted outlier genes can help 527	  

determine which phenotypic traits to measure in urban P. leucopus populations. 528	  

 529	  

Functional roles of candidate genes: quality of urban diet? 530	  

 The model rodents Mus musculus, Rattus norvegicus, and Cricetulus griseus all have 531	  

deeply sequenced, assembled and annotated reference genomes.  These resources allowed us to 532	  

annotate 89.5% of outlier loci with high quality functional information.  Urban P. leucopus 533	  

exhibited signatures of positive selection in genes with GO terms overrepresented for organismal 534	  

metabolic processes, specifically digestion and metabolism of lipids and carbohydrates.  535	  

 Mitochondrial genes identified as outliers (Table S2) were largely responsible for the 536	  

overrepresentation of metabolic process. While we can only speculate until further physiological 537	  

studies are conducted, our evidence suggests that the evolution of mitochondrial and metabolic 538	  

processes has been important to the success of P. leucopus living in NYC’s urban forests.  539	  

Mitochondrial genes have often been used to describe neutral population variation, but 540	  

researchers have found ample evidence of selection acting on the mitochondrial genome 541	  
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(Oliveira et al. 2008; Balloux 2010).  For example, specific mitochondrial haplotypes are 542	  

associated with more efficient thermogenesis and higher fitness in over-wintering shrews 543	  

(Fontanillas et al. 2005). Pergams & Lacy (2007) found complete mitochondrial haplotype 544	  

replacement in contemporary P. leucopus in Chicago compared to haplotypes sequenced from 545	  

museum skins collected before urbanization.  The agent of selection is not clear, but Munshi-546	  

South and Nagy (2014) also identified signatures of selection (or alternatively population 547	  

expansion) in mitochondrial D-loop haplotypes from contemporary P. leucopus in NYC.  Many 548	  

mitochondrial functions are affected by the same environmental variables that change in 549	  

response to urbanization, such as temperature (Balloux 2010), reduced migration (Lankau & 550	  

Strauss 2011; Munshi-South 2012), or resource availability (Burcelin et al. 2002). 551	  

Urban P. leucopus may experience different energy budgets, physiological stressors or 552	  

diets compared to rural counterparts. We found a substantial number of candidate genes with 553	  

functions related to the metabolism and transport of lipids and carbohydrates, and the most 554	  

common overrepresented GO terms involved lipid metabolism and homeostasis (Table S4).  In 555	  

the full outlier analysis, two genes are particularly interesting as targets of diet-mediated 556	  

selection.  The first gene, FADS1, is a fatty acid desaturase important for the biosynthesis of 557	  

omega-3 and -6 fatty acids (long-chain polyunsaturated fatty acids, LCPUFA) from plant 558	  

sources.  Recent evidence suggests that the FADS gene family has been an important target of 559	  

selection in humans during the transition from hunter-gather to agricultural societies (Ye et al. 560	  

2017).  Alleles linked to upregulated biosynthesis of LCPUFAs (naturally low in plant based 561	  

diets) increased in frequency after the Neolithic Revolution (Ye et al. 2017).  We aligned our 562	  

homologous FADS1 contig with human transcripts to identify whether P. leucopus had any 563	  

relevant alleles, but our sequenced populations did not contain SNPs at any relevant loci.  The 564	  
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full list of outliers also contained APOB-100, which is the primary apolipoprotein that binds and 565	  

transports lipids, including both forms of cholesterol (HDL and LDL).  566	  

When we investigated only candidate genes that were identified by both an outlier test 567	  

and GEA test, we found similar patterns suggesting P. leucopus in urban environments may be 568	  

adapting to novel food resources. These genes were strongly correlated with environmental 569	  

measures of urbanization, with clearly divergent allele frequencies between urban and rural sites 570	  

(Fig. 3B), suggesting that selection is acting on standing genetic variation in urban environments.  571	  

The most significant overrepresented GO term involved regulation of protein kinase B (AKT).  572	  

AKT is a key molecule in the insulin signaling pathway, important for promoting glucose storage 573	  

and regulating glucose in the bloodstream between fed and fasting states (Boucher et al. 2014).  574	  

Glycine metabolism was also overrepresented; increased amounts of glycine may be important 575	  

for regulating high-fat, high-sugar diets by decreasing concentrations of free fatty acids and 576	  

triglycerides (Wang et al. 2013).  Finally, our candidate list contained genes significantly 577	  

associated with non-alcoholic fatty liver disease (NAFLD).  NAFLD is a major hallmark of 578	  

obesity and diabetes and can be induced through increased uptake of dietary fatty acids (Fabbrini 579	  

et al. 2010). 580	  

 These candidate genes suggest that white-footed mice in isolated urban parks may be 581	  

evolving in response to food resource differences between urban and rural habitats.  This finding 582	  

is corroborated by recent evidence that urban white-footed mice in NYC have shorter upper and 583	  

lower tooth rows than rural mice (Yu et al. 2017).  Lower quality food in the diet often requires 584	  

increased chewing and is accompanied with larger occlusal surfaces, and subsequently, longer 585	  

toothrows (Ungar 2010).  One prediction is that urban P. leucopus consume a diet with a 586	  

substantially higher fat content than diets of rural populations.  The typical diet of P. leucopus 587	  
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across its range consists of arthropods, fruits, nuts, various green vegetation, and fungus (Wolff 588	  

et al. 1985).  Given that white-footed mice are opportunistic generalists, many different food 589	  

resources could differ between urban and rural habitats.  Urbanization in NYC has produced 590	  

relatively small green patches that are surrounded by a dense urban matrix, and P. leucopus in 591	  

NYC may successfully take advantage of invasive plant species, different arthropod 592	  

communities, or increased human food waste in and around their urban habitats. Local 593	  

adaptation in urban populations may allow these mice to more efficiently metabolize different 594	  

types or amounts of lipids and carbohydrates, although field studies are needed to examine the 595	  

link between these genetic changes and diet in NYC. 596	  
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FIGURE LEGENDS 889	  

 890	  

 891	  

Figure 1.  Map of sample localities in the NYC metropolitan area. Sites in yellow are urban 892	  
parks within New York City, CP = Central Park; FM = Flushing Meadows—Willow Lake; 893	  
NYBG = New York Botanical Gardens.  Sites in white are rural parks, BHwwp = Brookhaven 894	  
and Wildwood State Park; CFP = Clarence Fahnestock State Park; HIP = High Point State Park.  895	  
The map includes data from the National Land Cover Database.  All non-green colors are shaded 896	  
according to land use.  Yellows and browns equal cultivated land and reds represent developed 897	  
areas (Darker red = increased development).  Green colors are shaded according to canopy cover 898	  
(Darker green = increased canopy cover) and come from the 2011 National Land Cover Canopy 899	  
database.  Full legends for the colors are shown in Figure S1. 900	  
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Figure 2. (a) BayeScan 2.1 plot of 154,770 SNPs genome scan analysis between urban and rural 908	  
populations, including 48 individual white-footed mice from six NYC sampling sites. FST is on 909	  
the vertical axis plotted against the log10 of the posterior odds (PO). The vertical red line 910	  
indicates the cutoff (q-value = 0.1) used for identifying outlier SNPs. The markers on the right 911	  
side of the vertical line show all outlier SNP candidates and the red circles represent the final 912	  
accepted outlier SNPs from Table 2. (b) SweeD results with each of the 154,770 SNPs plotted 913	  
from all 48 individuals.  The Composite Likelihood Ratio (CLR) is plotted along the vertical 914	  
access and each unfilled point represents an individual SNP.  The x-axis has SNPs ordered by 915	  
contig, but not by genomic position.  The horizontal red line indicates the cutoff used for 916	  
identifying outlier SNPs at P ≤ 0.0001.  The red circles represent the final accepted outlier SNPs 917	  
from Table 2. 918	  
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Figure 3. (a) Plot of urbanization metrics for all 6 sampling sites from NYC used in this study. 932	  
Urban sampling sites are highlighted in bold on the horizontal axis and colored black.  Rural 933	  
sites are colored gray. The log10 value of % Impervious Surface and Human Density are plotted 934	  
along the vertical axis and the oval represents the value for each sampling site.  (b) Allele 935	  
frequencies for candidate loci identified from both genome scans and GEA tests grouped by 936	  
urban (U, black) or rural (R, gray) classification.  The frequency of the outlier SNP within each 937	  
type of population is plotted on the vertical axis. Each candidate loci is labeled with the contig 938	  
and outlier SNP on the horizontal axis; see Table 2 for associated gene names. 939	  
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TABLES 942	  

Table 1.  Summary population genomic statistics (mean ± standard error) for three urban and 943	  
three rural populations of white-footed mice (Peromyscus leucopus) examined in this study. 944	  

 945	  

 946	  

 947	  

 948	  

 949	  

 950	  

 951	  

 952	  

 953	  

 954	  

 955	  

 956	  

Population Nucleotide diversity (π)  Tajima’s D  

Urban   

CP 0.131 ±0.001 0.318 ±0.005 

FM 0.112 ±0.001 0.301 ±0.006 

NYBG 0.092 ±0.001 0.280 ±0.006 

Rural   

BHwwp 0.198 ±0.001 0.350 ±0.004 

CFP 0.211 ±0.001 0.336 ±0.004 

HIP 0.263 ±0.001 0.349 ±0.004 
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Table 2.  Outlier loci (N = 19) identified in at least one test for selection (BayeScan, BayPass, or 957	  
SweeD) and one GEA test (LFMM or BayPass_GEA). SNP shows the position in contig 958	  
containing the outlier loci.  Tests show which tests identified the SNP as an outlier: BPG = 959	  
BayPass_GEA; BPD = BayPass_Diversifying; BS = BayeScan; SW = SweeD; LFMM = LFMM. 960	  

Contig SNP Ensemble Gene ID Gene Tests 
27887-125 142 ENSMUSG00000029440 proteasome 26S subunit, non-ATPase, 9 BPG, BS 
3135-709 210 ENSMUSG00000002320 transmembrane 9 superfamily member 1 BPG, BS 
37015-34 35 ENSMUSG00000037287 tubulin folding cofactor E-like BS, BPD 
5754-511 168 ENSMUSG00000041161 OTU domain containing 3 BPG, BS 
7280-442 336 ENSMUSG00000021287 X-ray repair complementing defective repair in CHC3 BPD, LFMM 
2260-821 1387 ENSMUSG00000024045 A kinase (PRKA) anchor protein 8 BPG, BS 
27691-127 162 NA NA BPG, BS 
27707-127 567 ENSMUSG00000106907 autophagy related 2A BPG, BS, BPD 
3567-665 756 ENSMUSG00000001700 GRAM domain containing 3 BPG, BS, BPD 
10099-359 1465 ENSMUSG00000024066 xanthine dehydrogenase BPG, SW 
12107-321 433 NA NA BPG,BS 
124-2491 596 ENSMUSG00000064358 cytochrome c oxidase III BPG, SW 
12685-311 481 ENSMUSG00000035637 glyoxylate reductase/hydroxypyruvate reductase BPG, BPD 
17856-243 2695 ENSMUSG00000021091 serine peptidase inhibitor, clade A, member 3N LFMM, SW 
22102-206 245, 

1029 
ENSMUSG00000045868 GTPase, very large interferon inducible 1 BPG, BPD, 

LFMM 
34737-52 125, 

257 
NA NA BPG, BPD 

35973-42 17 ENSMUSG00000001173 oculocerebrorenal syndrome of Lowe BPG, BS 
38397-23 175 NA NA BPG, BS 
8088-415 154 ENSMUSG00000002379 NADH dehydrogenase 1 alpha subcomplex 11 BPG, BPD, 

LFMM 
 961	  
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Table 3.  Overrepresented gene ontology (GO) terms from g:Profiler (q-value < 0.05) for the 19 962	  
outlier loci from tests for both selection and GEA. Associated genes shows which ensemble gene 963	  
homologs from Table 2 are associated with each overrepresented term. 964	  

Description Annotation ID P-value Associated Genes 
Negative regulation of 
protein kinase B signaling 

GO:0051898 0.05 ENSMUSG00000024066, ENSMUSG00000041161 

Cytochrome c oxidase, 
mitochondrial 

CORUM:538 0.05 ENSMUSG00000064358 

Ocrl-Cdc42 complex CORUM:975 0.00914 ENSMUSG00000001173 
Glyoxylate and 
dicarboxylate metabolism 

KEGG:00630 0.0355 ENSMUSG00000035637 

Homologous recombination KEGG:03440 0.0512 ENSMUSG00000021287 
Pyruvate metabolism KEGG:00620 0.0464 ENSMUSG00000035637 
Oxidative phosphorylation KEGG:00190 0.00791 ENSMUSG00000002379, ENSMUSG00000064358 
Alzheimer's disease KEGG:05010 0.0133 ENSMUSG00000002379, ENSMUSG00000064358 
Huntington's disease KEGG:05016 0.0158 ENSMUSG00000002379, ENSMUSG00000064358 
Non-alcoholic fatty liver 
disease (NAFLD) 

KEGG:04932 0.0101 ENSMUSG00000002379, ENSMUSG00000064358 

Glycine, serine and 
threonine metabolism 

KEGG:00260 0.05 ENSMUSG00000035637 

Metabolic pathways KEGG:01100 0.0029 ENSMUSG00000001173, ENSMUSG00000002379, 
ENSMUSG00000024066, ENSMUSG00000035637, 
ENSMUSG00000064358 

Parkinson's disease KEGG:05012 0.00899 ENSMUSG00000002379, ENSMUSG00000064358 
Autophagy - other KEGG:04136 0.0404 ENSMUSG00000106907 
Caffeine metabolism KEGG:00232 0.00742 ENSMUSG00000024066 
 965	  
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 968	  

SUPPORTING INFORMATION 969	  

Table S1. Average pairwise FST among six P. leucopus populations based on transcriptome-970	  
derived SNPs. 971	  

Table S2. Excel file containing the full list of outlier contigs (N = 381), the outlier SNP position, 972	  
and test(s) that identified the outlier SNP.  Remaining columns list the homologous Ensemble 973	  
Mus musculus gene ID and name. 974	  

Table S3. Excel file containing results from g:Profiler for overrepresented GO terms from the 975	  
full list of outlier contigs in Table S2. The table also includes the homologous Mus musculus 976	  
genes that are associated with each GO term. 977	  

Table S4. Excel file containing Revigo results.  Enriched GO terms from g:Profiler are sorted 978	  
into largest parent terms and listed based on the frequency of occurrence. 979	  

Table S5. Environmental variable values for each individual mouse. Impervious = mean % 980	  
impervious surface in 2 km buffer.  Density = human population per 2 km buffer. Urban or Rural 981	  
= classification as urban or rural site. 982	  
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