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Abstract 

 

Variation in human lifespan is 20 to 30% heritable but few genetic variants have been 

identified. We undertook a Genome Wide Association Study (GWAS) using age at death of 

parents of middle-aged UK Biobank participants of European decent (n=75,244 with father’s 

and/or mother’s data). Genetic risk scores for 19 phenotypes (n=777 proven variants) were 

also tested. 

Genotyped variants (n=845,997) explained 10.2% (SD=1.3%) of combined parental 

longevity. In GWAS, a locus in the nicotine receptor CHRNA3 – previously associated with 

increased smoking and lung cancer - was associated with paternal age at death, with each 

protective allele (rs1051730[G]) being associated with 0.03 years later age at father’s death 

(p=3x10-8). Offspring of longer lived parents had more protective alleles (lower genetic risk 

scores) for coronary artery disease, systolic blood pressure, body mass index, cholesterol 

and triglyceride levels, type-1 diabetes, inflammatory bowel disease and Alzheimer’s 

disease. In candidate gene analyses, variants in the TOMM40/APOE locus were associated 

with longevity (including rs429358, p=3x10-5), but FOXO variants were not associated.  

These results support a multiple protective factors model for achieving longer lifespans in 

humans, with a prominent role for cardiovascular-related pathways. Several of these 

genetically influenced risks, including blood pressure and tobacco exposure, are potentially 

modifiable.  
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Introduction 

Over the last several decades, genetic studies conducted in-vitro and using model 

organisms have produced a stream of exciting findings linking specific pathways to major 

effects on aging [1], including, for example, gene knockouts in nutrient sensing pathways 

that cause dramatic life extension in C. elegans. However, humans outlive laboratory models 

many times over and humans suffer from several conditions that don’t normally affect 

laboratory animals. Moreover, beyond obvious differences in rate of aging, body size and 

higher brain functions, genomic responses in mice poorly mimic human inflammatory 

responses [2]. It is therefore uncertain to what extent the laboratory findings and the ‘single 

pathway major effect’ model is relevant to human aging and longevity [3]. Additionally, in 

humans, health behaviours plus social and economic factors play a major role in explaining 

differences in survival, with smoking being a substantial negative factor [4].  

In addition to environmental exposures, genetic variation is important: for example, studies 

conducted on heterozygotic and homozygotic twins consistently report heritability of longer 

human lifespans of 20-30% [5,6], with negligible heritability before age 60 years but 

increasing estimates at advanced ages [7]; the low early heritability is hypothesized to be 

due to more “accidental” or exposure-related deaths at younger ages. Well-powered genome 

wide association studies (GWAS) provide robust evidence on which common single 

nucleotide polymorphisms (SNP) are associated with traits including longevity, but thus far 

sample sizes have been relatively modest. In the recent meta-analysis of data from 6,036 

participants of European descent who survived beyond 90 years versus 3,757 younger 

controls (aged 55 to 80 years) [8], no genome wide significant variants were identified, but in 

candidate analyses the APOE locus was consistently associated across the participating 

cohorts. In this GWAS data evidence was found to support the FOXO3 gene variants linked 

to longevity in candidate studies in Asian and other populations (best performing variant in 

discovery analysis rs10457180, uncorrected p-value=0.012 for a priori SNP rs2802292). In 

smaller previous studies, the frequency of proven disease risk increasing SNP alleles 

appeared no different in long lived individuals, which was interpreted as showing that 

longevity is achieved independent of disease risk alleles [9,10].  

Identifying genetic variants associated with longevity using unbiased methods is challenging.   

As described above, a common ‘direct’ approach has been to compare older study 

volunteers with younger participants from the next generation, but this approach may be 

biased by the many changes in exposures (e.g. early infectious diseases, changing medical 

treatment) and increasing life expectancy across the generations. Ideal comparisons might 

be of exceptionally old individuals with those from a representative sample of their own 

generation who died at younger ages, but obtaining DNA samples from controls who died 
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decades earlier is challenging. An ‘indirect’ approach to the ideal design, based on the 

assumption that longevity is a genetic transmissible trait, is to access DNA from offspring 

and test for variations associated with the longevity of their parents. The middle-aged 

offspring of long-lived parents have less cardiovascular disease, cancer, diabetes, and all-

cause mortality compared to offspring whose parents died at younger ages [11], consistent 

with the inheritance of longevity associated genetic variants. This better health status in 

offspring showed a linear association with advancing parental age, with a slightly stronger 

association with mother’s compared to father’s age at death. Given that offspring inherit their 

DNA from two parents who might have died at very different ages, associations with 

longevity in offspring are diluted and samples 3–4 times larger than the direct younger vs 

older approach are needed. In fact, Tan et al [12] estimate that 1,500 participants of at least 

one long-lived parent would be needed to achieve >90% power to detect less common 

alleles (5% frequency) with effects of 0.85 (in binary analysis of offspring of 1 long-lived 

parent vs. controls) with 95% confidence.  

In the current analysis we aimed to identify common genetic variants (prevalence ≥1%) 

associated with longer parental lifespan. To achieve the sample sizes required, we utilized 

data from UK Biobank. We first performed genome-wide association studies (GWAS) and 

then used genetic risk scores (GRS) of known variants to test the hypothesis that offspring of 

longer-lived parents have lower genetic-risk of common risk traits and diseases.  In these 

analyses we have included middle aged participants only (age 55 to 70), as typical 

intergenerational age gaps mean that the parents of the younger UK Biobank participants 

were definitely or likely to be too young to have achieved longer survival, at the time of the 

UK Biobank baseline interview.   
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Methods 

Between 2006 and 2010, 503,325 volunteers (aged 45 to 69 years old) were recruited from 

across the United Kingdom to the UK Biobank study [13]. Of these, 75,244 participants met 

the inclusion criteria for at least one analysis: participants aged between 55-70 years with 

complete genetics data and date of death data for either parent (additional participants were 

included if they had an alive parent that met the “long-lived” criteria for binary analyses). We 

chose this 55 to 70 age-range because usual intergenerational age gaps mean that very few 

participants below age 55 at baseline could have parents old enough to be longer lived, thus 

including younger ages would enrich and potentially bias our study toward premature and 

early deaths. Participants were excluded if they reported themselves as adopted, or if either 

parent died prematurely (fathers <46 years or mothers <57 years – see methods below), or if 

their parent was still alive but not yet long-lived. Several longevity phenotypes are defined 

below based on the age at death of the participant’s parents. 

Parental age at death and longevity phenotypes 

Participants were asked the age at which their parents had died (or their current age if still 

alive). Analyses were performed separately on mother’s age at death and father’s age at 

death, and also on a combined phenotype. To reduce the effect of higher ages at death of 

mothers (compared to the fathers) we first z-transformed the mothers and fathers age at 

deaths before combining the z-scores into a single summed phenotype. Offspring of parents 

who died prematurely were excluded because the cause of death of the participant’s parents 

was not asked, so we could not exclude accidental deaths explicitly. To determine the 

premature age at death cut-offs we used previously described methods to define the normal 

range of age at death for mothers and fathers separately, and excluded participants below 

these values (methods described here [11], description of method applied to UK Biobank 

here (Atkins et al. in submission 2016)). The analysis identified the following cut-points for 

short, intermediate, and long-lived parents ages at death: for mothers (57 to 72 years, 73 to 

92 years, and ≥93 years, respectively) and for fathers (46 to 65 years, 66 to 89 years, and 

≥90 years, respectively). Parents below the “short” definition are excluded as premature 

deaths. 

We also defined a binary trait for an “extreme longevity” phenotype by determining the top 

1% of age at death for mothers (≥98 years) and fathers (≥95 years) separately. We were 

able to increase the number of “long lived” parents in all the binary phenotypes by including 

participants who had responded to the question regarding the age of their parent if still alive. 

Participants with one long-lived and one short-lived parent were excluded from this analysis.  
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Finally, we defined two further binary traits for sensitivity analyses testing the consistency of 

results using a non-linear definition: offspring of at least one long-lived parent vs. offspring of 

two intermediate-lived parents, and offspring of at least one long-lived parent vs. offspring of 

at least one short-lived parent (very low numbers of participants with either “both long” or 

“both short” meant we used the aforementioned “at least one…” definitions). 

Supplementary Figure 1 contains a flow-chart showing how the phenotypes are derived 

and the numbers included in each analysis. 

UK Biobank genetics data 

We used genetic data available (autumn 2015) from 120,286 participants identified as ‘white 

British’ through self-report and verified through principal components analysis based on 

genotypes. Kinship coefficients were estimated and related individuals (3rd degree or higher) 

were removed to provide the maximal unrelated set of individuals. The central UK Biobank 

analysis team performed these analyses. Details of principal component analyses and 

kinship analyses can be found in the official UK Biobank genotyping document 

(http://biobank.ctsu.ox.ac.uk/crystal/docs/genotyping_qc.pdf; accessed 1st December 2015). 

We used imputed genotypes available from the UK Biobank for association analyses. Briefly, 

phasing of individuals was carried out using SHAPEIT-2. Imputation was performed using 

IMPUTE2 and a combined 1000 Genomes / UK10K reference panel. Full details can be 

found in the official UK Biobank imputation document 

(http://biobank.ctsu.ox.ac.uk/crystal/docs/impute_ukb_v1.pdf; accessed 1st December 

2015). After filtering for variants with MAF ≥1%, missingness <1.5%, imputation quality >0.4 

and with Hardy-Weinberg equilibrium (HWE) P>1x10-6 within the white British participants, 

9,658,292 imputed autosomal variants were eligible for the analyses. 

We also utilized data directly from the microarrays for variants on the X (n=19,381) and Y 

(n=284) chromosomes, and on the mitochondrial genome (n=135), which were unavailable 

in the imputed dataset.  

Within “white British” principal components 

We selected 95,535 independent SNPs (pairwise r2<0.1) directly genotyped with a minor 

allele frequency (MAF) ≥ 2.5% and missingness <1.5% across all UK Biobank participants 

with genetic data available at the time of this study (n=152,732), and with HWE P>1x10-6 

within the white British participants. Principal components were subsequently generated 

using FlashPCA and the first five adjusted for in all analyses [14]. 

Power Calculations 

Quanto software version 1.2.4 was utilized for power calculations with parameters: 

continuous, additive model, mean/SD of standardized outcome=0/1 [15]. 
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Genome Wide Association Study 

We used BOLT-LMM to model the associations between imputed variants (dosages) and 

each phenotype [16], which uses a linear mixed effects model approach. We looked at the 

results for variants with imputation quality >0.4, HWE p-values >1x10-6 and minor allele 

frequencies >0.1% in the white/British subset used for all analyses. For variants on the X, Y 

and mitochondrial chromosomes only in the directly-genotyped data we used Plink (v1.9) 

[17] in linear (additive) or binary (fisher) models, as appropriate, adjusted for the same 

covariates as above including the first 5 principal components from FlashPCA. 

Independent testing of GWAS results 

We obtained estimates of our genome wide significant results for fathers age at death 

GWAS in the Framingham Heart Study (FHS) generation 2 [18], with data on n=2033 

offspring available. The inclusion criteria and model specification were the same as 

described for Biobank, with the exception that family structure was taken into account (using 

R package `pedigreem`). 

Genetic Heritability Estimation 

To estimate the variance in mean parental age at death (and age at death of mothers/fathers 

considered separately) explained by common genetic variants we utilized the BOLT-REML 

package [19]. This package uses REstricted Maximum Likelihood (REML) methods for 

variance component estimation, in this case on the genetics data. We used SNPs that met 

the following criteria in the 120,286 individuals; variants were excluded if not in Hardy-

Weinberg Equilibrium (HWE) (P<1x10-6), or had a minor allele frequency <1%, or an overall 

missing rate >1.5% in any individual batch, or were on the Y chromosome. This resulted in 

457,643 directly genotyped variants for inclusion. We also performed an additional sensitivity 

analysis relaxing the exclusion criteria to include all 845,997 variants. BOLT-REML 

determines the “heritability” of phenotypes based on the variance components of the 

genetics data provided. Prior to analyses, phenotypes are adjusted (by taking the residuals 

from a linear regression analysis) for confounding factors (age, sex, array type, assessment 

center, principal components 1-5). 

Genetic Risk Score (GRS) creation 

For each trait we identified the most recent GWAS meta-analysis and downloaded the 

results tables. We selected the SNPs identified at genome wide significance (p<5x10-8) and 

extracted the corresponding genotype information from the imputed data in the UK Biobank 

data. For all SNPs included in a GRS we checked for high imputation quality (>0.9), no 

significant deviation from HWE (p>1x10-6) and low missingness (<5% sample missing). We 

used the imputed genotype (dosage) information and effect size (from the meta-analysis) 

with Plink (v1.9) function `scores` to generate the weighted GRS for each trait in each 
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participant [17]. The Plink function uses genotype coding for each participant as 0, 1 or 2 

trait-increasing alleles, which is multiplied by the effect size (coefficient or odds ratio) from 

the published study. The resulting “weighted allele score” is summed for all variants 

associated with a particular trait. See the accompanying Supplementary Methods 

document for the definition of each genetic risk score, and Supplementary Table 1 for the 

variants and effect sizes used to create the scores.  

Statistical Analysis of Genetic Risk Scores 

Generalized linear regression models were used throughout (R v3.2.0), with adjustment for 

age, sex, array type (‘axiom’ or ‘bileve’), assessment center (22 possible categories), and 

the first 5 genetic principal components. The regression linker functions `logit` or `Gaussian` 

were used respectively for logistic and linear outcomes. Forest plots comparing the 

associations between different GRS’ and each outcome were generated using the R 

package `rmeta` (v2.16). For these analyses the GRS was first z-transformed so that the 

statistics reported could be compared between each GRS on the forest plot. In the rest of 

the manuscript, we refer to the unstandardized, “per weighted allele” effects. In all respects 

except for the z-transformation the models were identical. Benjamini-Hochberg p-values are 

calculated to correct for potential false-positive associations (19 GRS against 4 primary 

longevity phenotypes). 
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Results 

Our sample (Table 1) included ‘white’ British UK Biobank participants aged 55-70 years old 

(n=75,244 with data on fathers survival, mothers survival or both; Table 1). There were 

relatively few current smokers (8.3% overall), but smoking rates were higher in those with 

short lived parents. The mean age at death of fathers was 72.9 (range 46 to 105 yrs) and 

mothers 78.5 years old (range 57 to 107 yrs). Nearly half the participants (48.5%) were men. 

Three continuous phenotypes were utilized throughout this analysis; participant’s father’s 

age at death (n=63,775), mother’s age at death (n=52,776) and combined (normalized) 

mothers and fathers ages at death (n=45,627 with age at death data for both parents). We 

had 90.4% power to detect an allele of 5% minor allele frequency in the sample of 45,627 

accounting for 0.1% of the variance in the phenotype after multiple-testing correction 

(alpha=5x10-8). 

In addition we created a binary “extreme longevity” phenotype based on the top 1% of the 

age at death distribution for mothers and fathers (≥98 years and ≥95 years, respectively). Of 

45,627 participants with age at death data for both parents 907 had at least one parent who 

died within these ranges (1.99%). An additional 432 participants had at least one parent still 

alive who met the criteria; therefore 1,339 participants had a least one parent (alive or dead) 

who lived to an “extreme age” (3.2% of 42,273 participants; those with ‘discordant’ parents – 

one long-lived and one short-lived – are excluded). See Supplementary Figure 1 for a 

flowchart of the participants included in each of the four primary analyses. 

Genome Wide Association Study: smoking-related variants are associated with 

father’s age at death 

Of the 9,658,292 genetic variants included none were significantly associated (p<5x10-8) 

with “parent’s age at death, combined” however one locus (36 variants in strong Linkage 

disequilibrium) on chromosome 15 was associated with “father’s age at death,” and 1 variant 

(on chromosome 22) with “mother’s age at death” (see Supplementary Table 2 for the top 

1,000 results from each GWAS; see Supplementary Figures 2-5 for Manhattan and QQ 

plots). We focused on the locus on chromosome 15 associated with father’s age at death, 

because the variant associated with mother’s age at death was of low frequency (3%) and 

not in a typical “peak” expected of robust results (see Supplementary Figures 6-7 for 

LocusZoom plots [20]). rs1051730 is in this loci (beta between G allele and father’s age at 

death=0.0269, se=0.0049, p=3x10-8); the A allele of rs1051730 in the nicotinic acetylcholine 

receptor alpha 3 subunit CHRNA3 gene has been linked to smoking fewer cigarettes and 

lower risks of lung cancer, although this variant does not influence the chances of starting to 

smoke [21].   
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Table 1: Summary statistics for the UK Biobank participants eligible for at least one analysis 

 All participants   Longer-lived parents ⱡ Medium-lived parents ⱡ Short-lived parents ⱡ   

Phenotype N Mean SD   n Mean SD n Mean SD n Mean SD p-value * 

Age at recruitment (yrs) 75,244 62.077 4.060   8,655 63.529 3.659 21,299 62.862 3.883 25,771 62.096 4.039 3.6 x10-209 

Body mass index (BMI) 75,038 27.654 4.687   8,633 26.970 4.358 21,248 27.537 4.588 25,683 28.040 4.812 2.1 x10-80 

                     

Fathers age at death (yrs) 63,775 72.925 11.095   7,171 81.844 12.456 21,299 76.973 6.143 23,984 64.396 10.209 n/a 

Mothers age at death (yrs) 52,776 78.473 9.489   6,043 87.215 9.789 21,299 82.130 5.269 21,422 71.808 9.009 n/a 

Combined normalized parent age death ◦ 45,627 0.003 1.526   4,052 2.318 0.697 21,299 0.736 0.818 19,635 -1.336 0.978 n/a 

                     

Sex (% males) 75,244 48.49% n/a   8,655 49.10% n/a 21,299 48.72% n/a 25,771 48.79% n/a 8.3 x10-1 

Smoking status (% current) 74,990 8.34% n/a   8,637 6.24% n/a 21,237 7.78% n/a 25,671 8.98% n/a 7.5 x10-16 

               

ⱡ "Long-lived"=offspring of at least one long-lived parent, "medium-lived"=two intermediate-lived parents, "short-lived"= at least one short-lived parent 

* p-value from Kruskal-Wallis non-parametric analysis of variance test for significant difference in distribution of phenotype between the 3 longevity categories 

◦ Z-scored mother's and father's ages at death, summed            
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The association between rs1051730 and mother’s age at death (Beta=0.017, p=1.6x10-3) 

did not reach genome wide significance in our UK Biobank participants. We tested the 

association of rs1051730 with father’s age at death in the Framingham Heart Study (FHS) 

generation 2, where 2033 participants were available (mean age at death of the fathers=77.4 

years, SD=11.5, range=47.2 to 102.8). The association was non-significant, but was 

directionally consistent (per C allele coefficient= 0.008, p=0.98). However, the effects size of 

this SNP is modest and the power to detect the association in the FHS was only 1% (Quanto 

parameters: coefficient=0.0269, n=2033, MAF=0.17, alpha=0.05).  

In the GWAS against the binary “extreme age” phenotype (at least one parent very long-

lived) two variants (rs528161076 and rs75824829, on chromosome 7 and 9 respectively 

(see Supplementary Figures 8-9 for Locus Zoom plots) were found to be significant 

(p<5x10-8). rs75824829 may be anomalous as it is not in a “peak” of associations expected 

of robust results (Supplementary Figure 4; Supplementary Figure 9), however 

rs528161076 is in a distinct peak of variants in an intron of AP5Z1 (adaptor related protein 

complex 5, zeta 1 subunit, thought to be involved in homologous recombination DNA double-

strand break repair). The association between rs528161076 and extreme longevity should 

still be interpreted with caution, as the variant is not associated with the continuous age at 

death variables (combined parent’s age at death p=0.65, father’s p=0.47 and mother’s 

p=0.96). 

In all four GWAS performed, no variants on the X or Y chromosomes were associated with 

the phenotypes (p>1x10-5). For mitochondrial variants, the smallest p-values for mother’s 

age at death, was 9x10-3. 

Heritability of parental longevity explained by genotyped common variants  

We determined the variance in parental age at death explained by all the common genetic 

variation (minor allele prevalence >1%) robustly genotyped directly on the UK Biobank 

arrays (n=457,643; see methods).  For combined parents age at death, the variance 

attributed to the measured genotypes was 8.47% (SD=1.06%); for mothers age at death 

4.85% (SD=1.01%) and fathers age at death 5.35% (SD=1.04%). In a sensitivity analysis 

including all directly genotyped variants irrespective of minor allele frequency and 

missingness (n=845,997) the variance attributed for the combined age at death phenotypes 

was 10.24% (SD=1.26%); for mothers age at death 6.08% (SD=1.21%) and fathers age at 

death 5.79% (SD=1.23%).  

Genetic Risk Score associations  

For each genetic risk score (GRS) we first verified the association with the best-fit phenotype 

corresponding to the reported association: for example the coronary artery disease (CAD) 
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GRS was tested against prevalent coronary heart disease in the offspring (CHD= myocardial 

infarction or angina) (Table 2). All GRS were associated with their available phenotypes in 

UK Biobank in the expected direction, for example CAD GRS and CHD (per weighted allele 

increased OR=1.12, 95% CIs: 1.10 to 1.13, p=1x10-64). The lipid GRS could not be tested 

directly, as serum lipid concentrations are not yet available, however all three separate risk 

scores are significantly associated with CHD. Although there were only 28 participants with 

dementia, a significant association was seen with the Alzheimer’s disease GRS (per 

weighted allele OR=1.52, 95% CIs: 1.17 to 1.98, p=2x10-3). Telomere length was not 

assessed in the Biobank participants so validation was not possible. 

We next tested associations between each GRS and parental age at death (combined 

mothers and fathers) in linear regression models plus ‘extreme longevity’ (at least 1 parent 

lived to the top 1% of the age at death distribution in UK Biobank) (Figure 1). These analysis 

included 76 statistical tests (19 GRS against 4 primary longevity phenotypes) and therefore 

we have ‘starred’ associations passing Benjamini-Hochberg correction only, although each 

test has a strong and distinct prior hypothesis (see full results in Supplementary Table 3). 

We observed associations in the expected directions (i.e. lower disease risk score or higher 

numbers of relatively protective alleles associated with older ages at death) between the 

combined parental age at death continuous trait and eight GRS’; for CAD (unadjusted 

p=3.5x10-18), LDL cholesterol (p=1.8x10-7), CAD without lipid-associated alleles (p=6.56x10-

9), triglycerides (p=1.0x10-2), systolic blood pressure (SBP, p=1.2x10-4), BMI (p=8.2x10-4), 

Inflammatory Bowel Disease (p=7.0x10-3), T1D (7.5x10-3), and Alzheimer’s disease 

(p=1.4x10-2). Crohn’s disease (p=2.3x10-2) and breast cancer (p=3.5x10-2) were associated 

at nominal significance (p<0.05) but not after multiple-testing correction.  

A number of GRS had similar trends for the extreme longevity association but become 

statistically non-significant in the binary analyses of offspring of long-lived parents, which has 

reduced statistical power (binary analysis vs. continuous). The HDL cholesterol GRS was 

associated with extreme longevity (p=5.7x10-3) although this association did not reach 

statistical significance in the linear analysis of continuous age at death.  

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 1, 2016. ; https://doi.org/10.1101/038430doi: bioRxiv preprint 

https://doi.org/10.1101/038430
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Page 13 

Pilling et al. 2016 Biobank longevity genetics 

Table 2: Genetic Risk Score associations with corresponding phenotypes in 75,244 participants included for at least one analysis 

 

Model  GRS (n SNPs) Phenotype (n cases) OR (95% CIs) p-value 

Logistic regression models    

 Coronary Artery Disease, CAD (53) Prevalent CHD (5067) 1.12 (1.10 to 1.13) 2.3 x10-63 

 CAD,  without LDL, HDL and TG SNPs (25) Prevalent CHD (5067) 1.13 (1.11 to 1.15) 6.1 x10-36 

 LDL cholesterol (49) Prevalent CHD (5067) 2.97 (2.40 to 3.68) 1.3 x10-23 

 HDL cholesterol (67) Prevalent CHD (5067) 0.62 (0.50 to 0.78) 3.1 x10-05 

 Triglycerides, TG (37) Prevalent CHD (5067) 1.88 (1.43 to 2.46) 5.3 x10-06 

 Stroke (4) Prevalent stroke or TIA (1790) 2.04 (1.03 to 4.06) 4.0 x10-02 

 Type-1 Diabetes (29) Type-1 diabetes diagnosis (55) 2.35 (1.98 to 2.78) 9.8 x10-23 

 Type-2 Diabetes (55) Type-2 diabetes diagnosis (4,052) 5.29 (4.55 to 6.16) 1.7 x10-103 

 Alzheimer's Disease (8) Dementia diagnosis (28) 1.52 (1.17 to 1.98) 1.9 x10-03 

 Inflammatory Bowel Disease (156) Inflammatory Bowel Disease (654) 1.13 (1.10 to 1.16) 5.3 x10-22 

 Crohn's Disease (139) Prevalent Crohn's disease (250) 1.16 (1.11 to 1.21) 1.1 x10-12 

 Ulcerative Colitis (87) Prevalent ulcerative colitis (414) 1.17 (1.13 to 1.22) 4.4 x10-15 

 Prostate Cancer (85) * Prevalent prostate cancer (863) 1.18 (1.16 to 1.21) 2.5 x10-52 

 Breast Cancer (65) * Prevalent breast cancer (2036) 1.12 (1.11 to 1.14) 2.3 x10-43 

 Telomere Length (7) n/a   

Linear regression models  Coefficient (95% CIs) p-value 

 BMI (69) Body mass index  7.07 (6.62 to 7.51) 2.8 x10-209 

 Systolic Blood Pressure (26) Systolic blood pressure 1.31 (1.14 to 1.47) 4.3 x10-57 

 Age at menopause (52) * Age at menopause -1.79 (-1.92 to -1.65) 2.4 x10-154 

  Forced Vital Capacity (6) Forced Vital Capacity 0.001 (0.001 to 0.002) 7.0 x10-09 

GRS = genetic risk score. OR = per weighted allele odds ratio. CIs = confidence intervals.  

* Analysis performed in male/female participants only, as determined by the phenotype   
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Figure 1 

Forest plots show the relationship between the genetic risk scores (GRS, z-transformed) and 

2 different parental longevity traits. Results from regression models (see methods). * 

indicates the association is significant after adjustment for multiple testing. 

A) Linear regression results for combined parent’s age at death. N=45,627. Coefficients 

(‘coef’) show the standard deviation (SD) difference in GRS per SD of parent’s age at death. 

B) Logistic regression results for the binary trait “participants of at least one parent reaching 

the top 1% of the age-at-death distribution vs. participants who parents did not”. Discordant 

participants (i.e. one long-lived and one short-lived) were excluded. n=42,273. n=1,339 

participants of at least one long-lived parent (mother aged ≥98 years or father aged ≥95 

years). Includes participants with alive parents reaching these limits. Odds Ratios (OR) show 

the likelihood of participants having at least 1 parent reaching the top 1% of age-at-death 

distribution per SD difference in GRS. 
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We observed consistent effect directions, but reduced effect size and significance in 

separate analyses of mother’s age at death compared to father’s (Supplementary Table 3); 

with the exception of Alzheimer’s disease (AD) GRS which is only associated with mother’s 

age at death but not father’s (coefficient=-0.111, p=3.9x10-4; coefficient=-0.001, p=0.99, 

respectively) and Triglyceride level (TG) GRS was only associated with fathers not mothers 

age at death (father’s coefficient=-1.366, p=9x10-4; mother’s coefficient=-0.183, p=0.63, 

respectively). In linear regression models for AD and TG GRS there were no statistical 

interactions between mothers and fathers ages at death (p>0.05).  

To illustrate combined effect sizes, we computed an estimate across the three GRS most 

robustly associated with parental longevity (unadjusted p<0.001): CAD, SBP and LDL. In 

total, 525 participants (of 45,627) were in the bottom quintile (20%) for all three GRS; these 

participants are the “lowest risk” group for these three cardiovascular traits. Correspondingly, 

524 participants were categorized as having the “highest risk” (top 20% of genetic risk for all 

three traits). In adjusted logistic regression models, participants with the lowest genetic risk 

(highest number of protective alleles) had 3.25 times the likelihood of having at least 1 

parent in the top 1% of ages at death, compared to those with the highest genetic risk 

(OR=3.25, 95%CI=1.3 to 8.1, p=0.012). Unadjusted prevalence: 19 participants (1.4% of 

1,339) with at least one long-lived parent were in the bottom 20% for all three risk scores, 

where only 7 participants (0.5% of 1,339) were in the top 20% for all three risk scores. 

Candidate genetic variants associated with longevity 

We have highlighted the GWAS results for a number of SNPs a priori selected from the 

literature (see Supplementary Table 4 for the full details). We found significant (p<0.05) 

associations between 4 of the 5 APOE/TOMM40 SNPs tested and parents age at death 

(rs2075650 p=1x10-4, rs429358 p=8x10-7, rs7412 p=0.02, rs4420638 p=3x10-5, but not 

rs405509 p=0.06). Variants rs2075650, rs429358 and rs4420638 are in linkage 

disequilibrium (R2 >0.4). Of 12 FOXO3 variants assessed, none were significantly 

associated with a longevity phenotype (p>0.05). We observed modest associations with 2 of 

7 variants at the CDKN2A locus (variants previously associated with coronary heart disease) 

with parent’s age at death (rs1333049 G allele beta=0.015, p=0.0015; rs4977574 A allele 

beta=0.014, p=0.0018); the CDKN2A variants associated with type-2 diabetes were not 

associated with parent’s longevity. Four variants were reported by Fortney to be associated 

with exceptional longevity; one is the APOE variant already discussed, and the other three 

are rs4977756 (CDKN2B/ANRIL), rs3184504 (SH2B3/ATXN2) and rs514659 (ABO). Only 

rs3184504 is associated with extreme longevity in this analysis (T allele beta=-0.0019, 

p=0.024), but rs4977756 was associated with continuous parent’s age at death (G allele 
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beta=0.017, p=0.025). The final SNP is not associated with any longevity phenotypes in our 

analysis. 

 

 

Discussion 

We report the largest analysis thus far of common genetic variants and human longevity, 

based on the indirect approach of testing variant associations in offspring. We identified a 

genome-wide significant variant in the smoking-related CHRNA3 gene with father’s 

longevity. We also identified a variant associated with extreme longevity, in the AP5Z1 gene 

locus, a gene encoding a homologous recombination DNA double-strand break repair 

helicase protein [22], although this association with longevity appears less robust. In 

addition, we have shown that longevity is associated with having greater numbers of 

relatively protective alleles (i.e. lower genetic risk scores) for several cardiovascular traits 

including lipid levels, CAD (excluding variants associated with LDL and HDL), BMI, and 

blood pressure. Weaker associations were also found for risks scores for Alzheimer’s 

disease and autoimmune diseases. While laboratory model work has shown major longevity 

effects of single genes or single pathways, our results tend to support a model of human 

longevity influenced by multiple smaller effect protective and risk variants in several 

pathways, most prominently in cardiovascular related phenotypes. Our findings also 

supports the Geroscience concept that chronic diseases and biological processes involved 

in aging and longevity share similar mechanisms and pathways; efforts to target them may 

help both delay or prevent the onset of chronic diseases while also increasing longevity [23]. 

The CHRNA3 rs1051730 variant has previously been linked to smoking fewer cigarettes and 

lower risks of lung cancer [21], although this variant does not influence the chances of 

starting smoking. Our finding of association with father’s age at death is highly plausible 

given the strongly adverse effect of smoking on survival. The fact that this SNP is also 

associated with mother’s age at death may support this finding, with the weaker (non-

genome wide significant) association perhaps explained by the lower rates of smoking in 

women in the generation of parents being studied. We have noted that our attempt to test 

this variant independently in the Framingham Heart Study was not successful, but this 

analysis is severely underpowered, underlining the relatively small effect of this SNP on 

father’s longevity. Additionally, rs1051730 is located in a cluster of variants in high linkage 

disequilibrium covering several genes so the causal association could feasibly be via 

another mechanism (see Supplementary Figure 6). 
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We also analyzed associations with extreme longevity (here defined as at least one parent in 

the top 1% of age at death, ≥98 years for mothers or ≥95 years for fathers). The GWAS 

analysis revealed two suggestive genetic variants that require further study; rs528161076 is 

in a distinct peak of variants in an intron of AP5Z1, a gene encoding a homologous 

recombination DNA double-strand break repair helicase protein [22], and rs75824829 on 

chromosome 9 is ~50k from the nearest gene C9orf62 (chromosome 9 open reading frame 

62) for which little information is available. For the AP5Z1 variant, this involves a C insertion 

after the T allele, with a prevalence 4.5% with at least one copy and is enriched amongst the 

those with top 1% longevity parents: of 1,335 participants with at least one long-lived parent, 

84 have at least one of these insertions (6.3%) compared to 4.39% (1,796 of 40,871) of 

controls. Finding big enough independent samples to confirm these associations will be 

challenging.   

For the genetic risk score analysis, several associations with continuous longevity become 

non-significant for extreme longevity, apparently due to lower sample sizes, but the pattern 

of GRS associations for both phenotypes were similar (Figure 1). More extreme definitions 

of longevity might yield different results but numbers of centenarian parents, for example, 

were too small to study. A possible exception to the generally similar risk pattern is the HDL 

cholesterol GRS, which was associated with extreme longevity but did not reach significance 

with continuous longevity. A number of other traits including type-1 diabetes GRS were close 

to significance, but these require additional study in a larger sample.  

Associations between germline genetic variants and phenotypes provide strong evidence of 

causality because variants are inherited at the beginning of life, before any confounding by 

environmental or other factors can occur. Our results confirm the importance of several 

potentially manageable risk factors in achieving exceptional longevity, including adverse lipid 

levels, raised blood pressure (systolic and diastolic), adiposity (body mass index) and also 

smoking, as noted above. Although there has been some debate on whether there are 

paradoxical associations between obesity risks factors and survival in old age [24], our result 

suggests that genetically influenced life-long exposures in the expected directions (i.e. non-

paradoxical effects) do influence human survival. This genetic evidence supports recent 

work on BMI and survival in a sample of 1 million older people, suggesting that paradoxical 

associations reflect reverse causation from weight loss in older people who already have 

major diseases associated with weight loss (Bowman et al, PLoS Medicine in review 2016).   

Comparison with previous work 

There is consistent epidemiological evidence for a relationship between longevity and lower 

rates of type-2 diabetes [11], yet previous evidence from the Leiden study (n=2415) and the 
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Life Long Family Study (n=1562 in generation 1; n=3102 generation 2) suggested that 

offspring of long-lived participants do not have lower burden of type-2 diabetes risk alleles 

compared to their partners [10,25]. We also did not observe an association between the type 

2 diabetes GRS and longevity in the UK Biobank participants, although small effects cannot 

be excluded.   

There is evidence to suggest that long-lived individuals have reduced prevalence of 

Alzheimer’s increasing alleles [10], which includes the TOMM40/APOE locus rs2075650 

identified in multiple analyses of longevity [8,26,27]. We confirmed that the A allele of this 

SNP was positively associated with increased parental age at death (beta=0.039, p=1x10-4), 

however there was no significant association with “extreme longevity” (at least one parent in 

the top 1% of ages at death). The A allele, here associated with increased parents lifespan, 

is associated with decreased risk of dementia [28].  

A recent study found that longevity-associated loci are enriched for disease-associated loci, 

consistent with our findings in Biobank [29]. The authors also performed a disease-weighted 

GWAS analysis, reporting 4 loci associated with exceptional longevity (≥90 years) with 

replication. We replicate the association between rs3184504 (mapped to SH2B3/ATXN2), 

previously shown to be associated with celiac disease [30], in our extreme longevity 

phenotype, but not the other three (although they are associated with continuous parent’s 

age at death p<0.05). rs3184504 has also been associated with blood pressure and 

cardiovascular disease [31]. This suggests rs3184504 is associated with survival to 

exceptional ages, but the others require further evidence. 

Previous analyses have found that long-lived individuals have lower low-density lipoprotein 

genetic risk than young controls [32,33], which we also observe (offspring of long-lived 

parents have lower LDL-increasing genetic risk score). Our results extend this work by 

showing associations also with triglyceride and HDL genetic risk scores, plus BMI and 

systolic blood pressure, as well as associations with non-lipid cardiovascular disease genetic 

risk traits.   

Limitations 

This study is limited to white British UK biobank participants of Caucasian genetic descent, 

thus the results may not be applicable to other populations. We plan to address this in future 

collaborations. In addition, the UK Biobank is a volunteer study that did not aim for 

population representativeness at baseline, although efforts were made to recruit a 

heterogeneous sample by varying geographic placement of examination sites, including in 

economically deprived areas; the final response rate was 5.47% [34]. It has been reported 
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that with sufficient variation in the phenotypes being studied, results are generalizable to the 

wider UK population [35].  

We are limited by the coverage of the genotyping microarray utilized; ~800,000 genetic 

variants were directly measured, allowing imputation of 73 million (9 million of which were 

common enough and high quality enough for inclusion in this GWAS). Many variants may 

exist outside of the data available for this study, in particular on the X, Y and mitochondrial 

chromosomes, for which imputed data are not available.  

The available information about the parents is very limited, with no dates of birth for those 

who had died and no cause of death information. We have excluded UK Biobank 

participants aged less than 55 to avoid adding large numbers of parents who are likely to be 

too young to have reached the longer lifespans which are our main focus in this analysis. 

The lack of cause of death data may have resulted in an underestimation of effect sizes on 

lifespan due to aging and related disease, as we have had to include e.g. accidental deaths 

unrelated to aging.  

When comparing the effect sizes between different GRS, it is important to consider that each 

GRS explains a different proportion of its associated phenotype: this will in turn affect the 

interpretation of the association with longevity. For instance, only approximately 1% of the 

variance in mean length of the telomeres is explained by the 7 reported SNPs [36], whereas 

more than 10% of the variance in the blood lipids is accounted for by associated variants 

[37]; therefore the strength of association between these two phenotypes and longevity may 

not be proportionately represented by the effect sizes of the GRS longevity associations.  
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Conclusions 

Human longevity in our studied Caucasian origin sample is influenced by multiple common 

risk and protective genetic variants. Cardiovascular trait variants are particularly prominent in 

associations with longevity. Several of these genetically influenced risks including tobacco 

exposure are potentially modifiable. Further work is needed in other ethnic groups and to 

test less common variants for associations with longevity.  
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