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Abstract

Background: Post-translational modifications of histone residue tails are an important component of genome
regulation. It is becoming increasingly clear that the combinatorial presence and absence of various
modifications define discrete chromatin states which determine the functional properties of a locus. An
emerging experimental goal is to track changes in chromatin state maps across different conditions, such as
experimental treatments, cell-types or developmental time points.

Results: Here we present chromstaR, an algorithm for the computational inference of combinatorial chromatin
state dynamics across an arbitrary number of conditions. ChromstaR uses a multivariate Hidden Markov Model
to determine the number of discrete combinatorial chromatin states using multiple ChIP-seq experiments as
input and assigns every genomic region to a state based on the presence/absence of each modification in every
condition. We demonstrate the advantages of chromstaR in the context of three common experimental data
scenarios. First, we study how different histone modifications combine to form combinatorial chromatin states
in a single tissue. Second, we infer genome-wide patterns of combinatorial state differences between two cell
types or conditions. Finally, we study the dynamics of combinatorial chromatin states during tissue
differentiation involving up to six differentiation points. Our findings reveal a striking sparcity in the
combinatorial organization and temporal dynamics of chromatin state maps.

Conclusions: chromstaR is a versatile computational tool that facilitates a deeper biological understanding of
chromatin organization and dynamics. The algorithm is implemented as an R-package and freely available from
http://bioconductor.org/packages/chromstaR/.
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Introduction
Epigenetic marks such as DNA methylation or histone modifications play a central

role in genome regulation. They are involved in a diversity of biological processes

such as lineage commitment during development [1], maintenance of cellular iden-

tity [2, 3] and silencing of transposable elements [4]. The modification status of
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many histone marks has been extensively studied in recent years, first with ChIP-

chip and later with ChIP-seq, now the de-facto standard procedure for genome wide

mapping of protein-DNA interactions and histone modifications. Since its advent in

2007 [1, 2, 5], ChIP-seq technologies have been widely used to survey genome-wide

patterns of histone modifications in a variety of organisms [6, 7, 2], cell lines [8] and

tissues [9, 10].

The multitude of possible histone modifications has led to the idea of a “histone

code” [11, 12], a layer of epigenetic information that is encoded by combinatorial

patterns of histone modification states (Fig. 1a). Major resources have been allo-

cated in recent years to decipher this code, culminating in projects such as the

ENCODE [13] and Epigenomics Roadmap [10]. Following their examples, most ex-

periments nowadays are designed to probe several histone modifications at once, and

often in various cell types, strains and at different developmental time points. These

types of experiments pose new computational challenges, since initial solutions were

designed to analyze one modification and condition at a time, therefore treating

them as independent. Indeed, a commonly used strategy has been to perform peak

calling for each experiment separately (univariate analysis) and to combine the peak

calls post-hoc into combinatorial patterns [14, 15]. This approach is problematic

for several reasons: Because of the noise associated with ChIP-seq experiments and

peak calling, combining univariate peak calls will lead to the discovery of spuri-

ous combinatorial states that do not actually occur in the genome. Furthermore,

different tools or parameter settings are often used for different modifications (e.g.

peak calling for broad or narrow marks), making the outcome sensitive to parameter

changes and control of the overall false discovery rate difficult. Lastly, this approach

requires ample time and bioinformatic expertise, rendering it impractical for many

experimentalists.

Accurate inferences regarding combinatorial histone modification patterns are nec-

essary to be able to understand the basic principles of chromatin organization and

its role in determining gene expression programs. One way forward is to develop

computational algorithms that can analyze all measured histone modifications at

once (i.e. combinatorial analysis) and across different conditions (i.e. differential
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analysis). Some methods have been designed to integrate histone modifications into

unified chromatin maps [16, 17, 18, 19, 20, 21, 22]. These methods can be clas-

sified into three different categories [23]: combinatorial (which define chromatin

states based on the presence/absence of every histone modification) [19], contin-

uous (which define chromatin states based on the shape of the ChIP-seq signal)

[24, 25], and probabilistic (which have probabilities associated with finding each

mark in a given state) [16, 17, 18, 20, 21, 22]. A major drawback of the majority

of these approaches [16, 17, 18, 20, 21, 22] is the need to specify the number of

distinct chromatin states beforehand, which is usually not known a priori. More-

over, in the probabilistic interpretation the inferred states can consist of multiple

and overlapping combinatorial states (Fig. 1b). This probabilistic state definition is

useful to reduce noise and to identify functionally similar genomic regions for the

purpose of annotation, but at the same time it obscures a more direct interpretation

of combinatorial states in terms of the presence/absence patterns of the underlying

histone modifications.

Finally, none of these methods is designed for comparing chromatin maps across

conditions. ChromDiff [26] and dPCA [27] are comparative methods that identify

significant chromatin differences between groups of samples. ChromDiff discovers

groups of epigenomic features which are the most discriminative in group-wise com-

parisons of samples, while dPCA uses a small number of differential principle com-

ponents to explore differential chromatin patterns between two groups of samples.

Both methods are useful for identifying defining features of each group, however

they do not provide complete information about the genome-wide localization of all

chromatin differences between all samples.

In order to overcome these problems we have developed chromstaR, a method for

multivariate peak- and broad-region calling. chromstaR has the following conceptual

advantages: 1) Every genomic region is assigned to a discrete, readily interpretable

combinatorial chromatin state, based on presence/absence of every histone mark,

providing a mechanistic interpretation of chromatin states which allows for better

insights into how they regulate genome function. 2) The number of chromatin states

does not have to be preselected but is a result of the analysis. 3) Histone modifica-

tions with narrow and broad profiles can be combined in a joint analysis along with

an arbitrary number of conditions. 4) The same approach can be used for mapping
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combinatorial chromatin states in one condition, or for identifying differentially

enriched regions between several conditions, or for both situations combined. 5)

Our formalism offers an elegant way to include replicates as separate experiments

without prior merging.

The algorithm is implemented in C++ and available as R package to combine speed

and ease-of-use, and offers functions to perform the most frequent downstream anal-

ysis tasks.

We demonstrate the advantages of chromstaR in the context of three common

experimental scenarios (Fig. S1b). First, we consider that several histone modi-

fications have been collected on a single tissue at a given time point (Fig. S1b,

Application 1). The goal is to infer how these different modifications combine to

form distinct combinatorial chromatin states and to describe their genome-wide

distribution. Second, we consider that several histone modifications have been col-

lected in two different cell types or conditions (Fig. S1b, Application 2). Here, the

goal is to infer genome-wide patterns of combinatorial state differences between cell

types or conditions. Third, we consider the more complex secenario where several

histone modifications have been collected for multiple different time points or tissue

types (Fig. S1b, Application 3). In this case, the goal is to infer how combinatorial

chromatin states are modified during tissue differentiation or development. These

three experimental scenarios broadly summarize many of the data problems that

biologists and bioinformaticians currently face when analyzing epigenomic data. We

show that chromstaR provides biologically meaningful results to these types of data

problems, and facilitates deeper biological insights into the dynamic coordination

of combinatorial chromatin states in genome regulation.

Results

Brief overview of analytical approach and validation of peak calls

Consider N ChIP-seq experiments: N histone modifications measured in one con-

dition, or one histone modification measured in N conditions, or a combination of

the two. After mapping the sequencing reads to the reference genome our method

consists of two parts (Fig. 2), a univariate peak calling step to estimate the dis-
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tribution parameters, and a multivariate peak calling step to integrate information

from all experiments:

(1) Univariate peak calling (Fig. 2a): For each ChIP-seq experiment, we partition

the genome into non-overlapping bins (default 1kb) and count the number of reads

that map into each bin (i.e. the read count) [28]. We model the read count distribu-

tion as a two-component mixture of zero-inflated negative binomials [29, 30], with

one component at low number of reads that describes the background noise and

one component at high number of reads describing the signal. We use a univariate

Hidden Markov Model (HMM) with two hidden states (i.e. unmodified, modified)

to fit the parameters of these distributions [31].

(2) Multivariate peak calling (Fig. 2b): We consider all ChIP-seq experiments at

once and assume that the multivariate vector of read counts is described by a mul-

tivariate distribution which is a mixture of 2N components. We use a multivariate

HMM to assign every bin in the genome to one of the multivariate components.

The multivariate emission densities of the multivariate HMM, with marginals equal

to the univariate distributions from step (1), are defined using a Gaussian copula

[32]. A detailed description can be found in Methods.

The univariate part of our model (step 1 above), which serves as the basis for the

construction of the multivariate model, provides high-quality peak calls that mea-

sure up against existing methods. We compared our method with two commonly

used peak callers, Macs2 [33] and Sicer [34], using publicly available datasets of

qPCR validated regions [35]. We compared the performance of the three methods

on two datasets, one for H3K4me3 (narrow profile), and one for H3K27me3 (broad

profile). The H3K4me3 dataset had 33 qPCR validated regions and the H3K27me3

dataset had 197 qPCR validated regions. The ChIP-seq datasets were analyzed with

the standard settings of each peak caller (SI text), and each base pair was assigned

a score by the algorithm. This output was used to compute receiver operator char-

acteristic (ROC) curves and area-under-curve (AUC) values [36]. The performance

of chromstaR for these datasets in terms of the AUC is equal or better than that

of Macs2 and Sicer (Fig. S2). For the multivariate peak calling, in the absence of

datasets with validated peak calls for multiple marks, we performed a simulation

study based on parameters obtained from real data (SI text). ROC curves and

AUC values show that multivariate peak calls are of high quality (Fig. S3).
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Application 1: Mapping combinatorial chromatin states in a reference tissue

Lara-Astiaso et al. [37] measured four histone modifications (H3K4me1, H3K4me2,

H3K4me3 and H3K27ac) and gene expression in 16 mouse hematopoietic cell lines

and their progenitors (Fig. S1). All four marks have a relatively narrow ChIP-seq

profile. The authors’ goal was to document the dynamic enhancer landscape during

hematopoietic differentiation. With four measured histone modifications there are

24 = 16 possible combinatorial states defined by the presence/absence of each of

the modifications. In order to provide a snapshot of the genome-wide distribution

of these combinatorial states in a given cell-type, we applied chromstaR to the

ChIP-seq samples collected from monocytes (see Fig. S6 for the analysis of other

cell types). In the following we introduce a shorthand notation where combinatorial

states are denoted between brackets [ ] and each mark is abbreviated by its chemical

modification. For example, the combination [H3K4me1+H3K4me2+H3K27ac] will

be abbreviated as [me1/2+ac]. If we use the full name of a mark (e.g. “H3K4me1”)

we are referring to the mark in a classical, non-combinatorial, context. See Fig. 3d

for all combinations with shorthands.

chromstaR found that many of the 16 possible combinatorial states were nearly

absent at the genome-wide scale, with 7 of the 16 states accounting for nearly 100%

(>99.99%) of the genome (Fig. 3a). This observation indicates that the “histone

code” defined by these four histone modifications is much less complex than theo-

retically possible, perhaps as a result of biochemical constraints on the co-occurance

of certain modifications on the same or neighboring aminoacid residues. However,

some of the discovered chromatin states display “incompatible” combinations (the

ones displaying more than two modifications on the same histone and residue, such

as for example [me1/2/3]). Re-analysis of the data finds eight of the 16 states

present in the genome, with a smaller frequency of incompatible states (Fig. S4).

These results show that these states are in part due to having pooled data from

several nucleosomes into the same bin, but are probably also caused by antibody

cross-reactivity and residual cell heterogeneity.

The empty state [ ], which we here define as the simultaneous absence of all

measured marks at a given genomic position, was the most frequent state, cover-

ing 94.8% of the genome. The high prevalence of this state reflects the fact that
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Lara-Astiaso et al. [37] focused on marks with a narrow profile that had previously

been shown to occur proximal to genic sequences [38, 2, 3]. Indeed, only 36% of

the empty state overlapped known genes while the remaining 64% mapped to non-

genic regions throuhgout the genome, and probably tag other (unmeasured) histone

modifications, such as repressive heterochromatin-associated marks.

In order to evaluate chromatin state frequencies on a data set with a mixture of

broad and narrow histone modifications, we analyzed human Hippocampus tissue

data from the Epigenomics Roadmap with seven marks [10] and IMR90 cell line

data from the ENCODE project with 26 marks [13] (see Methods). In the Hip-

pocampus data we found that only 21 out of the 128 possible combinatorial states

were necessary to explain more than 99% of the epigenome, and indeed the empty

state covered only 32% of the genome (Fig. S7). Moreover, in the lung fibroblast

cell line we found that from the possible 67 million states only 0.02% (∼12000) are

needed to explain more than 95% of the genome, while the empty state covered

only 16% of it, showing that when more marks are included the percentage of the

genome in the empty state decreases [23].

Contrary to the empty state, on average 68% (range: 59-81%) of the genomic

regions found to be in one of the 6 most frequent (non-empty) combinatorial states

in mouse monocytes overlap known genes (Fig. 3b), thus suggesting an active

role in the regulation of gene expression. To assess this, we examined the combi-

natorial state profiles of the 6 most frequent states relative to the transcription

start site (TSS) of expressed and non-expressed genes (Fig. 4a). In contrast to

non-expressed genes, expressed genes were clearly characterized by the presence

of state [me1/2/3+ac] proximal to the TSS. This is consistent with previous re-

ports that have used H3K4me3 together with H3K27ac to tag active promoters

[39]. However, our analysis also uncovered a more subtle enrichment of state [me1]

shouldering the TSS (Fig. 4a). We found that 18% of [me1] sites occur in regions

directly flanking state [me1/2/3+ac] and 61% of all [me1] can be found within

10kb of [me1/2/3+ac] sites (see Fig. 5 for an example). These two states therefore

constitute a single, broad chromatin signature that defines a subset of expressed

genes. Interestingly, this subset of genes had significantly higher expression levels
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(p ≈ 10−101, Wilcoxon rank-sum test) and distinct GO terms compared with genes

marked only by the active promoter state (i.e. [me1/2/3+ac] at the TSS and no

[me1] in flanking regions, Fig. 6 and Table 1). This observation suggests that the

co-occurance of [me1/2/3+ac] and [me1] in broad regions surrounding the TSS

marks what may be called “enhanced” active promoters ([me1/2/3+ac]+[me1]).

To compare the results obtained with chromstaR to other computational ap-

proaches, we first re-analyzed replicate datasets from the mouse monocytes [37],

the human Hippocampus [10] and the lung fibroblast cell line data [13] using sev-

eral publicly available methods [16, 19, 21, 22] (SI text). chromstaR is the method

that provides the best performance in assigning a consistent segmentation between

replicates (Fig. S5c) and in detecting regions with high read count fold change as

differential (Fig. S5d). Among the alternative methods, ChromHMM provides the

best performance and flexibility [16], we will therefore use it in the following for

comparison purposes. ChromHMM employs a multivariate HMM to classify the

genome into a preselected number of probabilistic chromatin states, and was used

to annotate the epigenome in the ENCODE [13] and Epigenomics Roadmap [10]

projects. It therefore offers a method to segment the genome into a set of proba-

bilistic chromatin states that can then a posteriori be interpreted at the biological

level. We also compare the results obtained with chromstaR to the ones obtained

using MACS2 [33], because it is one of the most widely used univariate peak callers.

When using a multivariate segmentation method like ChromHMM, the number

of chromatin states needs to be decided beforehand, which is difficult as this num-

ber is rarely known a priori. In the absence of detailed guidelines we fitted a 16

state model to the mouse hematopoietic data. Our comparison uncovered substan-

tial method-specific differences in state frequencies (Fig. 3). Both ChromHMM and

MACS2 found all 16 states present in the genome with more than 0.01% genome

coverage. To understand how state-calls compared between methods, we evaluated

to which extent the states detected by one method coincided with those detected

by the other method(s) (Fig. S8). Most notable, we found that genomic regions

corresponding to chromstaR’s active promoter state [me1/2/3+ac] were assigned

to two alternative states (E7 and E9) by ChromHMM. These latter two states were

very similar in terms of their emission densities, but significantly different at the
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level of gene expression (p ≈ 10−90, t-test, Fig. 3c). Moreover, chromstaR’s single

empty state [ ] corresponded to two functionally similar (nearly) empty states (E3,

E4) detected by ChromHMM. A third almost empty state E2 with weak H3K27ac

signal had slightly higher expression levels than the other two empty states and also

overlapped with chromstaR’s empty state [ ] (Fig. S8b). These state redundancies

highlight the difficulty in selecting the number of chromatin states for ChromHMM,

for without extensive manual curation it is difficult to know if two states are truly

redundant (likely E3 and E4) or if they are biologically different on some level (E7

and E9).

Although MACS2 is not designed for multivariate analysis, we constructed ad hoc

combinatorial state calls from the univariate analyses obtained from each ChIP-seq

experiment to illustrate the problems of this commonly used analysis technique.

As expected, MACS2 results were noisy: many of the combinatorial states detected

by chromstaR showed very heterogenous state calls with MACS2 (Fig. S8a). For

instance, a considerable proportion (35%) of genomic regions detected by chrom-

staR as being in the active promoter state [me1/2/3+ac] were assigned to another

promoter state (containing H3K4me3) by MACS2. We suspect that this is due to

the limitations of MACS2 in calling broader marks (e.g. H3K4me1) or moderate

enrichment with the default parameters, which results in frequent missed calls for

individual modifications, and subsequently also in the limited detection of ‘complex’

combinatorial states such as [me1/2/3+ac] that are defined by the presence of all

modifications.

To better understand the functional implications of the state frequency and state

pattern differences between these methods, we evalute the chromatin state signa-

tures of both ChromHMM and MACS2 around TSS of expressed and non-expressed

genes (Fig. 4b,c). In contrast to chromstaR, chromatin signatures obtained by the

other two methods did not as effectively distinguish these two classes of genes,

suggesting that chromstaR has a higher sensitivity for detecting these signatures

(Table 2).
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Application 2: Differential analysis of combinatorial chromatin states

In order to understand combinatorial chromatin state signatures that are specific

to a given cell type or disease state, it is necessary to compare at least two different

tissues with each other, or a case and a control. In this context, the goal is to iden-

tify genomic regions showing differential (or non-differential) combinatorial state

patterns. Such differential patterns are indicative of regions that underly the tissue

differences and are therefore of substantial biological or clinical interest. chromstaR

solves this problem by considering all 22N possible combinatorial/differential chro-

matin states (Fig. 1c), where N is the number of histone modifications measured

in both conditions. Out of the 22N states, 2N are non-differential and 22N − 2N are

differential.

We anlayzed two differentiated mouse hematopoietic cells (monocytes versus CD4

T-cells) from [37], with four histone marks each (H3K4me1, H3K4me2, H3K4me3

and H3K27ac). We found that 5.37% of the genome showed differences in combi-

natorial state patterns between the two cell types (Fig. 7a, example browser shot

in Fig. 8). The most frequent differential regions involved the [me1] combination

(2.37%) followed by regions with the [me1/2/3+ac] combination (0.92%). These

differences are even more striking when viewed in relative numbers: 59% of the

[me1/2/3+ac] sites were concordant between the two cell types, while only 8% of

the [me1] sites were concordant. This is in line with previous findings showing that

H3K4me1 is highly cell type specific [40, 41, 42, 43].

In order to determine if these differences in chromatin play a role in cellular

identity, we explored gene expression differences for differential chromatin states.

We found that loss of state [me1] as well as of state [me1/2/3+ac] is correlated

with a decrease in expression levels (Fig. 7b). This is consistent with our previous

observation (section Application 1) that [me1/2/3+ac] defines active promoters

and [me1] together with [me1/2/3+ac] defines enhanced active promoters (Fig. 6).

To investigate the function of the differential loci, we performed a GO term enrich-

ment of these regions [44] and found an impressive confirmation of cell type identity

in the GO terms (Table S1): While regions that are marked by [me1/2/3+ac] or

[me1] in both cell types show enrichment for general immune cell differentiation
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terms, regions that are marked with [me1] or [me1/2/3+ac] only in CD4 T-cells

show terms such as “T-cell activation and differentiation”. Vice versa, regions that

are marked with those signatures in monocytes but not in T-cells show enrichment

of terms such as “response to other organism” and “inflammatory response”.

Again, we compared our results on the same dataset with MACS2 [33] and

ChromHMM [16]. Neither method was specifically designed to deal with differences

between combinatorial states, but both tools represent approaches that could have

been chosen for that task in the absence of other suitable methods. For both meth-

ods, the percentage of the epigenome that was differentially modified was found to

be 2.5 times higher than predicted by chromstaR, 13.02% for MACS2 and 13.59%

for ChromHMM. MACS2 found most differences (3.90%) in state [me1], followed

by the combination [me2+ac] (2.11%). None of these states yielded any significant

enrichment in GO terms or showed correlation with expression data (Fig. S9c and

Table S2). The third most frequent differential state was [me1+ac] (1.88%) and

this state yielded GO term enrichments which reflect cellular identity. ChromHMM

predicted two “enhancer-like states” E8 and E9 (Fig. S9b) as most differential be-

tween cell types (2.71% and 2.54%) which also showed cell type specific terms in the

GO analysis (Table S3). However, expression analysis showed that ChromHMM’s

most frequent differential state (CD4:E12 and Mono:E14) corresponded to proximal

genes that were transcriptionally nearly inactive (Fig. S9b), which raises the ques-

tion if these differential chromatin states produce cell-specific functional differences.

Application 3: Tracking combinatorial chromatin state dynamics in time

Arguably the most challenging experimental setup is when several histone mod-

ifications have been collected for a large number of conditions, such as different

cell types along a differentiation tree or different terminally differentiated tissues

(Fig. S1). We consider M conditions with N histone modifications measured in each

of them. This leads to 2N possible combinatorial states per condition, or alterna-

tively to 2M differential states per mark across all samples. Therefore, the number

of possible dynamic combinatorial chromatin states is 2M×N . For M ×N ≤ C the

whole dynamic/combinatorial chromatin landscape is treatable computationally,
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while for M ×N > C the problem becomes intractable with current computational

resources. The value of C is dependent on computational resources, genome length

and bin size (see section Limitations).

We considered again the mouse hematopoietic data from [37], with four histone

modifications (H3K4me1, H3K4me2, H3K4me3 and H3K27ac) measured in 16 dif-

ferent cell types during hematopoietic differentiation (stem cells, progenitor and

terminally differentiated cells). We explored the chromatin dynamics during the

differentiation process for every hematopoietic branch (Fig. S1a): first, long term

hematopoietic stem cells (LT-HSC) are transformed into short term hematopoietic

stem cells (ST-HSC) and further into multipotent progenitors (MPP). The MPP

cells differentiate into the several common lineage oligopotent progenitors, giving

rise to the three different hematopoietic branches (myeloid, leukocyte and erythro-

cyte). Finally, after another one or two stages, cells become fully differentiated at

the bottom of the tree. Every branch from root to leaf consists therefore of four

histone marks in five or six time points, with 2M×N = 1048576 or 16777216 pos-

sible dynamic combinatorial chromatin states, respectively. Because this number

is computationally intractable, we implemented the following two-step approach

for each branch: (1) for each of the four histone marks separately, we performed a

multivariate differential analysis along the five or six cells in the branch, therefore

assigning every bin in the genome to one of the 32 or 64 possible differential states;

(2) We reconstructed the full combinatorial chromatin state dynamics by combining

the differential calls of all four marks in step 1, bin by bin (Fig. S10a).

Using this two-step approach, we studied the dynamics of the inferred chromatin

states over developmental time. We observed an initial increase in the frequency

of the [me1] state from the LT-HSC to intermediate progenitor stages, followed by

a decrease to the fully differentiated stages (Fig. S11). This decrease in [me1] was

especially pronounced in the lymphoid and erythroid lineage. In the [me1/2/3+ac]

signature we found a small but continuous decrease from LT-HSC to terminally dif-

ferentiated stages. These observations are consistent with the view that chromatin

transitions from an open configuration in multipotent cells to a closed configuration

in differentiated cells. Figure S12 shows two examples of pluripotency genes, Gata2
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and Cebpa, that lose their open chromatin configuration in differentiated CD4 T-

cells.

We next explored the specific dynamic chromatin state transitions that occur

in every region of the genome during the differentiation process. We found that

the majority of all possible dynamic chromatin state transitions were not present

in this system. For example, in the CD4 T-cell branch of the hematopoietic tree

there are 5 developmental time points and at each stage 16 combinatorial states

can be theoretically present. This leads to 165 = 1048576 potential transitions be-

tween combinatorial states in this branch. However, we found only 1086 different

chromatin transitions and the first most frequent 99 transitions (with frequency

≥ 0.01%) already involved 99.60% of the genome. To summarize these transitions

further, we grouped them into 4 different classes: (1) “Empty” transitions, i.e. those

regions that have no histone modification in any of the developmental stages. (2)

“Constant” transitions, i.e. those regions that show the same (non-empty) combina-

torial state in all stages of differentiation. (3) “Stage-specific” transitions, i.e. those

regions that show a combinatorial state only in a subset of differentiation stages and

are in the “empty” state otherwise. (4) All other transitions (see Fig. 9 for exam-

ples). In the CD4 T-cell branch, 85.98% of the genome has no measured chromatin

signature in all 5 stages (class 1). The constant transitions (class 2) comprise 5.87%

of the genome, stage-specific transitions 5.69% (class 3) and all other transitions

2.46% (class 4). Altogether, only 8.15% of the genome changes its chromatin state

during differentiation and more than half of these changes are due to changes in

the [me1] signature. This signature is highly cell type specific and gains and losses

correspond to stage-specific terms in a GO analysis (Table S4) and to changes in

gene expression (Fig. S13a). Among the constant transitions, regions with signature

[me1/2/3+ac] mark constitutively expressed genes (Fig. S13a). Therefore we expect

those regions to be enriched with housekeeping functions, which is confirmed by the

GO analysis (Table S5).

We compared our results on the CD4 T-cell branch with MACS2 [33] and

ChromHMM [16]. Strikingly, MACS2 found 34470 different chromatin state tran-

sitions, with the most frequent 330 (with frequency ≥ 0.01%) covering 94.47% of
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the genome. This large number is expected since MACS2 is a univariate peak caller

and not designed for differential analysis. Furthermore, this dataset represents a

differential analysis not between two cell types, but between five different cell types

and thus boundary effects (false positives, e.g. falsely detected differences) are ex-

tremely likely. This interpretation is supported by the expression data, which could

not find clear expression differences for the most frequent differentially modified re-

gions (Fig. S9c). Also the GO analysis could not identify any significant GO terms.

ChromHMM found 38288 different state transitions of which the first 656 cover

91.21% of the genome. This large number of transitions is dependent on the num-

ber of states that are used to train ChromHMM, since extra states will artificially

inflate the number of chromatin state transitions. However, consistent with the

chromstaR predictions, ChromHMM predicts many stage-specific enhancer (state

E15 and E16) and constant promoter (state E9) regions among the most frequent

transitions. The expression profiles associated with those transitions show the ex-

pected behaviour (Fig. S13b).

Limitations and Solutions

The number of possible combinatorial states for N ChIP-seq experiments is 2N ,

meaning that for each additional ChIP-seq experiment the number of combinato-

rial states doubles. Thus it soon becomes computationally prohibitive to consider

all combinatorial states. We found that with current computational resources (Intel

Xeon E5 2680v3, 24 cores @ 2.5 GHz, 128GB memory) a practical limit seems to be

256 states (= 8 experiments) with a run-time of several days for a mouse genome

(≈ 2.6·109bp) and a bin size of 1000bp (≈ 2.6M datapoints). We investigated several

possibilities to extend the usability of chromstaR beyond this limit: (1) Calculations

can be performed for each chromosome separately, and chromstaR features an op-

tion to perform this calculation in parallel. (2) For the case of one cell type or tissue

where the number of measured histone modifications N exceeds the upper limit,

chromstaR provides a strategy to artificially restrict the number of combinatorial

states to any number lower than 2N . This strategy can yield proper results if the

correct states are included, since our results have shown that the majority of com-

binatorial states are absent in the genome. In order to identify the states which are

the most present in the genome, chromstaR ranks the combinatorial states based
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on their presence according to the combination of univariate results from the first

step of the chromstaR pipeline. This ranking is a good approximation of the true

multivariate state-distribution (Fig. S14). (3) If there are multiple marks N in mul-

tiple tissues M , and 2N∗M is bigger than the maximum number of states that the

algorithm can handle computationally, two strategies are possible: One can either

perform a differential analysis for each mark and then reconstruct combinatorial

states in a classical way (Fig. S10a) or one can perform a multivariate peak-calling

of combinatorial states for each tissue and then obtain the differences by a simple

comparison between tissues (Fig. S10b). Both strategies give a different perspective

on the data: The former accurately identifies differences between marks, while the

combinatorial states might be subject to boundary effects. The latter gives an ac-

curate picture of the combinatorial chromatin landscape, while differences between

cells might be overestimated. (4) The run-time of our algorithm scales linearly with

the number of data points, and thus a strategy is to decrease the resolution, e.g.

halfing the run-time by doubling the bin size.

Discussion

Understanding how various histone modifications interact to determine cis-

regulatory gene expression states is a fundamental problem in chromatin biology. It

is becoming increasingly clear that certain combinatorial patterns of these modifi-

cations define discrete chromatin states along the genome. These chromatin states

“encode” cell-specific transcriptional programs, and constitute funtional units that

are subject to dynamic changes in response to developmental and environmental

cues.

Many experimental studies have recognized this and collected ChIP-seq data for a

number of histone modifications on the same or different tissue(s) as well as for sev-

eral developmental time points. Integrative analyses of such datasets often present

formidable bioinformatic challenges. Only a few computational methods exist that

can analyze multiple histone marks simultaneously in one sample and cluster them

into a finite number of chromatin states [16, 17, 18, 19, 20, 21, 22]. Interestingly,

these methods often demand that the user specifies the number of chromatin states

beforehand. We find this problematic because this number is often a desired output
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of the analysis rather than an input. Indeed, the true number of distinct chromatin

states in the genomes of various species is subject to debate. In D. melanogaster

nine chromatin states have been reported [45], while in A. thaliana four main

states were found [46]. In human, Ernst et al. found 51 states in human T-cells

[47]. The Roadmap Consortium reported 15 to 18 states [10]. It remains unclear

whether these differences reflect species divergence at the level of chromatin organi-

zation, or whether they are due to differences in the assessed chromatin marks and

bioinformatic treatment of the data. Without a formal computational framework for

defining chromatin states these two possibilities cannot be confidently distinguished.

While multivariate methods such as ChromHMM provide possible computational

solutions to such questions, these methods employ probablistic chromatin state

definitions that are not always readily interpretable. A probalistic interpretation

means that different combinatorial histone modification patterns can be simultane-

ously part of different underlying chromatin states. However, it is not immediately

obvious whether the underlying chromatin state are biologically distinct or if they

are only statistical entities that are otherwise biologically redundant. Identifying

such redundancies is not easy, because of a lack of rules to decide whether two or

more chromatin states can or cannot be considered to be equivalent. Such decisions

require extensive manual curation of the output, and often presuppose the kind of

biological knowledge that one wishes to obtain from the data in the first place.

In contrast to this probabilistic state definition, chromstaR outputs discrete chro-

matin states that are defined on the basis of the presence/absence of various histone

modifications. That is, with N histone modifications, it infers all 2N combinatorial

chromatin states (Fig. 1a). This interpretation makes it easy to relate the inferred

chromatin states back to the underlying histone modification patterns and thus

fashions a direct mechanistic link between chromatin structure and function. More-

over, chromstaR’s discrete state definition also provides an unbiased picture of the

genome-wide frequency of various chromatin states and allows for easy genome-wide

summary statistics. For instance, in our analysis of four histone modifications in

mouse embryonic stem cells we found that only 7 of the 16 possible states covered

almost 100% of the genome, and for the human Hippocampus with seven modifi-
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cations only 21 of the 128 possible combinatorial states already covered 99% of the

genome. Even more extreme, when analyzing 26 marks in a lung fibroblast cell line,

we found that only 0.02% of all possible combinatorial states explain 95% of the

genome. This striking sparsity in the combinatorial code is interesting and points

at certain biochemical contraints that determine which histone modifications can or

cannot co-occur at a genomic locus. Clearly, the genome-wide frequency of inferred

combinatorial chromatin states depends on the number and the type of different

histone modifications that are used in the analysis. Future studies should system-

atically investigate the dependency of the number of chromatin states on factors

such as number and type of measured histone marks, resolution, organism etc.

By treating discrete combinatorial chromatin states as units of analysis chromstaR

can also easily track chromatin state dynamics across cell types or developmental

time points. In that respect chromstaR is unique as no other methdods exist to

date that can peform a similar task. To illustrate this we have analyzed four dif-

ferent histone modification in 5 different cell types that are part of the mouse

T-cell differentiation pathway. Of the 1048576 combinatorial state transitions, we

find that only 99 comprise over 99.60% of the genome. Again, the sparsity in state

transitions shows that a few key transitions define the developmental trajectory of

T-cell differentiation. One notable transition is the gain or loss of state [me1] near

promoters. We note that this state means that only H3K4me1 is present at a locus

and no other marks. This is not the same as tracking H3K4me1 modification by

itself as this latter mark can appear in a number of different, and often funtionally

distinct, chromatin states such as [me1+ac], [me1/2+ac], [me1/2/3]. Hence, focus-

ing on H3K4me1 alone would tag other chromatin state changes that may not be

fully informative about T-cell differentiation.

Conclusions

chromstaR is a computational algorithm that can identify discrete chromatin states

from multiple ChIP-seq experiments and detect combinatorial state differences be-

tweeen cell-types and/or developmental time points. By defining chromatin states

in terms of the presence and absence of combinatorial histone modification patterns,
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it provides an intuitive way to understand genome regulation in terms of chromatin

composition at a locus. chromstaR can be used for the annotation of reference

epigenomes as well as for annotation of chromatin state transitions in well-described

developmental systems. The algorithm is written in C++ and runs in the popular

R computing environment. It therefore combines computational speed with the ex-

tensive bioinformatic toolsets available through Bioconductor [48, 49]. chromstaR is

freely available at http://bioconductor.org/packages/chromstaR/ and features

a collection of downstream analysis functions.

Methods
Model Specification

The construction of the multivariate Hidden Markov Model can be divided in two

steps (Fig. 2). In the first step, we fit a univariate Hidden Markov Model to each

individual ChIP-seq sample. The obtained parameters of the mixture distributions

are then used in the second step to construct the multivariate emission distributions.

Finally, the multivariate Hidden Markov Model is fitted to the (combined) ChIP-seq

samples. The following sections describe the two steps in detail.

Univariate Hidden Markov Model

For each individual ChIP-seq sample, we partition the genome into T non-

overlapping, equally sized bins. We count the number of aligned reads (regardless of

strand) that overlap any given bin t and denote this read count with xt. Following

others [29, 30], we model the distribution of the read counts x with a two-component

mixture of (zero-inflated) negative binomial distributions. In our case, the first com-

ponent describes the unmodified regions and is modeled by a zero-inflated negative

binomial distribution. The second component describes the modified regions and

is modeled by a negative binomial distribution. Furthermore, for computational

efficiency, we split the first component into the zero-inflation and the negative bino-

mial distribution [31]. Our univariate Hidden Markov Model has thus three states

i: zero-inflation, unmodified and modified. We write the probability of observing a

given read count as

P (xt|θ) = γ1f1(xt|θ1) + γ2f2(xt|θ2) + γ3f3(xt|θ3) (1)
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where γi are the mixing weights and θi are the component density parameters. The

emission distribution of state 1 is defined as

f1(xt) =

 1 if xt = 0

0 if xt > 0
(2)

and the emission distributions of state 2 and 3 are defined as

f(xt|θ = (n, p)) = Γ(n+ xt)
Γ(n)xt!

pn(1− p)xt (3)

where Γ denotes the Gamma function and p and n denote the probability and

dispersion parameter of the negative binomial distribution, respectively.

We use the Baum-Welch algorithm [50] to obtain the best fit for the distribution

parameter estimates, transition probabilities and posterior probabilities of being in

a given state. We call a bin modified if the posterior probability of being in that

state is > 0.5 and unmodified otherwise.

Multivariate Hidden Markov Model

Given N individual ChIP-sep samples with states unmodified and modified, the

number of possible combinatorial states is 2N . Let xt be the vector of N read

counts for the t-th bin. The probability of observing a random vector xt can be

written as a mixture distribution of 2N components:

P (xt|θ) =
2N∑
i=1

γifi(xt, θi) (4)

Again, the γi denote the mixing weights and θi denote the component density pa-

rameters for each component i. We assume that the marginal densities of the mul-

tivariate count distributions fi are given by the univariate distributions described

in the previous section. A convenient way to construct a multivariate distribution

from known marginal (univariate) distributions is copula theory [32, 51].
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Under the assumption of a Gaussian copula, the multivariate emission density for

combinatorial state i can be written as

fi(xt) =
N∏

j=1
fi,j(xj,t)× |Σi|−1/2 exp

{
−

zi,t (Σ−1
i − I) zT

i,t

2

}
, (5)

with zi,t = [ φ−1(Fi,1(x1,t)) , φ−1(Fi,2(x2,t)) , ... , φ−1(Fi,N (xN,t)) ] , (6)

where fi,j are the marginal density functions for combinatorial state i and Σi is

the correlation matrix between the transformed read counts zi,t = φ−1(Fi(xt)). The

cumulative distribution function (CDF) of fi,j is denoted by Fi,j , while φ−1 denotes

the inverse of the CDF of a standard normal [52].

The correlation matrix Σi for a given multivariate (combinatorial) state i is com-

puted as follows: From the combination of univariate state calls (unmodified or

modified) of all samples, we pick those bins that show combinatorial state i. The

read counts xt∈i in those bins are transformed to zt∈i using equation 6 and the

correlation matrix Σi is calculated from the transformed read counts.

Similarly to the univariate Hidden Markov Model, we use the Baum-Welch algo-

rithm to obtain the best fit for the transition probabilities and posterior probabil-

ities of being in a given state. However, the emission densities remain fixed in the

multivariate case. We assign a combinatorial state to each bin by maximizing over

the posterior probabilities. We found it useful to transform posterior probabilities

for each combinatorial state (“posteriors-per-state”) into posterior probabilites of

peak calls for each experiment (“posteriors-per-mark”), such that a cutoff can be

applied instead of maximizing over the posteriors. We found that out algorithm had

a very high sensitivity for detecting peaks when maximizing over the “posteriors-

per-state”. To increase specificity, a strict cutoff (e.g. 0.99) can be applied on the

“posteriors-per-mark”.

Integration of chromatin input experiments

Chromatin input experiments serve as controls for bias in chromatin fragmentation

and variations in sequencing efficiency [53]. We optionally integrate this information
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by modifying the vector of read counts that serves as the observable in the Hidden

Markov Model. Let x be the vector of read counts along the genome for the ChIP-

seq experiment, and y be the vector of read counts for the input experiment. Let

furthermore yP be the vector y without zero read counts. In a first step, we null

regions with artificially high read counts, e.g. repetitive regions around centromers,

by setting xt = 0 for all bins t where yt >= c0. c0 is defined as the 99.9% quantile

of yP . In a second step, we calculate a corrected read count x′ as

x′ = x ·min
(

mean(yP )
runmean(y) , 1.5

)
(7)

where runmean() calculates a running mean of 15 bins. This operation modifies

the read count x in such a way that x′ is decreased in bins which have more than

average counts in the input and increased in bins that have less than average counts

in the input.

Inclusion of replicates

The chromstaR formalism offers an elegant way to include replicates. For a single

ChIP-seq experiment, there are two states - unmodified (background) and modified

(peaks). For an arbitrary number of N experiments, there are thus 2N combinatorial

states. The same is true for an arbitrary number of replicates R, which would yield

2R combinatorial states. However, in the case of replicates, the number of states

can be fixed to 2, such that all replicates are forced to have the same state (e.g.

either peak or background). Treating replicates in this way allows to find the most

likely state for each position considering information from all replicates without

prior merging.

Univariate approximation of multivariate state distribution

chromstaR offers the possibility to restrict the number of combinatorial states to

any number lower than 2N , where N is the number of ChIP-seq experiments. Be-

cause the first step of the chromstaR workflow is a univariate peak calling, we can

combine those peak calls into combinatorial states and use their ranking to deter-

mine which states to use for the multivariate peak-calling. Because most systems

seem to be sparse in their combinatorial patterns, i.e. do not utilize the full com-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 18, 2016. ; https://doi.org/10.1101/038612doi: bioRxiv preprint 

https://doi.org/10.1101/038612


Taudt et al. Page 22 of 31

binatorial state space, it is often not necessary to run the multivariate part with

all 2N combinations. For instance, for the human Hippocampus tissue with seven

marks, running the multivariate with only 30 instead of 128 states recovers 98.2%

of correct state assignments compared to the full 128 state model, and choosing 60

instead of 128 states recovers already 99.5% of correct state assignments compared

to the full 128 state model (Fig. S14).

Data Acquisition

ChIP-seq data for the hematopoietic system (GSE60103) was downloaded from the

Gene Expression Omnibus (GEO) and aligned to mouse reference mm9 following the

procedure in [37] with bowtie2 (version 2.2.3) [54], keeping only reads that mapped

to a unique location. The number of identical reads at each genomic position was

restricted to 3. For the expression analysis, we used the provided RNA-seq data

(GSE60101). We normalized the read counts by transcript length and scaled them

to 1M reads. To reduce the effect of extreme expression values, we applied an arc-

sinh transformation on the data.

For the Hippocampus dataset, bed-files with aligned reads were downloaded from

ftp://ftp.genboree.org/EpigenomeAtlas/Current-Release/sample-experiment/

Brain_Hippocampus_Middle/ for donors number 112 and 149 and seven histone

marks H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K9me3 and

H3K9ac.

Bed-files with aligned reads for the IMR90 dataset were downloaded from ftp:

//ftp.genboree.org/EpigenomeAtlas/Current-Release/sample-experiment/

IMR90_Cell_Line for 26 histone marks (H2AK5ac, H2BK120ac, H2BK12ac,

H2BK15ac, H2BK20ac, H2BK5ac, H3K14ac, H3K18ac, H3K23ac, H3K27ac, H3K27me3,

H3K36me3, H3K4ac, H3K4me1, H3K4me2, H3K4me3, H3K56ac, H3K79me1,

H3K79me2, H3K9ac, H3K9me1, H3K9me3, H4K20me1, H4K5ac, H4K8ac, H4K91ac).

Enrichment profiles around TSS

We calculated sensitivity (recall), precision and F1-score for the detection of ex-

pressed TSS based on the following assumptions: True positives are expressed TSS

which are called into the promoter state ([me1/2/3+ac] for chromstaR, E7 and

E9 for ChromHMM, [me1/3] and [me3] for MACS2, see Fig. 4). False negatives

are expressed TSS which are not assigned into the promoter state. True negatives
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are non-expressed TSS which are not assigned into the promoter state. False posi-

tives are non-expressed TSS which are assigned the promoter state. We found that

chromstaR has a higher sensitivity than the other methods and a lower precision.

The F1-score is highest for chromstaR (Table 2).

Availability of data and materials

ChIP-seq data for the hematopoietic system (GSE60103) was downloaded from the Gene Expression Omnibus.

Bed-files for Hippocampus tissue were downloaded from

ftp://ftp.genboree.org/EpigenomeAtlas/Current-Release/sample-experiment/ for donors number 112 and

149. Bed-files for IMR90 cell line were downloaded from

ftp://ftp.genboree.org/EpigenomeAtlas/Current-Release/sample-experiment/IMR90_Cell_Line.

chromstaR if available under the Artistic-2.0 license and can be downloaded from

http://bioconductor.org/packages/chromstaR/.
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30. Spyrou, C., Stark, R., Lynch, A.G., Tavaré, S.: BayesPeak: Bayesian analysis of ChIP-seq data. BMC

bioinformatics 10, 299 (2009). doi:10.1186/1471-2105-10-299

31. van der Graaf, A., Wardenaar, R., Neumann, D.A., Taudt, A., Shaw, R.G., Jansen, R.C., Schmitz, R.J.,
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Figure 1 Definition of chromatin states. (a) Combinatorial chromatin state definition: Based on
the presence (blue) or absence (white) of a histone modification, a chromatin state is the
combination of the presence/absence calls at a given position. With N histone modifications there
are 2N different chromatin states. (b) Probabilistic chromatin state definition: Each chromatin
state has a probability (shades of blue) of finding a histone modification at a given position. Note
that a probabilistic state can consist of multiple combinatorial states and vice versa. There is in
principle no upper limit for the number of possible probabilistic chromatin states (here, T ). (c)
Differential combinatorial chromatin states across two conditions: Based on the presence (blue) or
absence (white) of a histone modification across different conditions. With N histone
modifications and M conditions there are 2N×M different states.
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Figure 2 Overview of analytical approach. (a) Univariate peak calling: Aligned reads are
counted in equidistant, non-overlapping bins. The resulting read count serves as observable for a
Hidden Markov Model with components “unmodified” (U) and “modified” (M). Parameters are
fitted with the Baum-Welch algorithm. (b) Multivariate peak calling: A multivariate emission
density is constructed from the densities of step (a), illustrated here for two dimensions. With N

ChIP-seq experiments, the resulting multivariate density has 2N components. For the two
illustrated dimensions (ChIP-seq 1 and 2), univariate densities are plotted on the x- and y-axis,
and the 4 components of the multivariate density are indicated by shaded areas, corresponding to
both unmodified (UU - gray), both modified (MM - blue) and unmodified/modified (MU - yellow,
UM - green).
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Figure 3 Chromatin states in monocytes. (a) Genomic frequency, i.e. the percentage of the
genome that is covered by the chromatin state. The sum over all states equals 100%. (b) Overlap
with known genes. (c) Expression levels of genes whose transcription start site (TSS) overlaps the
chromatin state. (d) Heatmap showing the chromatin state definition. Histones in chromstaR and
MACS2 states are either present (blue) or absent (white). ChromHMM states have a continuous
emission probability from zero (white) to one (blue).
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Figure 4 Fold enrichment of chromatin states around transcription start sites (TSS) of
expressed (top) and non-expressed (bottom) genes. Shown are the enrichment profiles for the 6
states that are most enriched around TSS. chromstaR consistently assigns state [me1/2/3+ac] to
expressed TSS and has a higher sensitivity for detecting those, while the other two methods assign
two states with lower sensitivity.
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Figure 5 Genome browser snapshot showing a 100kb region on chromosome 2 with several
active promoter signatures [me1/2/3+ac] (green) flanked by the [me1] signature (teal). The four
black tracks show normalized signal coverage profiles for the four measured histone modifications.
The colored track below shows combinatorial state calls, and the bottom track shows genes.
Promoter signatures coincide with gene starts.
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Figure 6 Expression levels of genes whose transcription start site (TSS) shows either the
[me1/2/3+ac] signature alone or the [me1/2/3+ac] signature flanked by [me1]. TSS flanked by
[me1] show significantly higher expression levels (p ≈ 10−101, Wilcoxon rank-sum test).
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Figure 7 Differential analysis of monocytes and CD4 T-cells. (a) Genomic frequency of the six
most frequent differential chromatin states. Differential chromatin states are shown on the x axes
(top: combinatorial state in monocytes, bottom: combinatorial state in CD4). (b) Expression from
monocytes and CD4 cells of genes which overlap the given differential chromatin state. Numbers
give the base-10 logarithm of the multiple testing corrected p-value for the expression difference
using a Wilcoxon rank-sum test. The more negative the number, the more significant the
difference. Genes with differential chromatin signatures (e.g. [me1/2/3+ac] in monocytes but not
in CD4 T-cells) show highly significant expression differences, whereas similar signatures
([me1/2/3+ac] in both cell types) are not significantly different.
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Figure 8 Differential chromatin signature at the Cd4 locus. Example of a differential promoter
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only present in CD4 T-cells (shaded green), while the differential enhancer [me1] is present only in
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“constant” (class 2) and “stage-specific” transitions (class 3). Only the H3K4me1 tracks are
shown. Combinatorial chromatin states as obtained by chromstaR are shown below the H3K4me1
tracks as colored bars.
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Tables

[me1/2/3+ac] + flanking [me1] [me1/2/3+ac]
1 posttranscriptional regulation of gene expression 5.75e-25 RNA processing 1.40e-36
2 regulation of translation 1.57e-21 ncRNA metabolic process 6.75e-34
3 peptidyl-lysine modification 1.69e-17 ncRNA processing 2.57e-29
4 microtubule nucleation 2.80e-13 DNA repair 1.14e-25
5 mRNA transport 1.23e-10 ribosome biogenesis 3.36e-17
6 RNA localization 3.61e-10 rRNA metabolic process 9.14e-17
7 RNA transport 7.01e-10 tRNA metabolic process 3.14e-16
8 GPI anchor biosynthetic process 1.01e-09 rRNA processing 1.85e-15
9 negative regulation of translation 1.16e-09 protein folding 3.74e-14

10 DNA replication 1.60e-09 tRNA processing 1.02e-11
Table 1 The first 10 significant gene ontology terms for TSS overlapping the [me1/2/3+ac] state
with the [me1] state flanking it, versus the TSS overlapping the [me1/2/3+ac] state. Numbers
indicate the binomial false discovery rate (BinomFdrQ) as reported by GREAT.

Sensitivity Precision F1-score
chromstaR 0.71 0.97 0.82

Macs2 0.60 0.98 0.75
ChromHMM 0.59 0.98 0.73

Table 2 Performance for detecting expressed TSS.
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