Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Real time selective sequencing using nanopore technology

Matthew Loose, Sunir Malla, Michael Stout
doi: https://doi.org/10.1101/038760
Matthew Loose
1School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: matt.loose@nottingham.ac.uk@mattloose
Sunir Malla
1School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Stout
1School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

The Oxford Nanopore MinION is a portable real time sequencing device which functions by sensing the change in current flow through a nanopore as DNA passes through it. These current values can be streamed in real time from individual nanopores as DNA molecules traverse them. Furthermore, the technology enables individual DNA molecules to be rejected on demand by reversing the voltage across specific channels. In theory, combining these features enables selection of individual DNA molecules for sequencing from a pool, an approach called ‘Read Until’. Here we apply dynamic time warping to match short query current traces to references, demonstrating selection of specific regions of small genomes, individual amplicons from a group of targets, or normalisation of amplicons in a set. This is the first demonstration of direct selection of specific DNA molecules in real time whilst sequencing on any device and enables many novel uses for the MinION.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted February 03, 2016.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Real time selective sequencing using nanopore technology
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Real time selective sequencing using nanopore technology
Matthew Loose, Sunir Malla, Michael Stout
bioRxiv 038760; doi: https://doi.org/10.1101/038760
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Real time selective sequencing using nanopore technology
Matthew Loose, Sunir Malla, Michael Stout
bioRxiv 038760; doi: https://doi.org/10.1101/038760

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genomics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4228)
  • Biochemistry (9107)
  • Bioengineering (6751)
  • Bioinformatics (23944)
  • Biophysics (12089)
  • Cancer Biology (9495)
  • Cell Biology (13740)
  • Clinical Trials (138)
  • Developmental Biology (7616)
  • Ecology (11661)
  • Epidemiology (2066)
  • Evolutionary Biology (15479)
  • Genetics (10618)
  • Genomics (14296)
  • Immunology (9463)
  • Microbiology (22792)
  • Molecular Biology (9078)
  • Neuroscience (48889)
  • Paleontology (355)
  • Pathology (1479)
  • Pharmacology and Toxicology (2565)
  • Physiology (3823)
  • Plant Biology (8308)
  • Scientific Communication and Education (1467)
  • Synthetic Biology (2290)
  • Systems Biology (6172)
  • Zoology (1297)