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Abstract 40!

 Field studies of wild vertebrates are frequently associated with extensive 41!

collections of banked fecal samples, which are often collected from known individuals 42!

and sometimes also sampled longitudinally across time. Such collections represent 43!

unique resources for understanding ecological, behavioral, and phylogenetic effects on 44!

the gut microbiome, especially for species of particular conservation concern. However, 45!

we do not understand whether sample storage methods confound the ability to investigate 46!

interindividual variation in gut microbiome profiles. This uncertainty arises in part 47!

because comparisons across storage methods to date generally include only a few (≤5) 48!

individuals, or analyze pooled samples. Here, we used n=52 samples from 13 rhesus 49!

macaque individuals to compare immediate freezing, the gold standard of preservation, to 50!

three methods commonly used in vertebrate field studies: storage in ethanol, 51!

lyophilization following ethanol storage, and storage in RNAlater. We found that the 52!

signature of individual identity consistently outweighed storage effects: alpha diversity 53!

and beta diversity measures were significantly correlated across methods, and while 54!

samples often clustered by donor, they never clustered by storage method. Provided that 55!

all analyzed samples are stored the same way, banked fecal samples therefore appear 56!

highly suitable for investigating variation in gut microbiota. Our results open the door to 57!

a much-expanded perspective on variation in the gut microbiome across species and 58!

ecological contexts. 59!

 60!

Importance 61!
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 Although variation in gut microbiome profiles is extensively studied, we know 62!

little about how this variation is influenced by sample storage and handling. This is 63!

especially important for sample collections from field studies, which can be hugely 64!

informative resources for microbiome studies, but often utilize variable storage 65!

approaches. Here, we compare four fecal sample storage methods that are commonly 66!

used in field studies, including freezing, lyophilization, storage in ethanol, and RNAlater. 67!

We find that the effect of storage method on microbiome profiles is consistently smaller 68!

than the effect of individual identity. Our results indicate that sample storage method is 69!

unlikely to affect the results of a study, as long as the same storage method is used for all 70!

samples. By indicating the utility of using previously collected sample banks for gut 71!

microbiome profiling, our results open the door to a vastly expanded perspective on gut 72!

microbiome variation in the natural world. 73!

! !74!

!75!

Main text 76!

Noninvasive collection is often the only feasible approach for obtaining samples 77!

from wild vertebrates, especially in threatened or endangered species [1]. Fecal samples 78!

are especially common, as they can be collected without disrupting study subjects, can 79!

often be unambiguously assigned to donors, and can be longitudinally collected from the 80!

same animal over time. Such samples also contain abundant information about the 81!

genetics, endocrinology, and parasite burden of the animals from which they are 82!

obtained. For these reasons, fecal samples may be the most extensively banked sample 83!

type available for wild vertebrates. 84!
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Such collections represent potentially invaluable resources for understanding 85!

interindividual variation in the gut microbiome in comparative or conservation contexts. 86!

However, sample storage methods vary widely across studies, and in most cases, samples 87!

were not collected with microbiome analyses in mind. To assess the potential for mining 88!

existing sample banks, we investigated how three common field storage methods affect 89!

gut microbiome diversity and composition estimates, compared to the gold standard of 90!

immediate freezing. We were particularly interested in comparing the roles of storage 91!

method versus individual identity. Although storage methods often explain substantial 92!

variation in microbiome composition when all other sources of variance are controlled 93!

(e.g., [2, 3], the degree to which they confound other analyses depends on their 94!

importance relative to the effects of biologically interesting variation (interindividual, 95!

temporal, and environmental). Previous studies have focused on small numbers of study 96!

subjects (n≤5), limiting their ability to evaluate this question [2-9]. 97!

Here, we compared fecal samples collected from 13 captive adult rhesus 98!

macaques (Macaca mulatta). Each fecal sample was divided into four aliquots (n=52 99!

samples; Supplementary Information, Table S1), stored via: 1) immediate freezing at -20 100!

°C; 2) immersion in absolute ethanol; 3) immersion in the preservative RNAlater; or 4) 101!

immersion in ethanol followed by lyophilization to powder (often used for steroid 102!

hormone analysis: [10]; drying protocols are also sometimes used for genetic samples: 103!

[11]). We extracted DNA from each sample, generated amplicon libraries targeting the 104!

bacterial 16s rRNA V4 region, and multiplexed these libraries for sequencing using a 105!

common 16s profiling method [12]. Following quality filtering, OTU abundances were 106!

estimated using open-reference OTU picking in QIIME [13]; Supplementary 107!
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Information). We eliminated one ethanol sample because it generated very few reads; all 108!

remaining samples were rarefied to 54,633 reads for subsequent analyses. We identified 109!

21,006 OTUs overall (mean per sample=1,656 ±237 s.d.; Table S1). 110!

The resulting data recapitulated previous observations showing storage condition 111!

effects on mean alpha diversity (e.g., [2-4, 6]. In our case, samples stored in ethanol, then 112!

lyophilized, exhibited lower Shannon’s Diversity Index (SDI) values relative to other 113!

conditions (Tukey’s HSD: p between 7.6x10-5 and 0.063), and samples stored in 114!

RNAlater exhibited somewhat higher values, although this comparison was only 115!

significant in comparison to the lyophilized condition (p=7.6x10-5; Figure 1a; Table S2). 116!

However, in spite of these differences, SDI values retained a strong signature of 117!

individual identity. Specifically, SDI values were significantly correlated across samples 118!

from the same individual across storage methods (Figure 1b). Further, although we 119!

observed several rank changes across conditions (Figure 1a), individual identity 120!

explained a larger proportion of variance in SDI across samples than storage conditions 121!

(ANOVA: 50% versus 36%). We obtained qualitatively similar but weaker results for the 122!

number of OTUs identified in each sample (Figure S1), suggesting that the combination 123!

of species richness and evenness captured by SDI is more stable than richness alone. 124!

Beta diversity measures of community similarity (Tables S3-S5) were also more 125!

influenced by individual identity than sample storage condition. 66.3% of variation in 126!

taxonomic abundance could be explained by individual identity, compared to 14.3% by 127!

storage method (PERMANOVA on a Bray-Curtis dissimilarity matrix; p<0.001 for both 128!

predictors). Bray-Curtis dissimilarities were much higher for pairs of samples collected 129!

from different individuals (mean=0.51 ±0.11 s.d. within condition; 0.56 ±0.11 s.d. 130!
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between conditions) than for samples collected from the same individual using different 131!

storage conditions (mean=0.35 ±0.11 s.d., Figure 2a; see also Figure S2). Samples from 132!

the same individual, but not storage condition, also clustered together in a hierarchical 133!

clustering analysis using either Bray-Curtis or unweighted UniFrac measures (Figure 2b; 134!

Figure S3a; no clustering, either by individual or storage condition, was observable using 135!

weighted UniFrac: Figure S3b). Most importantly, relative distances between individuals 136!

remained consistent across storage conditions. For example, pairwise correlations 137!

between Bray-Curtis dissimilarity matrices calculated separately for each condition were 138!

highly correlated (r=0.59 to 0.88, all p<0.005; Table S6), with similar patterns observed 139!

using weighted or unweighted UniFrac (Tables S7-S8).  140!

Together, our results indicate that, while mean alpha and beta diversity values are 141!

sometimes altered by storage condition, biologically relevant signatures of individual 142!

identity tend to be retained, especially for measures of beta diversity. Our findings agree 143!

with previous studies using fewer individuals [5-7, 9], and extend them to three of the 144!

most commonly used storage methods in vertebrate field studies. For many types of 145!

studies, storage condition per se may therefore be less important than maintaining 146!

consistency in storage methods within a data set. Indeed, our estimates of the effects of 147!

individual identity are probably conservative given the standardized housing, diet, and 148!

social group structure of our study subjects.  149!

Our findings thus indicate the utility of using banked fecal sample collections 150!

from field studies for analyses of gut microbiome variation. These collections are not 151!

only substantial (ranging up to tens of thousands of samples), but are also often 152!

longitudinal, complemented by extensive demographic and behavioral metadata, and 153!
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focused on species of particular conservation concern. As such, they represent 154!

extraordinary, largely untapped resources for understanding the causes, consequences, 155!

and diversity of gut microbial structure. 156!
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Figure Legends 208!

Figure 1. (a) Shannon’s Diversity Index (SDI) values (y-axis) shown as a function of 209!

storage method (x-axis), with each individual plotted in a different color. Samples 210!

collected in ethanol, then lyophilized, have significantly lower SDI values than other 211!

storage methods (Tukey's HSD p-values range from 7.6 x 10-5 to 0.063 across 212!

comparisons against lyophilized samples; Table S2).!(b) SDI values are significantly 213!

correlated within individuals, between all storage methods (Pearson’s correlation). Each 214!

dot represents an individual, and each panel shows the correlation between SDI values 215!

obtained from two different storage methods. 216!

 217!

Figure 2. (a) Bray-Curtis dissimilarity values (y-axis) comparing the same individual 218!

from samples collected under different storage conditions (red), different individuals with 219!

samples collected under the same storage conditions (blue), and different individuals with 220!

samples collected under different storage conditions (green). Median Bray-Curtis 221!

dissimilarity calculated from subsampling reads from the same sample (i.e., the minimum 222!

dissimilarity due to read resampling alone) is indicated by the gray dashed line. Because 223!

of the large number of data points, all pairwise comparisons are highly significant 224!

(Wilcoxon Rank Sum test, p<1 x 10-9). However, the dissimilarity values for same 225!

individual/different storage are much lower on average (mean=0.35 ±0.11 s.d.) than 226!

dissimilarity values measured between individuals in either the same (mean=0.51 ±0.11 227!

s.d.) or different (0.56 ±0.11 s.d.) storage conditions. (b) Bray-Curtis dissimilarities 228!

cluster more strongly by individual (colors along the left-hand sidebar, with one color per 229!
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individual) than by storage method (colors shown on the top, next to the dendrogram, and 230!

in the boxed legend).  231!

 232!
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Supplementary Information for Blekhman et al, Common methods for fecal sample storage 
in field studies yield consistent signatures of individual identity in microbiome sequencing 
data 
 
1. Supplementary Methods 

A. Study subjects and sample collection 
B. 16s rRNA sequencing 
C. Low level data processing and OTU table construction 
D. Alpha and beta diversity analyses 
E. Rarefaction analysis 

 
2. Supplementary Tables 
Supplementary Tables are provided as a single .xls file, with the following spreadsheets: 

Table S1. Sample information and summary of sequencing results 
Table S2. Differences in mean SDI across storage conditions  
Table S3. Bray-Curtis dissimilarity values between all samples 
Table S4. Unweighted UniFrac distances between all samples 
Table S5. Weighted UniFrac distances between all samples 
Table S6. Correlations between Bray-Curtis dissimilarity matrices obtained from 
different storage conditions 
Table S7. Correlations between Weighted UniFrac dissimilarity matrices obtained from 
different storage conditions 
Table S8. Correlations between Unweighted UniFrac dissimilarity matrices obtained 
from different storage conditions. 

 
3. Supplementary Figures 

Figure S1. Pairwise correlations for species richness across storage conditions 
Figure S2. Weighted and unweighted UniFrac dissimilarity values between different 
sample types 
Figure S3. Hierarchical clustering plots based on unweighted and weighted Unifrac 
dissimilarity measures 
Figure S4. Statistical robustness to rarefaction 
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A. Study subjects and sample collection 
 Study subjects were 13 adult female rhesus macaques (Macaca mulatta), members of 7 
different social groups housed at the Yerkes National Primate Research Center (YNPRC). These 
groups were formed as part of a separate study on the relationship between dominance rank and 
gene regulation. All groups were maintained in standardized indoor-outdoor housing runs (25 m 
x 25 m per run), under standardized demographic (5 adult females per group), dietary, and 
observational conditions.  
 Fecal samples were collected opportunistically, within 10-15 minutes after deposition, 
when females were briefly separated from the rest of their social groups for other purposes. Each 
sample was subdivided into four equal subsamples, with the first subsample frozen immediately 
at -20 °C; the second subsample immersed in the commercial preservative RNAlater (Life 
Technologies, Carlsbad, CA); and the third and fourth subsamples immersed in absolute ethanol. 
Samples were shipped overnight to Duke University either on dry ice (immediately frozen 
samples) or at room temperature (RNAlater and ethanol samples). At Duke, one of the ethanol-
stored subsamples was processed following standard methods used to process fecal samples for 
steroid hormone analysis in primate field studies [1]; see also 
https://amboselibaboons.nd.edu/assets/75656/altmann_lab_protocols_jan08.pdf). In brief, the 
ethanol storage medium was evaporated under a fume hood. The resulting dried sample was then 
lyophilized at -50 °C under 0.1 millibar of vacuum pressure, and then sifted through a fine mesh 
strainer to separate fecal matter from large, undigested fragments of vegetation.  
 DNA from all samples (n=52, representing 4 storage conditions for 13 individuals) was 
extracted using MO BIO’s PowerSoil DNA Isolation kit (MO BIO Laboratories, Inc., Carlsbad, 
CA). Extractions were conducted according to the manufacturer’s instructions, except that for 
lyophilized samples, extractions were obtained from 0.05 g of sample instead of 0.25 g to avoid 
complete absorption of liquid in the first steps of the DNA extraction, and subsequent extraction 
failure. 
 
B. 16s rRNA sequencing 
 Purified DNA samples were shipped to the University of Minnesota Genomics Center for 
library preparation and sequencing. DNA isolated from fecal samples was quantified by 16S 
rRNA sequencing. The V4 region of the 16S rRNA gene was PCR amplified, using forward and 
reverse primers 515F 
(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCCGCGGTAA) and 
806R 
(GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACHVGGGTWTCTAAT) 
[2], followed by amplification with indexing primers (forward: 
AATGATACGGCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTC, reverse: 
CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG, where [i5] and [i7] refer 
to the index sequence codes used by Illumina). PCR amplification with the 515F/806R primer 
pair was conducted using KAPA HiFidelity Hot Start Polymerase, under the following 
conditions: an initial denaturation step at 95 °C for 5 min, followed by 20 cycles of denaturation 
(20 s at 98 °C), annealing (15 s at 55 °C), and elongation (60 s at 72 °C). Amplified samples 
were diluted 1:100 in water, and 5 µL of the 1:100 diluted sample were used for the second PCR 
reaction with the indexing primers, using the same cycling conditions but for 10 cycles instead of 
20. Pooled and size-selected samples were denatured in NaOH, diluted to 8 pM in Illumina's 
HT1 buffer, spiked with 15% PhiX, and heat denatured at 96 °C for 2 minutes immediately prior 
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to loading on a MiSeq flowcell. We produced 300 bp paired-end sequences, with a mean of 
238,734 (±131,840 s.d.) fragments sequenced for each sample (see Table S1 for sample-specific 
information).  
 
C. Low level data processing and OTU table construction 
 Following sample demultiplexing, primer sequences were removed from the raw reads  
using CutAdapt v.1.7.1 [3]. Because CutAdapt does not always detect reverse primers effectively, 
the first 29 base pairs (theoretically the primer and linker sequences) were removed from reverse 
reads. Reads were truncated at the first base pair with a PHRED quality score ≤3, and forward 
and reverse reads were then merged using USEARCH v6.1 [4]. Read pairs that failed to merge 
were discarded. We used QIIME v1.8 to conduct further quality control filtering [5]. QIIME was 
run with default parameters except for the minimum acceptable per-base Phred score parameter, 
which we increased from 4 to 20. Putative chimeric sequences were identified using UCHIME 
(implemented in USEARCH v6.1) [6], and sequences were discarded from the sample when both 
reference-based (against the RDP Gold training database v9: [7] and de novo abundance-based 
methods flagged them as likely chimeras. Chimeric sequences constituted 0.009% of our 
sequencing reads.  
 To identify operational taxonomic units (OTUs) in our data set, we used the open-
reference OTU picking pipeline in QIIME. Specifically, the set of chimera-filtered reads was 
first clustered using the UCLUST v1.2.22 algorithm and the GreenGenes database (May 2013 
release: [8], with a 97% identity threshold. Sequences that failed to cluster against the reference 
database were then clustered de novo, with sequences that failed both clustering attempts 
discarded. A representative sequence for each cluster was selected based on the most abundant 
sequence, and then aligned using PyNAST v1.2.2 [9]. Sequences that failed to align were 
discarded. Taxonomic identity was assigned to aligned OTUs using the RDP classifier v2.2 [10], 
retrained to the May 2013 release of the GreenGenes database [8]. Singleton OTUs were 
removed from the OTU table as they tend to be enriched for sequencing errors. At this stage, we 
also removed one sample, the ethanol-stored sample for individual Ia13, due to low read count 
(629 reads following quality control filtering). 
 For all subsequent analyses, we rarefied the OTU table to 54,633 reads per sample using 
the QIIME v 1.8.0 script single_rarefaction.py. Subsampling reads from individuals with 
uniformly high coverage across storage conditions supported the stability of our summary 
statistics at this level of rarefaction (see Supplementary Methods, section E). 
 
D. Alpha and beta diversity analyses 
 We calculated alpha diversity measures (Shannon’s Diversity Index and number of 
observed OTUs as a measure of species richness) using the QIIME v 1.8.0 script 
alpha_diversity.py, and all beta diversity measures (Bray-Curtis dissimilarity, unweighted 
UniFrac, and weighted UniFrac) using the corresponding QIIME v 1.8.0 script beta_diversity.py 
[5]. To estimate the minimum beta diversity dissimilarity due to random resampling error, we 
used high sequencing depth samples for which at least five times the number of rarefied reads 
were available (273,165 reads; n = 12). We drew five random subsamples from the total quality-
filtered read count for each of these samples. We then calculated all pairwise Bray-Curtis 
dissimilarity values between subsamples from the same original sample. The median of these 
dissimilarity values is shown as the dashed line in Figure 2a (and for weighted and unweighted 
UniFrac analyses in Figure S2).  
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All statistical analyses on alpha and beta diversity values were conducted in R v 3.1.1 [11] 
using either the R base packages or, for PERMANOVA, the R package vegan [12] and the R 
package ade4 v 1.7-2 [13].  

 
E. Rarefaction analysis 

After rarefaction, we retained a read depth of 54,633 reads per sample. To test whether 
this read depth affected our ability to estimate correlations between SDI or Bray-Curtis 
dissimilarities across storage conditions, we investigated the relationship between read depth, 
SDI, and the dissimilarity values using the five individuals for whom we produced a large 
number of reads across all four storage conditions (n=20 samples for Ve12, Tf12, Pp10, Js11, 
and Jj10). For these individuals, we computed the SDI and Mantel test correlation between Bray-
Curtis dissimilarities at 10 different rarefaction levels: 98,039 reads, 54,633 reads (corresponding 
to the sequencing depth used in the main analyses), 27,326 reads, 13,658 reads, 6,829 reads, 
3,414 reads, 1,707 reads, 854 reads, 427 reads, and 213 reads. We performed a similar analysis 
for the Wilcoxon rank sum statistic comparing Bray-Curtis dissimilarities from samples taken 
from the same individual, stored in different conditions, to samples taken from different 
individuals, from the same storage condition. In all cases, estimates stabilized at sequencing 
depths lower than the one used in the main analysis (i.e., 54,633 reads), suggesting that our 
analyses are not influenced by coverage concerns (Figure S4).  
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Figure S1. Pairwise correlations for species richness across storage conditions. Correlation 
within individual, between storage methods, for the number of OTUs detected in each sample 
(Pearson’s correlation). Each dot represents an individual, and each panel shows the correlation 
between values in two different storage methods. 
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Figure S2. Weighted and unweighted UniFrac dissimilarity values between different 
sample types. (A) Weighted UniFrac dissimilarities comparing the same individual from 
samples collected under different storage conditions (red), different individuals with samples 
collected under the same storage conditions (blue), and different individuals with samples 
collected under different storage conditions (green). (B) As in A, but for unweighted UniFrac 
dissimilarities. In both A and B, the grey dashed line indicates the median dissimilarity value 
calculated from subsampling reads from the same sample (i.e., the minimum dissimilarity due to 
read resampling alone). 
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Figure S3. Hierarchical clustering plots based on unweighted and weighted UniFrac 
dissimilarity measures. Like Bray-Curtis dissimilarities (main text, Figure 2), (A) unweighted 
UniFrac dissimilarities cluster more strongly by individual (colors along the lefthand sidebar, 
with one color per individual) than by storage method (colors shown on the top). (B) Weighted 
UniFrac similarities show no clear clustering by individual or storage method. 
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Figure S4. Statistical robustness to rarefaction. We used samples from 5 individuals with high 
coverage across all four storage conditions to test whether the rarefied sequencing coverage used 
in our main analysis (gray dashed line) was sufficient to produce stable estimates of (i) SDI 
correlations across storage condition (top panel); (ii) Mantel test correlations of Bray-Curtis 
dissimilarity values across storage conditions (middle panel); and (iii) Wilcoxon test statistics for 
the difference in mean pairwise Bray-Curtis dissimilarity values when comparing samples from 
the same individual stored in different conditions to samples from different individuals stored in 
the same condition (bottom panel). In all three cases, test statistics stabilize by a depth of 20,000-
30,000 rarefied reads, lower than the read depth used in our actual analyses.  
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