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Abstract 

Joint analysis of data from multiple studies in collaborative efforts strengthens scientific 

evidence, with the gold standard approach being the pooling of individual participant data 

(IPD). However, sharing IPD often has legal, ethical, and logistic constraints for sensitive or 

high-dimensional data, such as in clinical trials, observational studies, and large-scale omics 

studies. Therefore, meta-analysis of study-level effect estimates is routinely done, but this 

compromises on statistical power, accuracy, and flexibility. Here we propose a novel meta-

analytical approach, named partial derivatives meta-analysis, that is mathematically 

equivalent to using IPD, yet only requires the sharing of aggregate data. It not only yields 

identical results as pooled IPD analyses, but also allows post-hoc adjustments for covariates 

and stratification without the need for site-specific re-analysis. Thus, in case that IPD cannot 

be shared, partial derivatives meta-analysis still produces gold standard results, which can 

be used to better inform guidelines and policies on clinical practice. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 7, 2016. ; https://doi.org/10.1101/038893doi: bioRxiv preprint 

https://doi.org/10.1101/038893


Page 5 of 26 

 

Introduction 

Science is an increasingly collaborative effort. The benefits of jointly investigating research 

questions, such as improved power to detect effects and generalizability of results,1-3 have 

been known for long, but the recent technology-driven emergence of high-dimensional 

datasets, e.g. in the fields of genetics and imaging, has further underlined the need for 

collaboration.4 The limited capacity of single studies to collect these data in sufficient 

numbers has resulted in the formation of numerous large consortia.5-7  

Generally, joint analyses are performed by either pooling individual participant data (IPD) 

from multiple studies or by meta-analysing aggregate data that are derived from study-

specific analyses. In pooled analyses, raw participant data are shared to produce combined 

datasets that are then analysed as a single study. In conventional aggregate data meta-

analysis, only the study-specific effect estimates are provided or extracted from literature 

and these estimates are averaged to approximate the overall effect for all the studies 

combined. Although pooled analyses provide the highest power and accuracy,4, 8, 9 several 

barriers exist to sharing IPD, including when local legislation prevents the release of 

collected data, when the process of sharing data presents logistic problems due to its size, 

or when the data, despite being anonymized, can lead to the identification of individuals and 

reveal sensitive medical information.10 Even though the research community as well as 

funding agencies put considerable pressure on investigators to make datasets publicly 

available, in these conditions, IPD cannot be pooled for joint analysis. 

Here we propose a novel meta-analytical approach, partial derivatives meta-analysis, which 

1) provides the statistical and analytical benefits of pooled analyses for linear regression 

models, 2) uses aggregate data that cannot be traced back to individual participant data, and 

3) is easily applicable in current research settings. We use examples from clinical trials, 

observational studies, and high-dimensional omics to illustrate the broad relevance of this 

approach. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 7, 2016. ; https://doi.org/10.1101/038893doi: bioRxiv preprint 

https://doi.org/10.1101/038893


Page 6 of 26 

 

Methods 

Regression analysis 

Regression models estimate the effects of predictor variables on the outcome variable by 

determining the combination of effect estimates that correspond best to the data at hand. 

When performing a regression analysis, the IPD is converted into several intermediate 

statistics before arriving at the eventual results, i.e. the effect estimates (Figure 1). First, 

residual error terms are calculated for each individual. This error represents the difference 

between the actual outcome variable and its value predicted by the model. Second, the error 

terms are consolidated into a set of partial derivatives equations, which are the sum of all 

individual terms. Third, the partial derivatives equations are set to zero and solved, to find 

the best combination of effect estimates that minimize the error, i.e. give a predicted value 

as close to the actual outcome variable. The “fitting of the model” refers to this final step.  

Partial derivatives meta-analysis 

Although the partial derivatives are only intermediate statistics for calculating effect 

estimates, they have great potential for joint analyses, in particular with linear regression. In 

linear regression, partial derivatives are calculated by multiplying every variable with all the 

others, resulting in one value for every pair of variables. This is done separately for each 

participant in the analysis and these participant-specific values are subsequently summed 

together to obtain the partial derivatives (Figure 2A). The process of summation can be split 

for different groups of participants and combined afterwards, without compromising the end 

result. Extending from this concept, partial derivatives could be calculated separately for a 

group of participants (i.e., within different studies) and summed together at the meta-

analytical stage—a strategy we term partial derivatives meta-analysis (Figure 2B; details in 

the Supplementary Material). Using these summed partial derivatives it is then possible to 

fit a (meta-analysed) model, which yields effect estimates that are mathematically identical to 

those from pooled analyses, without the sharing of IPD. Additionally, this approach allows for 

post-hoc changes in the covariate adjustments (e.g., removing the variable “age” from the 
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model) and stratified analyses (e.g., studying men and women separately) without site-

specific re-analyses. 

Results 

In this section, we show how partial derivatives meta-analysis can be applied in current 

research settings and compare this to the conventional methods, namely the sharing of IPD 

(gold standard) and the sharing of effect estimates. To illustrate the broad applicability of this 

approach, we use examples from clinical trials, observational studies, and omics studies. 

Descriptive statistics  

Papers describing investigations in humans generally start with a table containing the 

(baseline) characteristics of the study population. Using IPD, it is easy to generate these 

descriptive statistics, but this is not possible using the aggregated effect estimates. Instead, 

all contributing sites need to calculate their descriptive statistics locally, leading to a potential 

source of errors (e.g., using different individuals than for the main analysis).  

The partial derivatives are a set of values, the exact number of which depends on the 

number of predictor variables in the chosen model (see Supplementary Material), and 

would for example equal 14 values when modelling 4 predictors. Interestingly, some of these 

values can be used to determine descriptive statistics, such as the sample size, but also the 

means and standard deviations of any of the variables, including the outcome. This therefore 

obviates the need for sites to provide these descriptive statistics separately. 

Full statistical power: example using omics data 

Statistical power to detect associations is important for all studies, but its relevance is 

perhaps most apparent for large-scale omics studies such as genome-wide association 

studies. Here, strict multiple testing correction for millions of tests and the small effect sizes 

of genetic variants make it difficult to identify true associations, and this has necessitated 

collaborative efforts. Pooling IPD is the gold standard and yields the greatest power, 

although conventional meta-analysis of effect estimates can provide similar results in 

specific cases.11, 12 However, when some sites cannot share their IPD, this leads to a smaller 
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sample size than would be obtained using conventional meta-analysis, and this is even more 

detrimental to the statistical power. In comparison, partial derivatives meta-analysis has the 

potential to overcome both limitations.  

First, using simulated data, we show that the effect estimates of partial derivatives meta-

analysis are identical to those from a pooled IPD analysis, while this is not the case for 

conventional meta-analysis (Figure 3A). Additionally, partial derivatives meta-analysis 

increasingly outperformed conventional meta-analysis when, for a fixed total sample size, 

the number of studies were increased (i.e., the size of individual studies was smaller) 

(Figure 3B). For conventional meta-analysis, small sample sizes or complex models results 

in unstable (and eventually unobtainable) effect estimates within each site, which generally 

leads to the exclusion of these sites. Besides the statistical loss of power, this selection 

forms an epidemiological problem in the light of the biases associated with leaving out 

particular studies. In contrast, partial derivatives meta-analysis does not require a minimum 

number of participants and could theoretically even be performed on a single individual, 

although in this case the participant data would of course be identifiable. 

Second, using real data of 14,643 participants from 19 cohort studies from the HD-READY 

consortium (see Supplementary Material), we show that the anonymised nature of partial 

derivatives can overcome the data sharing obstacles related to IPD. Of the 19 participating 

studies, only 4 were able to share IPD with investigators from the meta-analytical site, 

resulting in a pooled IPD analysis of 5,611 individuals, less than 40% of the total sample 

(Table 1). In contrast, all studies were able to contribute partial derivatives. Studies sharing 

IPD did not need to perform any on-site analyses. For studies running partial derivatives 

(which were all studies), all site-specific data could be generated through a single analysis. 

Studies sharing effect estimates needed to perform additional analyses for every model, thus 

increasing the analytical burden. 

Third, using the data from these 19 studies, we compared the different meta-analytical 

methods to investigate the association between an established genetic risk variant 

(rs9939609, FTO/IRX3 locus) and body mass index (Figure 4). Conventional meta-analysis 
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of effect estimates showed a genome-wide significant association (ß = 0.34, P = 2.19 x 10-

11). Next, we confirmed that partial derivatives meta-analysis indeed yields identical results 

as pooled analyses in the subset of participating cohorts that were able to share their IPD. 

We then used the partial derivatives to calculate the effect estimates under various 

scenarios of pooled analyses. Naïve pooling of samples, which assumes a completely 

homogeneous population, resulted in biased estimates (ß = 0.47, P = 4.94 x 10-18), whereas 

controlling for study site using an intercept for each cohort resolved this issue (ß = 0.34, P = 

4.95 x 10-11). Modelling cohort-specific effects for all the covariates in the model (intercept, 

age, and sex) provided a slightly larger effect estimate that was more significant than 

conventional meta-analysis (ß = 0.35, P = 5.17 x 10-12). At first sight, this improvement over 

the conventional meta-analysis is modest. However, large-scale omics studies routinely 

involve millions of analyses, and the increase in power for such investigations will thus be 

cumulative.  

Post-hoc adjustment of the model: example using observational data 

Although the increase in power of partial derivatives meta-analysis is advantageous, the 

increased flexibility of the method is particularly appealing. Similar to an IPD analysis, partial 

derivatives meta-analysis allows for adjustments of statistical models without the need for 

each contributing study to reanalyse its data and share new results. All predictors of interest, 

including those to be added or removed in a later stage, can simply be included when 

generating the partial derivatives; when fitting the model on the meta-analytical level, the 

decision can be made about what specific predictors to include. For conventional meta-

analysis, post-hoc adjustments are not possible, as this would require re-analyses from each 

site. We illustrate this application using data from three observational cohorts (total N = 

5,431), where the aim of the study is to understand how body height relates to general 

cognitive function. 

In this study, we defined general cognitive function as the common variance between 

multiple cognitive tests, as previously described.13 The pooled age- and sex-adjusted 

analysis showed a strong association between body height and cognitive function (ß = 
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0.016, P = 3.03 x 10-15). However, given that body height is an indicator of educational 

attainment and this in turn is related to cognitive function, it remains unclear whether this 

association is independent of education. With the partial derivatives, education can be added 

to the model at the meta-analytical level to test this and thereby provide more information for 

correct inference of the results. Adjustment for education resulted in an attenuated, but still 

significant, effect estimate of height (ß = 0.010, P = 9.78 x 10-8).  

Naively pooling IPD from all cohorts together does not sufficiently account for any underlying 

heterogeneity that may exist between the cohorts.14, 15 For example, the education variable 

was not on the same scale for all three cohorts due to the use of a different questionnaire, 

and it might not be appropriate to treat them the same. Conventional meta-analysis, on the 

other hand, assumes complete heterogeneity among the cohorts for all variables in the 

model. However, using partial derivatives, these assumptions can be formally tested and 

modelled on the meta-analytical stage. It is possible to determine the study-specific effects 

for all variables, and also determine whether some studies cluster together. In our example, 

we found that the effects of education were indeed significantly different between the 

cohorts, whereas the intercept did not differ between two of the cohorts, which were 

demographically similar. 

Stratified analyses: example using clinical trial data 

Another application of partial derivatives is the possibility to perform stratified analyses. For a 

comparative clinical trial, stratification in the form of subgroup analyses provides means of 

investigating whether certain patient groups are likely to respond differently to a treatment. 

Consider randomized, clinical trials that aim to determine the efficacy of a novel blood 

pressure lowering medication. If the treatment is found to be successful, it might be 

interesting to see if the benefit is the same for men and women. In case of a negative trial, it 

could be informative to find that persons with kidney disease do not tolerate the treatment, 

whereas there is a beneficial effects in those without. If the subgroups are pre-specified, the 

partial derivatives will contain the necessary information to perform these joint analyses of 

the clinical trials without exchanging the IPD. 
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Discussion 

We show that sharing of partial derivatives among studies is sufficient to calculate meta-

analysed effect estimates for linear regression models that are mathematically equivalent to 

a pooled analysis, the gold standard, without the need to share IPD. Partial derivatives meta-

analysis outperforms conventional meta-analysis, in particular for complex models and with 

an increasing number of (smaller) studies. Furthermore, partial derivative meta-analysis has 

additional advantages over conventional meta-analysis, including the ability to perform post-

hoc adjustments of the model and detailed subgroup analyses, as well as the possibility to 

include small studies in a meta-analysis that would otherwise have been excluded. For the 

specific case of high-dimensional data, sharing of partial derivatives is in fact more efficient 

than sharing IPD given the size of the data.  

Thus, the partial derivatives are in fact ‘pluripotent’ since not only IPD effect estimates can 

be calculated, but also those from conventional meta-analysis. Additionally, this approach 

enables the examination of each of the predictors separately and for different combinations 

of studies that might cluster together. Therefore, in cases where naïve pooling of IPD might 

not be appropriate, a different analytic approach will be possible using the same partial 

derivatives. The increased flexibility of sharing partial derivatives also requires increased 

caution. Just as with sharing of IPD and effect estimates, the partial derivatives can be used 

for analyses other than those of the primary research question. Subgroup analyses in clinical 

trials require rigorous reporting,16, 17 and we suggest to follow these standards to prevent 

secondary hypothesis testing not considered in the primary analysis plan. 

A main focus when developing this method was its ease of use for other researchers. To 

promote the dissemination of partial derivatives meta-analysis, we provide examples for 

calculating the partial derivatives with commonly used statistical software (R, SPSS, Excel, 

SAS, and STATA). Additionally, we have implemented partial derivatives meta-analysis in 

HASE, a software package for genome-wide association studies.18  
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Here we described a meta-analytical approach for continuous outcomes using linear 

regression analysis, but additional work is needed for applying this approach to binary 

outcomes and time-to-event data. The usual method for parameter estimation in generalized 

linear models and proportional hazards models is through multiple rounds of individual-level 

calculations to find the maximum likelihood numerically; a non-iterative approach would 

therefore be more feasible to reduce demands on contributing studies. Other proposed 

solutions for pooling of individual-level data include projects such as BioSHaRE and 

DataSHIELD.17, 19, 20 In these projects, for each analysis, summary statistics are continuously 

exchanged between servers of different sites until an adequate model is fit. Although this is 

promising from a methodological perspective, it does require rigorous data harmonization 

and subsequent linking of the data to external servers using dedicated software packages. 

The high level of collaboration needed between the studies and the time-investment for 

preparation of the data could potentially explain the limited implementation by other 

researchers.  

Also, using DataSHIELD or conventional aggregate data, published results cannot be re-

used for calculating effect estimates identical to IPD meta-analysis. With partial derivatives 

meta-analysis however, the partial derivatives can be provided and, with new studies, added 

to get new estimates. We therefore propose publishing of partial derivatives in addition to the 

conventional effect estimates, while retaining IPD within host institutions of participating 

studies when this cannot be made available too. 

Interestingly, many of the partial derivatives values correspond to descriptive statistics 

already being published on a frequent basis (e.g. sample size, mean age, number of 

women), along with the effect estimates for the variables of interest. This raises the intriguing 

possibility of using published results to recalculate the partial derivatives and subsequently 

perform a pooled analysis. Not all values of the partial derivatives are available, however, so 

some assumptions would need to be made about the correlation between variables (e.g., by 

using data from an available sample). This possibility is especially interesting for published 
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data for which it is not feasible to request re-analysis, e.g. when investigators are not 

reachable or they do not wish to participate. 

Another potentially useful avenue is for computationally intensive analyses that are common 

in the omics field, such as genome-wide association studies. Partial derivatives meta-

analysis only requires a “partial” regression to be performed within each site, since the 

partial derivatives are needed for sharing, but it is not necessary to subsequently calculate 

the effect estimates. The fitting of the model will be done only once, after combining all the 

partial derivatives from the contributing sites, thereby shifting part of the computational 

burden to the stage of the meta-analysis. Also, it is possible to use the same partial 

derivatives to perform exploratory analyses, for instance additional adjustments for potential 

confounders, which are particularly time-consuming for large-scale omics studies, and 

therefore are often not performed. However, since these exploratory analyses can be 

instrumental for the correct causal inference of findings, the use of partial derivatives meta-

analysis could facilitate the completion of scientific efforts and potentially accelerate scientific 

discoveries. Furthermore, in addition to the usual difficulties accompanying the exchange of 

IPD, the sharing of aggregate data actually outperforms the sharing of IPD with respect to 

the time needed for transferring the files,21 making this approach more efficient and perhaps 

less costly. 

Ultimately, sharing IPD is still superior with respect to flexibility and insight into data. 

However, until such sharing is adopted by the scientific community as a whole, partial 

derivatives meta-analysis could provide a way forward while using only aggregate data.  
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Figure legends 

Figure 1: Four stages of data in linear regression analysis and their meta-analytical 

properties when shared.  

Schematic overview of four stages when performing a linear regression analysis for a study 

with n participants, where systolic blood pressure (SBP) is modelled using predictors age, 

sex, and a novel drug of interest. Starting with the individual participant data, the residual 

error terms are calculated for each individual separately. Subsequently, the partial 

derivatives are generated by adding up the residual error terms of all individuals. Finally, 

simultaneously solving the partial derivatives gives the effect estimates for each of the 

predictors and the intercept per study.  

When sharing the individual participant data, residual error terms, or partial derivatives, it is 

possible to calculate meta-analysed effect estimates without the loss of power. Only by 

exchanging the partial derivatives or effect estimates, however, is the shared information not 

identifiable to a participant level. 
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Figure 2: Strategy for performing a partial derivatives meta-analysis. 

Overview of calculation for a linear regression analysis for a meta-analysis of s studies, 

where systolic blood pressure (SBP) is modelled using predictors age, sex, and a novel drug 

of interest. For each of n participants in the first study, partial derivatives are calculated by 

multiplying the value of every variable with the value of all the others, resulting in a single 

value for every pair of variables (panel A, left side). The participant-specific values are 

subsequently summed together to obtain the partial derivatives of the whole first study 

(panel A, right side). Analogous to this, the partial derivatives can be calculated for each 

study separately (panel B, left side) and combined at the meta-analytical stage (panel B, 

right side). The resulting partial derivatives are mathematically equivalent to those that would 

have been obtained if all individual participant data was available and therefore provide 

identical results. 
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Figure 3: Correlation of effect estimates from conventional and partial derivatives 

meta-analysis with effect estimates from a pooled analysis. 

Panel A show a scatter plot of beta coefficients obtained from inverse-variance meta-

analysis of effect estimates and pooled analysis (royal blue) and from partial derivatives 

meta-analysis and pooled analysis (firebrick red). Results were obtained from simulation with 

the following parameters: number of studies = 2, total sample size = 500, beta coefficient of 

predictor = -7.20, number of simulations = 10,000. 

Panel B shows correlation coefficients of beta coefficients between inverse-variance meta-

analysis of effect estimates and a pooled analysis (royal blue) and between partial 

derivatives meta-analysis and a pooled analysis (firebrick red), with a varying number of 

studies and study size. Simulation parameters were as follows: total sample size = 500, 

number of studies = 1 to 50, number of simulations = 10,000. 

All simulations were performed in R (version 3.0.1) 
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Figure 4: Forest plot for the association of rs9939609 with body mass index. 

Forest plots showing beta coefficients and 95% confidence intervals of individual cohorts as 

well as four different joint analyses, all obtained from the partial derivatives: Inverse-variance 

based meta-analysis of effect estimates, pooling without additional adjustments (“Naïve”), 

pooling with adjustment for cohort (“Intercept”), and pooling with adjustment for cohort and 

other cohort-specific covariates (“Full”).
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Tables 

Table 1. Comparison of sharing conventional data and partial derivatives with respect 

to study site participation and analytical possibilities for a proof-of-principle study. 

Characteristic IPD Partial derivatives Effect estimates 

Study characteristics 

   

Number of studies agreed to participate 7
§
 19 19 

Number of participants 5,611 14,643 14,643 

Country of origin    

     Netherlands 5 5 5 

     United Kingdom 0 1 1 

     Germany 0 2 2 

     France 0 1 1 

     Austria 1 1 1 

     Iceland 0 1 1 

     Singapore 1 1 1 

     United States 0 7 7 

    

Data sharing and analysis    

Sharing of non-identifiable data No Yes Yes 

Individual-level effect estimates Yes Yes No 

Stratified analyses Yes Yes No 

Post-hoc model adjustments Yes Yes No 

Number of required analyses per site
†
 0 1 21 

 

† Calculated as number of analyses required for seven different models, for the complete sample as 

well stratified for sex.  

§ These are the meta-analysis sites (Rotterdam Study 1-3), ASPS-Fam, EDIS, LLS, and PROSPER.
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Figures 

Figure 1: Four stages of data in linear regression analysis and their meta-analytical properties when shared.    

a*βint + b*βage + c*βsex + d*βdrug = k  βint = … 

b*βint + e*βage + f*βsex + g*βdrug = l  βage = … 

c*βint + f*βage + h*βsex + i*βdrug = m  βsex = … 

d*βint + g*βage + i*βsex + j*βdrug = n  βdrug = … 

 

SBP Age Sex Drug   

130 56 1 1  (130 - (βint + 56*βage + 1*βsex + 1*βdrug))
2
 

     + 

149 60 0 1  (149 - (βint + 60*βage + 0*βsex + 1*βdrug))
2
 

     + 

… … … …  … 

     + 

121 48 1 0  (121 - (βint + 48*βage + 1*βsex + 0*βdrug))
2
 

      

 Individual participant data 

Identifiable 

Full power 

Residual error terms  

Identifiable 

Full power 

Partial derivatives  

Non-identifiable 

Full power 

Effect estimates  

Non-identifiable 

Loss of power 

1 

2 

n 
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Figure 2: Strategy for performing a partial derivatives meta-analysis. 

 

 

 

 

 

 

 

 

 

 

B 

SBP x Age a1 + a2 + … + as  ameta-analysis  
         (a1+ a2+…+as)  

SBP x Sex b1 + b2 + … + bs  bmeta-analysis  
         (b1+ b2+…+bs)  
… … + … + … + …  …  
           

Sex x Drug n1 + n2 + … + ns  nmeta-analysis  
         (n1+ n2+…+ns)  

 

Study 1 Study s Study 2 Meta-analysis 

Study-specific partial derivatives Meta-analysis 

A 

SBP x Age 7280 + 8940 + … + 5808  a1  
 (130*56)  (149*60)    (121*48)  (7280+8940+…+5808)  

SBP x Sex 130 + 0 + … + 121  b1  
 (130*1)  (149*0)    (121*1)  (130+0+…+121)  
… … + … + … + …  …  
           

Sex x Drug 1 + 0 + … + 0  n1  
 (1*1)  (0*1)    (1*0)  (1+0+…+0)  

 

1 2 n Study 1 

Participant-specific partial derivatives Study 
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Figure 3: Correlation of beta coefficients calculated using inverse-variance and partial derivatives meta-analysis with a pooled analysis 

under varying study number and size. 

 

  

A B 
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Figure 4: Forest plot for the association of rs9939609 with body mass index.  
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