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ABSTRACT 

Natural packed tissues are assembled as tessellations of polygonal cells that 

do not leave empty spaces between them. They include the epithelial sheets 

and the skeletal muscles. Epithelia are formed by equivalent cells that change 

shape and organization through development. The skeletal muscles appear 

as a mosaic composed by two different types of cells: the “slow” and “fast” 

fibres that are determined by the identities of the motor neurons that innervate 

them. Their relative distribution is important for the muscle function and can 

be altered in some neuromuscular diseases. Little is known about how the 

spatial organization of fast and slow fibres is established and maintained. In 

this work we use computerized image analysis and mathematical concepts to 

capture the organizational pattern in two different healthy muscles: biceps 

brachii and quadriceps. Here we show that each type of muscle portrays a 

characteristic topological pattern that allows distinguishing between them. The 

biceps brachii muscle presents a particular arrange based on the different 

size of slow and fast fibres, contrary to the quadriceps muscle where an 

unbiased distribution exists. Our results indicate that the relative size of each 

cellular type imposes an intrinsic organization into the tissue. These findings 

establish a new framework for the analysis of packed tissues where two or 

more cell types exist. 
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INTRODUCTION 

The organization of the cells in the tissue is perfectly controlled to drive 

major shape changes during morphogenesis. All these events lead to the final 

arrangement of cells what it is closely related to organ function. Packed 

tissues have been used as a model to understand the key processes on the 

establishment of the function of an organ (Chichilnisky, 1986; Classen et al., 

2005; Gibson et al., 2006; Hayashi and Carthew, 2004; Honda, 1978; Korn 

and Spalding, 1973; Lewis, 1928; Pilot and Lecuit, 2005; Rivier et al., 1995). 

Most of these works have been based in the idea that the apical regions of the 

epithelial cells were polygons and the epithelial organization was analyzed 

using the distribution of sides of their cells. Skeletal muscles are also packed 

tissues composed by closely arranged fibres separated by a fine layer of 

conjunctive tissue (the endomisium) (Helliwell, 1999). A muscle biopsy section 

appears as a mosaic of fibres that also organize as polygons in a tessellation 

(leaving no empty space between them). Therefore they also can be analyzed 

in terms of organization as epithelial tissues (Sáez et al., 2013b; Sanchez-

Gutierrez et al., 2016). 

We have recently introduced network theory and Centroidal Voronoi 

tessellations (CVT) to the study of packed tissue organization (Escudero et 

al., 2011; Sanchez-Gutierrez et al., 2016). In these reports, mathematical 

concepts were used to objectively quantify the organization of natural packed 

tissues such epithelia or muscles. The comparison with the CVT added a new 

insight since it was possible to infer some biophysical properties from the 

packed tissues that were also supported by computer simulations. Packed 

tissues obey several laws that related area and organization. These includes 

the Euler´s Theorem that estates that the average number of neighbours of a 

cell will be close to six; the Lewis’ law that linearly relates the average area of 

a cell with its number of sides (so, small cells tend to have less sides, and big 

cells tend to have higher number of sides); and the Aboav-Weaire law that 

establish an inverse relationship between the average number of sides of a 

cell and the average number of sides of their neighbours (Aboav, 1970; Chiu, 

1995; Gervois et al., 1992; Hilhorst, 2006; Lewis, 1928; Rivier et al., 1995; 

Weaire, 1974). In addition, it was shown that there is a physical constrain 
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affecting natural packed tissues that restrict them to certain organizations. 

These arrangements are similar to the polygons distributions that present the 

CVT.  

All the previous studies investigating tissue organization have considered 

tissues formed by cells with the same properties and capabilities: equivalent 

entities that could transiently vary the properties depending of the cell cycle 

stage or changes in the cytoskeleton (Aegerter-Wilmsen et al., 2012; 

Farhadifar et al., 2007; Levayer and Lecuit, 2013; Mao et al., 2013; Sanchez-

Gutierrez et al., 2016; Zallen and Zallen, 2004). Here we analyze the 

organization of skeletal muscle tissues considering the distribution of 

myofibres into fast and slow twitch type (Pette and Staron, 2000) which are 

determined by the specific myosin protein expressed in each fibre. This 

establishes a mosaic or "checked" pattern that is a characteristic feature of 

skeletal muscle. Although some muscles have a higher proportion of one of 

these types of fibres, most of them would be almost indistinguishable one 

from another based on the proportions of the type of fibres. 

The neuromuscular system is constituted by the muscle-controlling 

neurons in the spinal cord, the peripheral motor neurons, the neuromuscular 

junctions and the muscles themselves. Neuromuscular diseases are a large 

group of pathologies produced by the affection of one or more of these 

components, with very heterogeneous etiology and course. The evaluation of 

the changes in the morphological characteristics of a given biopsy with 

respect the normal muscle is one of the main features for the diagnostic of a 

neuromuscular disorder (Clarke and North, 2003; Dubowitz, 1974; Dubowitz 

and Sewry, 2007; Na et al., 2006). Morphological pathogenic features to 

evaluate in a muscle biopsy include alterations of fibre size, nuclei position, 

and amount of connective tissue or necrotic fibres. Changes of the distribution 

pattern of slow and fast fibres can also be detected, being a typical feature of 

the neurogenic disorders such neuropathies or amyotrophic lateral sclerosis 

(Dubowitz and Sewry, 2007; Sáez et al., 2013b). In addition, switch from fast 

to slow twitch type fibre and predominance of one fibre type, or even 

uniformity of fibre types, are detected in some types of myopathies (De Palma 

et al., 2006).  
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Since the way the skeletal muscle degenerates under pathogenic 

conditions is critical to determine the cause of many neuromuscular disorders, 

the accurate definition of the features in normal muscles is also essential to 

better identify the disease. Considering that most of muscle biopsies are 

taken from biceps brachii and deltoids muscles in upper limbs, and 

quadriceps, tibialis anterior and gastrocnemius in lower limbs these are the 

muscles that should be described under normal conditions from a clinical 

perspective. To analyse the structural and organizational pattern of skeletal 

muscles, a high amount of samples is mandatory (Escudero et al., 2011; Sáez 

et al., 2013a; Sáez et al., 2013b). Therefore, we selected biceps brachii and 

quadriceps muscles because the amount of available normal samples and the 

morphological similarity between them regarding distribution of the type of 

fibre.  

In this work we integrate geometric and topological data to capture an 

organizational signature in packed tissues with two different cellular types. 

Our results indicate that biceps brachii and quadriceps can be distinguished 

based the pattern of slow and fast cells. We demonstrate that the mosaic 

these two cell types defines a differential organization for skeletal muscles.  
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RESULTS 

Computerized analysis of biceps brachii and quadriceps biopsy images 

We have compared biceps brachii (BA) and quadriceps (QA) muscles from 

control male adult individuals in terms of morphological characteristics of their 

fibres. Thin sections of biopsies were analyzed using immunohistochemical 

staining. We combined anti-collagen VI antibody that provides the outline of 

the muscle fibres (and enables the quantification of the amount of collagen in 

the tissue) and, anti-myosin slow (type I) or anti-myosin fast (type II) specific 

antibodies that allow the identification of fibre type (Fig. 1). In the case of BA, 

18 biopsies were analyzed, obtaining 34 micrographs and 90 Region Of 

Interest (ROI) (Fig. 1 A-C and Table S1). 6 QA biopsies were used to obtain 

9 micrographs and 25 ROI (Fig. 1 D-F and Table S1). The human visual 

analysis of the different ROI makes very difficult to extract patterns that could 

differentiate both types of muscles (Fig. 1). We used a computerized 

approach aiming to capture a characteristic signature form each one of them. 

First, the images were segmented to identify the outline of the fibres and the 

content of collagen (Sáez et al., 2013a; Sáez et al., 2013b). Then the values 

for a series of 14 geometrical characteristics (14 first features in Table 1) and 

the proportion of slow cells (feature 69 in Table 1) were calculated. In each 

type of muscle, samples were very heterogeneous and presented a wide 

range of values for each characteristic. We started examining some of these 

geometric characteristics and comparing their averages values between both 

types of muscles (Table S2). BA fibres were approximately 33% bigger than 

QA in average. Both BA and QA presented a lower proportion of slow fibres 

(around the 31% and 25% respectively) that fast fibres. Interestingly, in the 

case of QA, the average area of fast and slow fibres was virtually the same; 

meanwhile in the case of BA the average size was bigger in the fast fibres 

compared with the slow fibres (Table S2).  

Biceps brachii and Quadriceps present different organization of fibres 

We compared the organization of BA and QA samples using a network 

approach that evaluates topological characteristics aiming to identify small 

organizational differences between similar images (Sáez et al., 2013b; 
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Sanchez-Gutierrez et al., 2013). The method is based in the consideration of 

the tissue as a network of cell to cell contacts (Escudero et al., 2011). Under 

this premise, we extracted the values for 54 “network” characteristics 

(features 15-68 in Table 1) besides the 14 geometric features and the 

proportion of slow cells. In this way, we obtained a vector of 69 features for 

each muscle ROI. Due to the large difference in the number of ROIs (90 BA 

vs. 25 QA) we designed a protocol to use the whole data and at the same 

time be able to obtain comparable results. The protocol consisted in 

performing 1,000 combinations of ROIs. Each combination was done using 25 

images of each group. To obtain a baseline for our evaluation system, we first 

performed 1,000 comparisons using only BA images: Two groups of 25 BA 

images were chosen randomly from the total 90 each time. Each comparison 

was used to perform a feature selection step that chose the most relevant 

characteristics from the total of features assayed. The selected features were 

used to perform a Principal Component Analysis (PCA) and obtain a value for 

the “PCA descriptor” that quantified the degree of separation between both 

groups of images (Sanchez-Gutierrez et al., 2013) and Materials and 

Methods). The values of the PCA descriptor ranged from 0.08 to 0.88, and 

presented a median value of 0.23 (Fig. 2A). We then performed other 1,000 

randomizations: in each one, 25 images from the 90 BA were selected and 

compared with the 25 QA images. In this case the values of the PCA 

descriptor ranged from 0.49 to 2.79, with a median value of 1.09 (Fig. 2B). 

Comparing the PCA graphs corresponding to the median and best values, the 

separation was largely improved in the case of BA-QA with respect BA-BA 

(Fig. 2B and Fig. 2A). We also observed that the BA-QA values were lower 

when using only the 15 geometric characteristics (ranging from 0.25 to 2.25, 

with a median value of 0.76, (Fig. 2C), indicating the importance of the 

network characteristics to improve the separation. 

 

 

 

Similar muscles differ in the organization of fast and slow fibres  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 12, 2016. ; https://doi.org/10.1101/038968doi: bioRxiv preprint 

https://doi.org/10.1101/038968
http://creativecommons.org/licenses/by-nc-nd/4.0/


We examined the features that were relevant to separate BA and QA 

samples trying to understand the biological differences between these two 

similar muscles. Each feature selection step selects a maximum of 7 features 

per comparison. We calculated the rate of appearance of each feature in each 

one of the 1,000 comparisons performed in each case. In our baseline assay, 

the 1,000 BA-BA comparisons, we did not find clear predominant 

characteristics being the maximum frequency a 20.6% of the randomizations 

(Table 2, features above the 15% of frequency). We compared these results 

with the BA-QA assay. In this case there was a clear predominance of some 

characteristics over others (Table 2, features above the 25% of frequency). 

This indicated that different combinations of BA images could be separated 

from QA images using the same features. In short, these results suggest the 

existence of some general differences between BA and QA. The most 

frequent characteristics appearing in the BA-QA comparisons were mainly 

related to the geometry or organization of the types of fibres (the nine most 

frequent features in Table S3). In particular, the “standard deviation of the 

area of the slow cells” and the “number of slow neighbours of fast cells” were 

the two more relevant features. This suggested that the difference between 

BA and QA could stem on the distribution of fast and slow fibres. To test this 

idea, we repeated the 1,000 BA-QA comparisons using only the 35 

characteristics that were specifically related to fast and slow fibres. The 

distribution of values for the PCA descriptor was still high (ranging from 0.35 

to 2.77, with a median value of 0.94, Fig. 2D). We also observed the 

predominance of the same type of features than in the experiment with 69 

characteristics (Table S3).  

Importance of the proportion of fast and slow cells on the muscle 

organization 

We have shown that BA and QA present different average proportions of 

fast and slow fibres (Table S2). This influence the values of the network 

characteristics related to the slow and fast fibres. We tried to evaluate the 

importance of these proportion differences in the muscle organization. To do 

that, we selected two groups of 25 BA images with very different percentage 

of slow fibres. Using 69 characteristics for the comparison the PCA graph 
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showed two clearly separated groups, and the PCA descriptor value was 

extremely high: 11.33 (Figure 3A). In this case, the difference between the 

average percentages of slow cells between these two groups was 0.216 (we 

will call this value Δ proportion). In parallel, we compared QA samples with a 

selection of BA samples with the percentage of slow cells more similar to QA 

(a Δ proportion value of 0.002). In this case there was some degree of 

separation with a descriptor of 1.07 when using 69 characteristics (Figure 3B, 

Table 3). Interestingly, this value was very similar to the median value of the 

1,000 BA-QA comparisons (1.09; Fig. 2B). To further investigate the relation 

between Δ proportion and the separation of the groups of images we took 

1,000 BA-BA comparisons to plot the values for the PCA descriptor against its 

correspondent Δ proportion values (Figure 3C). We observed a poor relation 

between the increase of the Δ proportion and the PCA descriptor (Pearson´s 

coefficient r= 0.2435). The same happened when we used the 1,000 BA-QA 

comparisons (Figure 3D, Pearson´s coefficient r= 0.2735). These results 

suggested that the proportion of slow cells is not the main factor responsible 

for the differences between BA and QA tissues. 

The relative size of slow and fast fibres affects their relative distribution 

The muscles fibres are arranged in bundles and the sections of the 

muscular tissue analysed are similar to tessellations of convex polygons. This 

property has been previously used to try to capture the organization of packed 

tissues (Classen et al., 2005; Farhadifar et al., 2007; Gibson and Gibson, 

2009; Sanchez-Gutierrez et al., 2016). We examined our biceps brachii and 

quadriceps samples in these terms and found that they presented a similar 

polygon distribution (Fig. 4A and Table S4; MANOVA p value = 0.3196). In 

packed cellular arrangements the area and the number of neighbours are 

related by several general rules such as Euler´s theorem and Lewis and 

Aboav-Weaire laws (Aboav, 1970; Chiu, 1995; Gervois et al., 1992; Hilhorst, 

2006; Lewis, 1928; Rivier et al., 1995; Weaire, 1974). As we have mentioned 

before the one of the clearest differences between BA and QA samples was 

the average relative size between fast and slow fibres. We examined if this 

difference was extended to the distribution of fibres size (Fig. 4B). In the case 

of QA both distributions presented a very high level of overlapping (Fig. 4B 
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left panel). In the other hand, BA distributions of slow and fast cell areas were 

slightly displaced since a considerable part of the population of slow cells was 

smaller than the fast cells (Fig. 4B right panel). Although in both cases we 

were not able to find significant differences between slow and fast fibres area 

distribution (Kolmogorov-Smirnov test; QA: p value =1; BA: p value = 0.3309) 

we decided to continue the analysis on the relation between area distribution 

and organization. Following the principles of the Lewis and Aboav-Weaire 

laws the small difference in area distribution of slow and fast cells in BA could 

bias their organization: bigger cells (fast) should tend to have a higher number 

of neighbours, and these neighbours should tend to be smaller cells with a 

lower number of sides (slow). Therefore, we analyzed the polygon distribution 

of both types of fibres in the QA and BA images (Fig. 4C, D and Table S4). 

Using MANOVA test to compare slow and fast polygon distributions we were 

not able to find significant differences in the case of QA (Fig 4C, MANOVA p 

value = 0.1434). On the contrary, BA samples presented distributions 

significantly different (Fig 4D, MANOVA p value = 0.0037). In addition, we 

statistically compared the frequency of each polygon class between slow and 

fast fibres (Materials and Methods). Again, there were not differences in the 

case of QA (Table S4). In BA, we found that the amount of slow fibres that 

were heptagons and octagons was significantly lower than among fast fibres 

(Fig. 4D and Table S4). We think that the small differences in the area 

distribution founded in the BA samples imposed a degree of order in the BA 

organization that it is absent in QA.  

 

 

 

 

Slow and fast fibres present an intrinsic organization in the biceps 

brachii 

Our diverse results suggested that BA and QA samples presented 

differences related to the organization of their two types of fibres. To test this 

hypothesis we performed simulations where in each ROI, every cell became 

fast or slow randomly (maintaining the percentage of fast and slow fibres 
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constant). Logically, this changed the values for the 34 characteristics 

specifically related to fast and slow fibres properties. We obtained the average 

value for each characteristic putting together all the images of each category 

(90 ROI in the case of BA and 25 for QA). Then we plotted the distribution of 

the values for each characteristic and compared them with the distribution of 

values for 10,000 randomizations of fibre type (Fig. 5A-F and Table 3). We 

expected that if a characteristic was not affected by the fibre-type 

randomization, the real value would be falling inside of the distribution of 

random values. This was the case for all except two of the characteristics 

when analyzing QA samples (Fig. 5A-C and Table 3). In contrast, more than 

a half of BA characteristics presented the real value displaced from the 

distribution of random data (Fig. 5D-E and Table 3). In some cases, the real 

value was very different from the randomized. For example, the real average 

number of “slow neighbours of slow cells” was clearly lower than any of the 

randomized (Fig. 5D). This suggested that slow cells in the BA muscle were 

mainly surrounded by fast cells and not by other slow cells (i.e. slow fibres 

tended to appear isolated and the randomization grouped them). This result 

supported that BA organization of fast and slow fibres was not arbitrary.  

DISCUSSION 

Biceps brachii and quadriceps are different in terms of the organization 

of slow and fast fibres 

In this study we integrate and quantify information from two large sets of 

images from two healthy muscles. Although both sets of images present high 

similarity after visual inspection (Fig. 1), the first problem that we have 

encountered is the wide heterogeneity between samples from the same type 

of muscle. For example, the “average area” of quadriceps fibres is bigger than 

the “average area” of biceps brachii fibres, but at the same time a high 

proportion of biceps brachii images present fibres bigger than quadriceps 

fibres (Table S1 and Table S2). In this work, we have tackle this problem 

using several approaches that try to incorporate all the useful data from the 

two sets of images. The first step has been to design a protocol to evaluate all 

the images available (90 BA and 25 QA), in this way for each comparison of 
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BA and QA data we obtain 1,000 values for the PCA descriptor, and we are 

able to analyze the differences or similarities among all the samples. Our first 

conclusion is that our method is not able to completely separate both types of 

images. The representative graphs of the median values of the PCA 

descriptor show how some BA images are very similar to the QA (Fig. 2B and 

2D right panels). Even the best combinations still present some overlapping of 

images in the PCA graph (Fig. 2B and 2D left panels). However we have 

been able to extract some useful information from these assays: i) topological 

characteristics improve the separation of the two groups; ii) the characteristics 

related to the fast and slow fibres contain most of the relevant information to 

better distinguish BA and QA; and iii) the comparisons using only BA samples 

(that generated very low descriptor values) serves as a baseline that indicates 

that the partial separation that we obtain between BA and QA reflects some 

general differences between these two types of muscles. 

We have analyzed the most frequent characteristics in Table 2 to try to 

understand which is based on the difference in the organization between QA 

and BA. Interestingly, the six more frequent characteristics of the 1,000 BA-

QA comparisons (all appearing in more than the 25% of the cases) are 

features that also are highlighted in the slow/fast cell randomization assay. 

This means that the feature selection method is considering the 

characteristics that capture the slow/fast mosaic as the most relevant to 

distinguish BA and QA organization. The most frequent characteristic is the 

“S. D. Area of slow cells” indicating the high relevance of the homogeneity in 

sizes for the slow cells in BA in contrast to the wider range of sizes in the case 

of QA (Table S3). The second (appearing in almost half of the cases) is “slow 

Neighbours of fast cells”. This characteristic would reflect the combination of 

the difference in the percentage of the slow cells between BA and QA 

together with the particular arrangement of slow and fast cells in the BA 

tissue. The third and fourth characteristics are the Average Strengths of fast 

and slow cells respectively. These two characteristics combine the information 

about the size and the number of neighbours of each type of cells. This 

appears slightly more relevant that the “average area of fast cells” (the fifth 

characteristic) to distinguish between both types of muscles. To finish with the 
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more frequent characteristics we find “S.D. Neighbours of slow cells” that 

again reflect the fact that slow cells in BA are less variable due to their more 

constant size. All these characteristics are used by the method to separate 

both types of samples in a majority of combinations, therefore, in spite of the 

large heterogeneity between samples, we are able to conclude that the 

distribution of the two cell types is relevant to differentiate both sets of images. 

Biceps brachii present a distinct organization derived from the 

smaller size of the slow fibres with respect the fast fibres. 

We have explored the possible influence of the distribution of the slow and 

fast fibres in the global organization of BA and QA tissues. First, we have 

evaluated the importance of the percentage of each type of fibre (Δ 

proportion) in the organization of the tissue. We observe that driving this 

characteristic to a limit by choosing two sets of images from BA with a very 

diverse Δ proportion, we are able to obtain a clear separation in the PCA 

graph (Fig. 3A). However, the values for the PCA descriptor in the 1,000 

combinations of BA-BA and QA-BA are clearly lower and do not correlate with 

the “Δ proportion” (Fig. 3C, D). We are convinced that this latter result is 

biologically relevant. It is clear that an abnormally high value for the “Δ 

proportion” of both sets is going to affect all the characteristics analysed. 

Nevertheless, the 1,000 combinations reflect a lot better the heterogeneity 

that can be found in the normal muscles among different individuals. Our 

analysis of the “Δ proportion” toss another interesting result, a comparison 

with very low “Δ proportion” can still present some differences as in the case 

shown in Figure 3B. This strongly support that other factors apart from the 

percentage of fibres are playing a role in the organization of the muscle 

tissue. To identify these factors we have analysed the muscle images as an 

arrangement of convex polygons. In these natural tessellations the area of the 

cells and their polygon sides are related in a way that affect the whole 

organization of the tissue (Sanchez-Gutierrez et al., 2016). The distribution of 

slow and fast fibres areas is slightly different in the case of BA (Fig. 4B). We 

interpret that the reduced size of a large part of the slow cells in BA affects the 

polygon distribution of each type of fibre. This is supported by the significant 

difference in polygon distribution between the slow and fast fibres in biceps 
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brachii, and the increment of heptagons and octagons in the subpopulation of 

fast fibres (Fig. 4D). In the other hand, QA does not present significant 

differences between slow and fast fibres polygon distributions. This suggests 

that in the QA case that the type of fibre does not bias the organization of 

quadriceps. To confirm this hypothesis and deeper investigate the existence 

of organizational differences between QA and BA we have used a 

computational simulation (Table 3 and Figure 5). For each image, we 

obtained 10,000 variations where the distribution of the slow and fast fibres 

was random. In this way we have been able to compare the real values for the 

34 characteristics that are related with the distribution of the type of fibres 

(Table 1) with 10,000 random values. We think that this is a very robust 

baseline to compare with. We assume that if there is not an inherent 

organization of slow and fast fibres in the real tissue, the randomization 

should not affect these values. This is the case for QA, where only two of the 

34 characteristics present a value out of the range obtained with the 10,000 

randomizations (Table 3). On the contrary, in the BA experiment, almost half 

of the characteristics dramatically changed when compared with the real 

values. We conclude that there is a particular intrinsic arrangement in BA, and 

that the randomization largely alters this predetermined order. The analysis of 

the features that deviates from random, together with the integration of the 

whole set of data extracted, point out what are the basis of the biceps brachii 

organization. We propose that the difference in the size of slow and fast fibres 

impose the observed differential polygon distribution between both types of 

cells. In a packed tissue, small cells (slow) have less number of sides and 

associate with bigger cells (fast) with at higher frequency (due to Lewis law 

(Lewis, 1928). Following this argument, for example, a characteristic such 

“fast neighbours of slow cells” should have a bigger value than the random 

distribution. This is the case (Table 3). The analysis of the characteristics that 

are different in BA with respect the randomization provides us information to 

establish a model of how fibres organize in BA muscle (Fig. 6A). We propose 

that there is a tendency to the apparition of isolated slow fibres (small with low 

number of neighbours) in biceps brachii. This will affect the whole 

organization inducing homogeneity in the distribution of both types of fibres. 

As a result, there will not be large regions occupied only by fast fibres. This 
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would be different to what happen in the “schematic” QA muscle (Fig. 6B), 

where some slow fibres are isolated and others are grouped without any 

tendency governing this organization. For this reason, the randomization 

assay generate values for most of the characteristics in the same range that 

the real QA values.  

Conclusions 

In this work we describe an organizational characteristic pattern based on 

the differential size of two different types of cells. Although a high 

heterogeneity exists among the analyzed samples, we have been able to 

detect the signature that generally distinguishes the biceps brachii from the 

quadriceps muscles. This is based on their slow/fast fibre organization. Our 

results clearly indicate that the relative bigger size of fast fibres in the biceps 

brachii is the origin of the intrinsic order that place homogenously the slow 

fibres on the tissue. In the other hand, quadriceps does not present any bias 

in the arrangement of both types of fibres.  

These results are relevant from a translational point of view. A wide range 

of pathogenic changes have been described in the skeletal muscle of patients 

suffering from different neuromuscular diseases, both neurogenic and 

myopathic disorders. Subtle differences in the way of response to a 

pathogenic condition from one muscle to another could improve the diagnosis 

in early stages of the disease, which is the goal for any therapeutic 

intervention in this group of disorders (Kohn et al., 2014; Laing et al., 2011; 

Raman et al., 2015). Our results contribute to identify early changes 

associated to the fibre type distribution in the pathologic muscles, which would 

improve the early diagnosis and, therefore, would allow the application of a 

potential therapy before the muscle start a significant degeneration.  

Muscles are not the only packed tissues where more than one cell-type can 

be found. During morphogenesis epithelial cells differentiate into precursors 

that are maintained within the epithelium during some time. This is the case of 

the neural crest of vertebrates (Duband, 2006) or the Drosophila sensory 

organs mother cells (Cohen et al., 2010). Still more intricate are some adult 

tissues in homeostasis, such the Drosophila midgut where enteroblasts, stem 
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cells, enterocytes and enteroendocrine cells are integrated in the same layer 

(Lemaitre and Miguel-Aliaga, 2013). In all these examples the relative 

organization of the different cells types can be relevant for their function. Here 

we have described a new framework to analyze complex packed tissues 

where epithelial cells start to differentiate and more that one cell type is 

founded. 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 12, 2016. ; https://doi.org/10.1101/038968doi: bioRxiv preprint 

https://doi.org/10.1101/038968
http://creativecommons.org/licenses/by-nc-nd/4.0/


MATERIALS AND METHODS 

Tissue sampling 

For the retrospective analysis of control male muscle tissue, we obtained 

images from processed biopsies stored in tissue banks at the Virgen del 

Rocío University Hospital (Seville). Our database consists of 90 ROI extracted 

from 34 images which were selected from 14 biopsies for biceps brachii Adult 

(BA) and 25 ROI extracted from 9 images which were selected from 6 

biopsies for quadriceps adult (QA). We selected a ROI with resolution 

1,000x1,000 pixels from images of 3,072x4,080 pixels. In this way it is 

possible to avoid small artefacts due to the manipulation and staining of the 

samples. All biopsies were performed under informed consent using a 

standardized protocol (Dubowitz and Sewry, 2007) and ROIs were processed 

as described in (Sáez et al., 2013b). In this way, a fibre segmentation, in 

which fibre contours were detected, was performed in order to extract 

information relative to fibre and collagen content. 

Geometric and network feature extraction.  

Geometric features such as the fibre area or the length of the major and 

minor axes of the fibre can be extracted from the detected contours. A 

network of fibre to fibre contacts was derived form the segmented image 

following the steps described in (Sáez et al., 2013b). This allowed to obtain 

other parameters that take into account the neighbouring vicinity of each fibre, 

such as the ratio between the fibre area and adjacent fibre areas, or the ratio 

between the fibre area and the area resulting from the expansion of its 

contour (computed in the previous step). Finally, features extracted from 

graph theory applied to the muscle network were also computed (values for all 

characteristics in each image in Table S1). 

In this work a total of 69 characteristics have been computed. They 

included 14 geometric features, 20 features derived from the muscle network, 

34 from graph theory and 1 last characteristic which gave us the proportion of 

slow cells (Table 1). We defined 3 subsets of characteristics in order to 
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employ it in different comparisons. First set was performed by all 69 

characteristic computed. Second set was defined by 35 characteristics related 

with slow and fast cell information (in bold in Table 1). Third set was 

composed exclusively by 14 geometric characteristics (14 first features in 

Table 1) and the proportion of slow cells. 

Principal Component Analysis features selection.  

A feature selection step was performed to analyze the discrimination power 

of a set of characteristics of one’s mentioned above that distinguish better two 

groups of images. The method selects and evaluates features using Principal 

Component Analysis (PCA) and PCA’s descriptor that quantify the degree of 

separation between the two groups of images that are compared (Sanchez-

Gutierrez et al., 2013). We have tested every possible combination of three 

features in the first iteration and applied the PCA. The method keeps the ten 

combinations of three features with higher PCA descriptor value. In the 

second iteration, all features are individually tested again in combination with 

the ten trios of features. Again, all the combinations are evaluated and the 

program keeps the five with higher PCA descriptor value for each one of the 

ten trios. Therefore, at this step the program handles 50 quartets of features. 

In the next iteration, the same process is repeated but only two best features 

are added, accumulating 100 quintets of features. The process continues 

adding only one feature per iteration step. The iteration process is stopped 

when seven features have been selected or when the value for the PCA 

descriptor is lower than in the previous step. Finally, we chose the ensemble 

of features that presented the highest value for the PCA descriptor among the 

100 groups.  

Comparison of BA and QA images 

Due to the large difference in the number of ROIs (90 BA vs. 25 QA) we 

designed a protocol to use all the available samples and at the same time be 

able to obtain comparable results. We employed a random process of sample 

selection to be able to compare the same number of samples each time. We 

selected “25” random ROIs (the smallest quantity of ROIs in one of the groups) 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 12, 2016. ; https://doi.org/10.1101/038968doi: bioRxiv preprint 

https://doi.org/10.1101/038968
http://creativecommons.org/licenses/by-nc-nd/4.0/


to perform the PCA features selection described above. To be sure that we 

used all the available samples we did this process 1,000 times to perform 

1,000 comparisons. Therefore, for each comparison, we also obtained 1,000 

PCA descriptors and 1,000 sets of relevant characteristics. In order to know 

which characteristics were most relevant to discriminate two categories along 

using all the available images, we calculated the rate of appearance of each 

feature between the selected ones. Table 2 and Table S3 show the most 

frequent characteristic in each comparison performed in this study. 

Relation between discrimination power and slow fibres proportion 

To test if there is a correlation between the values of the PCA descriptors 

obtained with the 1,000 comparisons and their proportion of fast and slow 

fibres, we defined the value “Δ proportion” per each one of these 1,000 

comparisons. “Δ proportion” was calculated as the difference between the 

average percentages of slow cells between two groups analyzed in each one 

of 1,000 comparisons. The Pearson´s correlation coefficient was obtained to 

analyse the possible correlation between the value of the PCA descriptor and 

the slow fibre proportion. 

Statistical differences between BA and QA fibre characteristics 

We used Multivariate Analysis of Variance (MANOVA) test to perform three 

comparisons of the polygonal distributions: a) BA total fibres vs QA total fibres, 

b) BA fast fibres vs BA slow fibres, c) QA fast fibres vs QA slow fibres (Table 

S4). If p-value <0.05, distributions were considered to be significantly different. 

The MANOVA tests were performed using only the values for cells with 4, 5, 6, 

7 and 8 sides. We discarded the cells with 3, 9 and 10 sides, since they were 

not present in all the images. In the three comparisons above we also 

analyzed the differences between the values for each type of polygon. First, 

we evaluated if the two compared categories values presented similar 

distribution and variance using Kolmogorov-Smirnov and F-Snedercor tests 

respectively. In case that data presented different distribution and a different 

variance, we employed Wilcoxon test to compare the means from both groups. 

We employed a two tails Student's t-test to compare the means in the cases 
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where both distribution and variance of the two sets of data were similar 

(Table S4).  

We used the two samples Kolmogorov-Smirnov test to compare “log10 

Normalized Area” distribution of each category of “BA fast fibres vs BA slow 

fibres” and “QA fast fibres vs QA slow fibres”. 

Slow and fast cell randomization 

In order to know how the spatial distribution of slow and fast cells affected 

to the organization of the muscle, we randomized the positions of fast and 

slow cells without altering their proportion. In each ROI, every cell was 

labelled as “fast” or “slow” randomly, maintaining the relative number of fast 

and slow cells. This process changed the values for the 34 characteristics 

related with fast and slow properties. We performed 10,000 randomizations 

for each ROI. For each category and randomization we calculated the 

average value of each one of the 34 characteristics. To obtain the “original” 

value for each characteristic we averaged the values of all the available 

images (90 for BA and 25 for QA). We plotted the distribution of 10,000 values 

for each characteristic and compared its minimum, maximum, and median 

values with the “original” average value of slow and fast cells. (Fig. 5, Table 

3) 

Polygon and area distribution calculations 

We analyzed polygon and area distribution in our images to investigate 

about the organization of fast and slow cells in relation with their size (Fig. 4). 

To make the polygon distribution graphs with the corresponding error bars for 

each category (BA, BA slow cells, BA fast cells, QA, QA slow cells and QA 

fast cells) cells were grouped by biopsy.  

To compare Area from different categories, we calculated the Normalized 

Area: 

log10

Areai

Area

⎛

⎝
⎜

⎞

⎠
⎟, ∀i ∈ 1, m[ ] 
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Where m is the number of cells in the image, Areai  is the size of the cell 

and Area  is the mean Area of all the valid cells. We classified the values in 

bins of 0.02 units to visualize the Normalized Area distribution. The use of the 

log10 makes the values distribute similar to a normal distribution facilitating 

the comparison. 
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Table 1 

CHARACTERISTICS 

cc Name cc Name 

1 Average Area 35 Average Strengths 

2 S. D. Area 36 S. D. Strengths 

3 Average Area of slow cells 37 Average Strengths of fast cells 

4 S. D. Area of slow cells 38 S. D. Strengths of fast cells 

5 Average Area of fast cells 39 Average Strengths of slow cells 

6 S. D. Area of fast cells 40 S. D. Strengths of slow cells 

7 Average major Axis 41 Average Clustering Coefficient 

8 Average minor Axis 42 S. D. Clustering Coefficient 

9 Average Relation Axis 43 Average Clustering Coefficient of fast cells 

10 S. D. Relation Axis 44 S. D. Clustering Coefficient of fast cells 

11 Average Convex Hull 45 Average Clustering Coefficient of slow cells 

12 S. D. Convex Hull 46 S. D. Clustering Coefficient of slow cells 

13 Average Relation A1/A2 47 Average Eccentricity 

14 S. D. Relation A1/A2 48 S. D. Eccentricity 

15 Average Neighbours 49 Average Eccentricity of fast cells 

16 S. D. Neighbours 50 S. D. Eccentricity of fast cells 

17 S. D. Neighbours of slow cells 51 Average Eccentricity of slow cells 

18 S. D. Neighbours of fast cells 52 S. D. Eccentricity of slow cells 

19 slow Neighbours of slow cells 53 Average Betweenness Centrality 

20 fast Neighbours of slow cells 54 S. D. Betweenness Centrality 

21 slow Neighbours of fast cells 55 Average Betweenness Centrality of fast cells 

22 fast Neighbours of fast cells 56 S. D. Betweenness Centrality of fast cells 

23 Average Relation Neighbours Area 57 Average Betweenness Centrality of slow cells 

24 S. D. Relation Neighbours Area 58 S. D. Betweenness Centrality of slow cells 

25 Average Relation Neighbours major axis 59 Average Shortest Paths lengths 

26 S. D. Relation Neighbours major axis 60 S. D. Shortest Paths Lengths 

27 Average Relation Neighbours minor axis 61 Average Shortest Paths Lengths from fast cells to fast cells 

28 S. D. Relation Neighbours minor axis 62 S. D.  Shortest Paths Lengths from fast cells to fast cells 

29 Average Relation Neighbours relation axis 63 Average Shortest Paths Lengths from fast cells to slow cells 

30 S. D. Relation Neighbours relation axis 64 S. D. Shortest Paths Lengths from fast cells to slow cells 

31 Average Relation Neighbours convex hull 65 
Average Shortest Paths Lengths from slow cells to slow 

cells 

32 S. D. Relation Neighbours convex hull 66 S. D. Shortest Paths Lengths from slow cells to slow cells 

33 Average Relation Neighbours relation A1/A2 67 Average Shortest Paths Lengths from slow cells to fast cells 

34 S. D. Relation Neighbours relation A1/A2 68 S. D. Shortest Paths Lengths from slow cells to fast cells 

  69 Proportion of slow cells 
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Table 2 

 

Feature selection: 1,000 combinations from BA (25 random images) vs BA 

(25 random images) 

Name Characteristic Frequency 

S. D. Shortest Paths Lengths from fast cells to slow 

cells 

64 20.60% 

Average Shortest Paths Lengths from slow cells to 

slow cells 

65 19.60% 

Average Neighbours 15 16.60% 

S. D. Shortest Paths Lengths from slow cells to fast 

cells 

68 15.30% 

S. D. Betweenness Centrality of slow cells 58 15% 

 

Feature selection: 1,000 combinations from BA (25 random images) vs QA 

Name Characteristic Frequency 

S. D. Area of slow cells 4 67.20% 

Slow Neighbours of fast cells 21 48.40% 

Average Strengths of fast cells 37 40.20% 

Average Strengths of slow cells 39 36.80% 

Average Area of fast cells 5 33.80% 

S. D. Neighbours of slow cells 17 28.40% 
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Table 3 

Biceps brachii Adult Original  Random slow/fast cells 

Number Characteristic Value Min Max Median 

3 Average Area of slow cells 23616.36 25488.99 26776.38 26080.13 

4 S. D. Area of slow cells    4242.18 5951.76 6964.85 6403.99 

5 Average Area of fast cells   27392.63 25643.48 26536.55 26076.49 

6 S. D. Area of fast cells    6409.93 6167.93 6785.72 6495.91 

17 S. D. Neighbours of slow cells 0.78 0.79 0.90 0.84 

18 S. D. Neighbours of fast cells 0.85 0.80 0.89 0.85 

19 slow Neighbours of slow cells  1.65 2.56 2.82 2.69 

20 fast Neighbours of slow cells  4.26 3.19 3.43 3.32 

21 slow Neighbours of fast cells  1.95 2.64 2.84 2.74 

22 fast Neighbours of fast cells  4.14 3.15 3.36 3.26 

37 Average Strengths of fast cells 1197.19 1152.29 1183.17 1167.90 

38 S. D. Strengths of fast cells 249.06 235.00 261.19 247.81 

39 Average Strengths of slow cells 1123.39 1145.36 1189.76 1167.80 

40 S. D. Strengths of slow cells 221.58 228.91 266.04 245.73 

43 Average Clustering Coefficient of fast cells  69.49 69.70 71.68 70.73 

44 S. D. Clustering Coefficient of fast cells  17.55 16.66 18.48 17.62 

45 Average Clustering Coefficient of slow cells  72.27 69.13 72.45 70.73 

46 S. D. Clustering Coefficient of slow cells  16.38 16.11 19.03 17.43 

49 Average Eccentricity of fast cells 2102.00 2079.41 2112.54 2095.04 

50 S. D. Eccentricity of fast cells 269.37 254.36 276.71 264.78 

51 Average Eccentricity of slow cells 2080.82 2074.78 2117.68 2095.31 

52 S. D. Eccentricity of slow cells 250.47 248.99 277.91 263.52 

55 Average Betweenness Centrality of fast cells 1324.80 1221.65 1438.54 1314.93 

56 S. D. Betweenness Centrality of fast cells 1004.46 791.91 1195.70 965.58 

57 Average Betweenness Centrality of slow cells 1330.29 1227.92 1415.92 1316.04 

58 S. D. Betweenness Centrality of slow cells 971.95 801.17 1140.23 978.55 

61 Average Shortest Paths Lengths from fast cells to fast cells 683.97 662.75 693.15 676.53 

62 S. D. Shortest Paths Lengths from fast cells to fast cells 309.38 299.37 312.65 305.66 

63 Average Shortest Paths Lengths from fast cells to slow cells 789.92 707.30 772.82 739.85 

64 S. D. Shortest Paths Lengths from fast cells to slow cells 273.72 277.99 301.80 288.77 

65 Average Shortest Paths Lengths from slow cells to slow cells 663.20 653.53 697.28 676.70 

66 S. D. Shortest Paths Lengths from slow cells to slow cells 290.31 291.45 313.76 300.95 

67 Average Shortest Paths Lengths from slow cells to fast cells 645.91 682.38 724.70 703.57 

68 S. D. Shortest Paths Lengths from slow cells to fast cells 301.25 285.64 302.72 294.66 
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Quadriceps Adult Original Random slow/fast cells 

Number Characteristic Value Min Max Median  

3 Average Area of slow cells 17252.13 15902.67 17518.80 16705.52 

4 S. D. Area of slow cells    4522.11 4492.86 5516.13 4985.71 

5 Average Area of fast cells   16122.16 16396.41 16980.73 16705.20 

6 S. D. Area of fast cells    4617.04 4829.16 5257.62 5054.59 

17 S. D. Neighbours of slow cells 0.88 0.82 1.03 0.92 

18 S. D. Neighbours of fast cells 0.92 0.89 0.95 0.93 

19 slow Neighbours of slow cells  1.44 1.28 1.64 1.46 

20 fast Neighbours of slow cells  4.48 4.33 4.76 4.55 

21 slow Neighbours of fast cells  1.51 1.41 1.57 1.50 

22 fast Neighbours of fast cells  4.49 4.40 4.61 4.51 

37 Average Strengths of fast cells 934.22 928.50 951.11 939.90 

38 S. D. Strengths of fast cells 216.79 210.15 226.43 218.86 

39 Average Strengths of slow cells 930.21 908.02 974.15 939.80 

40 S. D. Strengths of slow cells 200.14 188.05 240.27 214.84 

43 Average Clustering Coefficient of fast cells  58.22 57.36 58.93 58.20 

44 S. D. Clustering Coefficient of fast cells  14.64 13.90 15.23 14.64 

45 Average Clustering Coefficient of slow cells  58.58 55.97 60.57 58.20 

46 S. D. Clustering Coefficient of slow cells  14.33 12.48 16.29 14.36 

49 Average Eccentricity of fast cells 1968.09 1953.97 1976.74 1965.88 

50 S. D. Eccentricity of fast cells 255.27 244.85 260.67 252.97 

51 Average Eccentricity of slow cells 1959.02 1924.17 2004.91 1966.09 

52 S. D. Eccentricity of slow cells 246.90 220.88 279.75 250.01 

55 Average Betweenness Centrality of fast cells 2039.74 1929.36 2108.39 2024.31 

56 S. D. Betweenness Centrality of fast cells 1508.94 1256.21 1593.69 1474.73 

57 Average Betweenness Centrality of slow cells 1934.73 1770.01 2334.29 2020.35 

58 S. D. Betweenness Centrality of slow cells 1222.43 1020.43 1850.30 1410.62 

61 Average Shortest Paths Lengths from fast cells to fast cells 649.27 641.89 661.91 652.31 

62 S. D. Shortest Paths Lengths from fast cells to fast cells 299.85 295.33 304.30 300.17 

63 Average Shortest Paths Lengths from fast cells to slow cells 823.40 764.99 863.39 819.00 

64 S. D. Shortest Paths Lengths from fast cells to slow cells 274.52 252.49 293.78 274.44 

65 Average Shortest Paths Lengths from slow cells to slow cells 664.56 615.26 692.43 652.40 

66 S. D. Shortest Paths Lengths from slow cells to slow cells 296.06 279.01 315.80 295.42 

67 Average Shortest Paths Lengths from slow cells to fast cells 625.33 603.43 639.35 619.50 
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TABLE LEGENDS 

Table 1: List of characteristics analyzed in this study. Table shows the 

name of the 69 characteristics analyzed in the study. These characteristics 

can be classified into three types: geometrical characteristics, related to the 

size and shape of cells (1-14), network characteristics, capturing the 

organization of the cells (15-68) and the proportion of slow cells (69). The 

characteristics labelled in bold are the 35 features related to the fast or slow 

cell type. S. D. = Standard Deviation. 

Table 2: Frequency of characteristics that better differentiate BA and QA 

images. This table shows the characteristics that have been selected with a 

higher frequency in the 1,000 BA-BA and BA-QA comparisons (using 69 

characteristics).  

Table 3: Comparison of real values and random values for each 

characteristic and type of muscle. The table shows results of the evaluation 

of the 34 characteristics related with the fast and slow condition of the fibres.  

Each original value is compared with the minimum, maximum and median 

values for 10,000 randomizations. The original values labelled in bold mark 

the ones outside of the range of values of the random distribution in each 

case. 
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FIGURE LEGENDS 

Figure 1: images from control human muscle biopsies. Fluorescence 

images corresponding to control biopsies showing collagen VI content 

including the endomysium and perimysium (green), slow fibres (red) and fast 

fibres (black). (A, B, C) Images from control biceps brachii. (E, F, G) Images 

from control quadriceps. 

Figure 2: Principal component analysis graphs for different 

combinations of muscle type images and characteristics. PCA graphs for 

the comparisons two groups of 25 images. Selected panels were the 

combination that presents the median (left) and best (right) descriptor using 

different sets of characteristics. The green dots (dark or light) represent BA 

images. The red dots represent QA images. A) 25 images randomly taken 

from a set of 90 samples of BA vs other different 25 images using the set of 

69 cc. B) 25 images randomly taken from a set of 90 samples of BA versus 25 

QA images using the set of 69 cc. C) 25 images randomly taken from a set of 

90 samples of BA versus QA images using the set of 15 cc. D) 25 images 

randomly taken from a set of 90 samples of BA versus QA images using the 

set of 35 cc.  

Figure 3: Influence of the proportion of slow fibres in the muscle 

organization. A) Comparison of 25 images from BA (light green dots) vs 25 

images from BA (dark green dots) using two groups of BA images with a very 

different percentage of slow fibres (Δ proportion= 0.216) and a set of 69 

characteristics. The result is a clear separation of both groups with a PCA 

descriptor of 11.33. B) Comparison of 25 images from BA (green dots) with 

very similar percentage of slow fibres (Δ proportion= 0.002) than the 25 QA 

images (red dots) and a set of 69 characteristics. The graph shows some 

overlap between the two groups (PCA descriptors= 1.07). C) Graph 

representing the 1,000 random comparison of 25 images random from BA 

versus 25 images random from BA (blue dots). “Δ proportion” of slow fibres is 

represented against the PCA descriptor value of the same random 

comparison. D) Graph representing the 1,000 random comparison of 25 

images random from BA versus QA (blue dots). “Δ proportion” of slow fibres is 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 12, 2016. ; https://doi.org/10.1101/038968doi: bioRxiv preprint 

https://doi.org/10.1101/038968
http://creativecommons.org/licenses/by-nc-nd/4.0/


represented against the PCA descriptor value of the same random 

combination. 

Figure 4: BA and QA present differences in polygon and area 

distribution of their slow and fast fibres. A) Polygon distribution of BA fast 

fibres (black) and BA slow fibres (red). The error bars represent the standard 

error. B) Comparison of the area distribution of QA fast and slow cells (left 

panel) and the area distribution of BA fast and slow cells (right panel). C) 

Polygon distribution of QA fast and slow fibres. D) Polygon distribution of BA 

fast and slow fibres. The frequency of each type of polygons in both sets of 

images is represented. The error bars represent the standard error. 

Figure 5: Frequency of values for characteristics depending of the 

distribution of fast and slow fibres. The histograms show the frequency of 

values for several characteristics related to the distribution of fibres type from 

10,000 randomizations of the fast and slow fibres. Blue circle shows the value 

of the characteristic for the real distribution of fast and slow cells in the 

muscle. A) and D) Histogram for the characteristic “slow neighbours of slow 

cells” in QA and BA respectively. The real value is similar to the median of 

random values. B) and E) Histogram for the characteristic “deviation area of 

fast cells in QA and BA respectively. C) and F) Histogram for the 

characteristic “average area of slow cells” in QA and BA respectively. In the 

cases C, D and E the real value is lower than the random values. 

Figure 6. Scheme reflecting the different organization of BA and QA. Slow 

fibres are labelled in red and fast fibres in black. A) In the BA a high tendency 

for slow cells to be isolated govern the organization of the tissue. This induces 

a homogenous distribution of both types of fibres. B) There is no clear 

tendency in the organization. Slow fibres can appear isolated or grouped. The 

distribution is random.  
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