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Abstract 

 
Standard BOLD connectivity analyses depend on aggregating the signals of 
individual voxel within regions of interest (ROIs). In certain cases, this 
aggregation implies a loss of valuable functional and anatomical information 
about sub-regions of voxels that drive the ROI level connectivity. We describe 
a data-driven statistical search method that identifies the voxels that are chiefly 
responsible for exchanging signals between regions of interest that are known 
to be effectively connected. We apply the method to high-resolution resting 
state functional magnetic resonance imaging (rs-fMRI) data from medial 
temporal lobe regions of interest of a single healthy individual measured 
repeated times over a year and a half. The method successfully recovered 
densely connected voxels within larger ROIs of entorhinal cortex and 
hippocampus subfields consistent with the well-known medial temporal lobe 
structural connectivity. To assess the performance of our method in more 
common scanning protocols we apply it to resting state fMRI data of 
corticostriatal regions of interest for 50 healthy individuals. The method 
recovered densely connected voxels within the caudate nucleus and the 
putamen in good qualitative agreement with structural connectivity 
measurements. We describe related methods for estimation of effective 
connections at the voxel level that merit investigation. 
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Introduction 
 
In one common method for estimating network connections from BOLD time series, 
voxels are clustered into regions of interest (ROIs) and averages or first principal 
components over voxels are used as variables. ROIs formed this way are chosen 
because, either on anatomical, experimental or statistical grounds, a cluster of 
voxels is thought to act coherently as a cause of coherent activity in other clusters, 
or to respond coherently as an effect of other clusters, or both. Connections are 
estimated at the ROI level rather than the voxel level because averaging voxel 
BOLD signals is thought to increase the signal-to-noise-ratio (Nieto-Castanon et al., 
2003, Faria et al., 2012, Wong 2014).  The result is logically peculiar: on the one 
hand, larger magnets and improvements in acquisition protocols are sought to 
increase fMRI spatial resolution; on the other hand, the BOLD signals from voxels 
are de-resolved into clusters from each of which a single variable is constructed. 1 
The result of this approach is a loss of potentially valuable information about the sub-
regions of voxels within ROIs that are chiefly involved in ROI level effective 
connections.  In what follows, we describe a procedure for resolving a given 
collection of ROIs into sub-sets of voxels that are chiefly responsible for ROI level 
effective connections. We illustrate the procedure with repeated single individual 
high-resolution resting state fMRI data from medial temporal lobe (MTL) cortices and 
the hippocampus, for which the relevant regions of interest, functions and effective 
connections are well studied (Amaral, 1993; Witter, 1993; Witter et al., 2000; Zeineh 
et al., 2000, 2001, 2012; Libby et al., 2012; Yushkevich et al., 2009, 2010; Ekstrom 
et al., 2009; Malykhin et al., 2010; Preston et al., 2010; Yassa et al., 2010); and with 
50 individuals resting state fMRI data from a corticostriatal network confirmed by 
tractography on diffusion spectrum imaging data (Jarbo and Verstynen, 2015). 
 
 
 
 
 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The proper clustering of voxels into regions of interest from BOLD signals has been 
controversial, chiefly because of concerns about multiple hypothesis testing (Bennett et al., 
2009; Zhang, 2013; Friston et al., 2002; Poldrack, 2007; Etzel et al., 2009). There are, 
however standard remedies, either in statistical software (e.g., Jenkinson et al., 2012; Penny 
et al., 2011) or by use of the False Discovery Rate (Benjamini and Hochberg, 1995) in 
combination with very small alpha values.   

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 8, 2016. ; https://doi.org/10.1101/039057doi: bioRxiv preprint 

https://doi.org/10.1101/039057
http://creativecommons.org/licenses/by-nc-nd/4.0/


	   3 

Voxelwise Conditional Independence  
 
Our procedure considers the setting in which a ROI level causal graph has been 
previously established, whether by experimental intervention on brain tissues or by 
statistical analysis of brain imaging signals, or by other means, but it is not known 
which voxels in distinct ROIs are directly connected with one another. We assume 
the voxels driving the connectivity between two ROIs are those voxels in each region 
with the largest number of direct functional connections to voxels in the other.  
Accordingly, we need a method to count voxelwise direct connections between 
effectively connected ROIs. 
 
BOLD signals of two individual voxels, x and y, respectively within two effectively 
connected regions of interest Rx and Ry, may be correlated for any of several 
reasons. Physiological activity in one voxel may directly affect activity in another; or 
there may be a chain of voxels that are causally intermediate between x and y, or 
there may be one or more common causes of activity in x and y by other voxels. 
 

 
 

Figure 1. Causal graph at ROI level and voxel level. Thick grey arrows represent the ROI level effective 
connectivity where region of interest Rz is a common cause of Rx and Ry, and Rx is a direct cause of Ry. 
Voxel X1 in Rx is a direct cause of voxel Y1 in Ry (black arrow). Voxel Z1 in Rz is a common cause of 
voxels X1 and Y3 in Rx and Ry respectively (red arrows). Red dotted line represents the spurious 
association between voxel X1 and voxel Y3 produced by the common cause Z1. The causal chain going 
from voxel X1 to voxel X2 in Rx to voxel Y2 in Ry is represented by blue arrows. The blue dotted line 
represents the spurious association between voxels X1 and Y2 produced by the causal chain X1 to X2 to 
Y2.  To estimate the direct associations of voxel X1 with all voxels in Ry we need to condition on the 
common cause Z1 in Rz and on the intermediate voxel in the causal chain, X2 in Rx, to avoid spurious 
associations, X1-Y3 and X1-Y2. 

 
 

 
Here we are interested in using a given ROI level causal structure to find the voxels 
within a ROI that are directly and actively signaling other voxels in a ROI directly 
effectively connected to the first, as in figure 1, while avoiding spurious associations 
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that result from unaccounted common causes or intermediate variables in a causal 
chain.  
 
For each pair of voxels x, y, respectively in ROIs Rx, Ry we estimate their 
independence or dependence conditional on all other voxels in Rx and Ry and all 
other voxels in ROIs that directly effectively connect both Rx and Ry, except for ROIs 
that are common effects of Rx and Ry.2 For each voxel x in Rx we count the number 
of voxels in Ry found to be conditionally dependent on x. We refer to this number as 
the connectivity degree for x in the Rx - Ry pair. Similarly, we obtain the connectivity 
degree for y in the Rx - Ry pair.  The voxels in any pair of effectively connected 
regions of interest may be compared simply by their connectivity degree or most 
highly connected subsets may be characterized. To select the subset of voxels with 
the highest number of direct functional connections, the connectivity degree of all the 
voxels in Rx and Ry are respectively partitioned into 2 sets using k-means clustering. 
One set corresponds to highly connected voxels and the other set to voxels with 
lower or no connections in the Rx - Ry pair. Voxels in the highly connected set yield 
the Rx - Ry high communication sub-region in Rx and in Ry respectively. If in the ROI 
level effective connectivity, Rx à Ry, a high communication sub-region in Rx can be 
thought as a massive sender of information to Ry, while a high communication sub-
region in Ry is a massive receiver of information from Rx.  Besides the bipartite 
division, we describe the voxelwise connectivity degree across ROIs.  
 
A region of interest, Rx, may have distinct high communication sub-regions for other 
regions of interest with which Rx is directly connected according to the given causal 
graph, or it may have overlapping communication sub-regions which suggest areas 
where afferent and/or efferent information may be interacting. The voxels not in any 
high communication sub-region may serve as relays between high communication 
sub-regions or may be voxels that were misclustered in forming the region of 
interest—we do not propose to determine which is the case.   
 
 
Algorithm for the Voxelwise Conditional Independence 
 
The conditional independence test we use is based on inverting the covariance 
matrix over a set of variables to obtain an estimate of the partial correlation between 
two variables conditional on all the other variables in the set. However, if the number 
of variables exceeds the number of datapoints, which is typically the case for a 
single scanning session, the inversion of the covariance matrix is not possible due to 
rank deficiency.  When there are sufficient scans of the same individual or of multiple 
individuals correctly aligned, under the same experimental conditions, the multiple 
scan data can be concatenated to guarantee that the number of datapoints exceeds 
the number of variables. We follow this approach and concatenate the necessary 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 If two voxels x and y are not dependent and they have a common effect z, conditioning on 
voxel z will create a spurious association between x and y. 
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scans to satisfy the dimensionality condition before inputting the data in the 
Voxelwise Conditional Independence algorithm.   
 
Let R be a set of non-overlapping ROIs <R1,...,Rt>, and let G be a directed graph of 
effective connections between members of R.  We denote the region of interest 
containing voxel x by Rx. A trek t between two nodes, Rx, Ry of G is any directed 
path between Rx, Ry, or any pair of directed paths, one terminating in Rx and the 
other in Ry such that the pair of paths intersect in one and only one node. Any node 
on a trek t between Rx, Ry is said to trek separate Rx, Ry with respect to t. If Rx, Ry 
are adjacent in G, let <Rz1,...,Rzn> be any minimal subset of R that separates all 
treks between Rx, Ry except for the direct connection between Rx, Ry.  
 
We apply a conditional independence test to each pair of voxels, x, y, respectively in 
two directly effectively connected regions of interest, Rx, Ry, conditional on all other 
voxels in Rx, Ry and all voxels on the minimal subset of regions of interest that trek 
separate Rx, Ry (except for the trek that is the direct connection between Rx, Ry.) 
 
 
Voxelwise Conditional Independence Algorithm  
 
For a pair of regions of interest Rx and Ry and conditioning separating subset 
<Rz1,...,Rzn>: (Rx, Ry |  Rz1,...,Rzn) 
 

1. Compute the covariance matrix C over the voxels in Rx, Ry, Rz1,...,Rzn. 
2. Invert C yielding precision matrix Q. 
3. For each voxel x in Rx, y in Ry, calculate the partial correlation:   

r(x, y) = -Q(x, y) / sqrt(Q(x, x)Q(y, y)). 
4. For each voxel x in Rx, y in Ry, calculate the Fisher Z transform of r(x, y): 

f(x, y) = sqrt(N - 1 - dimension(Q))*(ln(1+r(x, y)) - ln(1 - r(x, y))), where N is 
the number of datapoints.  

5. For each voxel x in Rx, y in Ry, calculate the p-value of f(x, y): 
p(x, y) = 2*(1 - CDF(f(x, y)), where CDF is the cumulative distribution 
function for the standard Gaussian distribution N(0, 1). 

6. Make a list P of all the p-values calculated in step 5. 
7. Sort P from low to high and apply False Discovery Rate at an α level. 
8. For each voxel x in Rx, y in Ry, compute cd(x, Ry):=number of voxels in Ry 

judge not independent of voxel x from step 7; cd(y, Rx):= number of voxels 
in Rx judge not independent of voxel y from step 7.  

 
 
 
We supplement the Voxelwise Conditional Independence algorithm with a 
classification into “ high communication sub-regions” using the connectivity degree 
cd(.) computed in step 8:  
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9. For regions of interest, Rx, Ry, apply k-means clustering with k=2 to the 
cd(x, Ry) of all voxels x in Rx and respectively to the cd(y, Rx) of all voxels 
y in Ry. 

10. Define the k-means cluster with the higher cd(x, Ry) values as the Rx - Ry  
high communication sub-region in Rx (respectively for Ry).  

 
The algorithm can obviously be stopped at step 8 to provide the distribution of 
connectivity degrees of cross-ROI connections without continuing the somewhat 
arbitrary bipartite division of voxels in step 9 and 10. Instead voxelwise connectivity 
degrees can be shown as spatial heat maps, as we do for illustrative cases in figures 
5 – 9. Some technical remarks about the algorithm are given in the appendix. 
 
 
Application to resting state medial temporal lobe data 
 
The functional segregation of the medial temporal lobe (MTL) has been extensively 
studied, although ambiguities remain. Figure 2 shows a simple diagram of functional 
components and their main structural connections, based on Squire et al., (2004) 
and Preston and Wagner (2007). 
 
 

 
 

Figure 2. One interpretation of ground truth for the medial temporal lobe effective connectivity, 
including MTL cortices (perirhinal (PRC), parahippocampal (PHC) and entorhinal (ENT) cortices) and 
hippocampal formation (dentate gyrus (DG), CA3, CA1 and subiculum (SUB)).  

 
There are however, finer partitions of the components of the medial temporal lobe 
that reveal some of the difficulties of functional connectivity analyses in this region of 
the brain. As an example, consider the entorhinal cortex, as shown in figure 3. This 
diagram suggests that if a ROI is created measuring only layers IV and V of the 
entorhinal cortex (EC in the diagram) the significant direct association with the 
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dentate gyrus (DG) will not be found, or alternatively, measuring only layers I-III, no 
direct association with the subiculum (SUB) will be found. 
 

 
 

Figure 3. Schematic diagram of entorhinal/hippocampal synaptic pathways. Layers of entorhinal cortex 
(EC) are shown. Layers I-III have pathways with DG, CA3 and CA1. Layers IV-V have pathways with CA1 
and subiculum. Taken from Coulter et al., (2011), © 2011 The Authors. Journal compilation, © 2011 The 
Physiological Society; with permission from John Wiley & Sons, Inc. 

 
Obtaining proper ROIs for the medial temporal lobe, in particular for the 
hippocampus subfields, is an ongoing challenge (Yushkevich et al., 2015). Limits on 
the spatial resolution of functional imaging and the anatomical complexity of the 
hippocampus make difficult to obtain functional ROIs that correspond exactly to the 
anatomy of the subfields. The dentate gyrus, for example, is hardly separable in 
functional imaging from CA3 and CA2, resulting in a comprehensive ROI labeled 
CA32DG (Zeineh et al., 2000; Ekstrom et al., 2009; Preston et al., 2010). In addition, 
other studies have evidenced the complexity of the medial temporal lobe circuitry, 
such as, differences in functional connectivity profiles of anterior and posterior areas 
of CA1, CA32DG and subiculum with parahippocampal and perirhinal cortices (Libby 
et al., 2012); and connectivity differences of medial and lateral entorhinal cortex with 
cortical inputs and hippocampus subfields (Kerr et al., 2007; Canto et al., 2012).  
 
The data used here were acquired, preprocessed, and provided to us by Russell 
Poldrack as part of the MyConnectome Project (myconnectome.org). We provide 
general information about the acquisition and preprocessing. Full details are 
available in Laumann et al. (2015) and Poldrack et al. (2015). MRI data were 
obtained repeatedly from one healthy individual over the course of 18 months.  
Scanning was performed in a fixed schedule, subject to availability of the participant. 
Scans were performed at fixed times of day; Mondays at 5 pm, and Tuesdays and 
Thursdays were performed at 7:30 am. Imaging was performed on a Siemens Skyra 
3T MRI scanner using a 32- channel head coil. T1- and T2-weighted anatomical 
images were acquired using a protocol patterned after the Human Connectome 
Project (Van Essen et al., 2012). Anatomical data were collected on 14 sessions 
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through 4/30/2013, with a one-year follow up collected on 11/4/2013. T1-weighted 
data were collected using an MP-RAGE sequence (sagittal, 256 slices, 0.8 mm 
isotropic resolution, TE=2.14 ms, TR=2400 ms, TI=1000 ms, flip angle = 8 degrees, 
PAT=2, 7:40 min scan time). T2-weighted data were collected using a T2-SPACE 
sequence (sagittal, 256 slices, 0.8 mm isotropic resolution, TE=565 ms, TR=3200 
ms, PAT=2, 8:24 min scan time). Resting state fMRI was performed using a multi-
band EPI (MBEPI) sequence (Moeller et al., 2010) (TE = 30 ms, TR=1160 ms, flip 
angle = 63 degrees, voxel size = 2.4 mm x 2.4 mm x 2 mm, distance factor=20%, 68 
slices, oriented 30 degrees back from AC/PC, 96 x 96 matrix, 230 mm FOV, MB 
factor=4, 10 min scan length). Starting with session 27 (12/3/2012), the number of 
slices was changed to 64 because of an update to the multiband sequence that 
increased the minimum TR beyond 1160 ms for 68 slices.  A total of 104 resting 
state fMRI scanning sessions were acquired; 12 were pilot sessions using a different 
protocol, and additional 8 were excluded based on poor signal, leaving a total of 84 
usable sessions.  Functional data were preprocessed including intensity 
normalization, motion correction, atlas transformation, distortion correction using a 
mean field map, and resampling to 2mm atlas space. No spatial smoothing was 
applied. 
 
Regions of interest in the medial temporal lobe were defined manually according to 
procedures established by the Preston Laboratory at The University of Texas at 
Austin (Liang et al., 2013). ROIs were defined bilaterally for subiculum, CA1, 
CA32DG, entorhinal cortex, perirhinal cortex and parahippocampal cortex. The high 
resolution T2 anatomical images of the MyConnectome Project allowed a more 
reliable delineation of hippocampal subfields in the body, head and tail of the 
hippocampus; Insausti and Amaral (2004) and Duvernoy et al., (2005) were used as 
anatomical guidelines. In addition, adjustments to the standard delineation of 
perirhinal cortex were made following Ding and Van Hoesen (2010). Figure 4 shows 
lateral and medial views of the 3D rendered left hemisphere ROIs. Right hemisphere 
ROIs are shown in figure S1 in supplementary material. 
 
 
 

  
 
Figure 4. Lateral and medial views of 3D rendered left hemisphere medial temporal lobe showing ROIs 
for MTL cortices and hippocampus subfields. 
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Following the directed graph in figure 2, we ran the Voxelwise Conditional 
Independence algorithm for the following five pairs of dependence relations 
conditional on their corresponding separating subset: (ENT, CA32DG | SUB), 
(CA32DG, CA1 | ENT), (CA1, SUB | ENT), (SUB, ENT | CA1), (ENT, CA1 | SUB, 
CA32DG). To explore the robustness of the algorithm results, we created four new 
datasets by concatenating the first ten scanning sessions, concatenating the last ten 
scanning sessions, concatenating ten randomly chosen sessions, and concatenating 
the first five sessions. Results were highly similar in all four datasets for both the left 
and right hemisphere data. (Figure S2 - S8 in supplementary material.)  
 
Using the first ten scanning sessions, the resulting high communication sub-regions 
are illustrated in figures 5 - 9 for the left hemisphere for each of the five pairs of 
dependent ROIs mentioned above. Each figure shows a 3D voxel space 
representation of the corresponding pair of ROIs, heatmaps of the voxelwise 
connectivity degree and the resulting high communication sub-regions. For 
visualization purposes we present exploded views by translating the position of one 
of the two ROIs across the medial-lateral and/or inferior-superior axes. See movies 
1- 5 for rotating exploded views of high communication sub-regions. 
 
For the medial temporal lobe data we observe high communication sub-regions with 
tight spatial coherency and consistent location in neighboring areas of directly 
connected regions of interest. We note, as expected, that voxels in a given high 
communication sub-region have direct cross-ROI connections with voxels in the 
corresponding high communication sub-region but we also observe a number of 
cross-ROI direct connections with voxels throughout the body of the ROI. (See figure 
S12 in supplementary material for a summary of distances between connected 
voxels.)  Our high communication sub-regions are in excellent agreement with the 
high resolution diffusion tensor imaging results reported in Zeineh et al., (2012). In 
particular, the high communication sub-regions coincide with areas that show high 
density of fiber tracts for the corresponding medial temporal lobe pathways. (See 
figures 6-2, 6-4, 6-5 and 6-6 in Zeineh et al., (2012).) 
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Figure 5. Left hemisphere 3D voxel space representation of  (A) entorhinal cortex and CA32DG regions 
of interest; (B) voxelwise connectivity degree heatmaps for each region of interest (darker colors imply 
higher degree); (C) exploded view of connectivity degree heatmaps; (D) exploded view of high 
communication sub-regions (orange).   Communication sub-regions are located in the inferior anterior 
portion of CA32DG and in the outmost medial and lateral sections of the entorhinal cortex. See movie 1. 
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Figure 6. Left hemisphere 3D voxel space representation of  (A) CA32DG and CA1 regions of interest; 
(B) voxelwise connectivity degree heatmaps for each region of interest (darker colors imply higher 
degree); (C) exploded view of connectivity degree heatmaps; (D) exploded view of high communication 
sub-regions (purple).  The communication sub-regions are remarkably large in both regions of interest. 
In CA1 it includes a big stripe from superior to inferior areas. Conversely, in CA32DG it runs from 
superior to inferior areas, ending where the CA1 region ends. See movie 2. 
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Figure 7. Left hemisphere 3D voxel space representation of  (A) CA1 and subiculum regions of interest; 
(B) voxelwise connectivity degree heatmaps for each region of interest (darker colors imply higher 
degree); (C) exploded view of connectivity degree heatmaps; (D) exploded view of high communication 
sub-regions (pink).  In the subiculum the communication sub-region includes inferior to top superior 
lateral areas. Conversely in CA1 the sub-region encompasses from inferior to top superior medial areas. 
See movie 3. 
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Figure 8. Left hemisphere 3D voxel space representation of  (A) subiculum and entorhinal cortex regions 
of interest; (B) voxelwise connectivity degree heatmaps for each region of interest (darker colors imply 
higher degree); (C) exploded view of connectivity degree heatmaps; (D) exploded view of high 
communication sub-regions (yellow).  In the entorhinal cortex the communication sub-region is located 
mainly in the medial superior part and more sparsely in the lateral part. In the subiculum it is located in 
its inferior lateral and medial part. See movie 4. 
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Figure 9. Left hemisphere 3D voxel space representation of  (A) entorhinal cortex and CA1 regions of 
interest; (B) voxelwise connectivity degree heatmaps for each region of interest (darker colors imply 
higher degree); (C) exploded view of connectivity degree heatmaps; (D) exploded view of high 
communication sub-regions (green).  The communication sub-regions are very compact in both ROIs. In 
entorhinal cortex it encompasses the utmost posterior lateral area and in CA1 the utmost inferior area. 
See movie 5.  

 
 
 
 
High communication sub-regions in a particular region of interest may overlap 
indicating voxels with direct functional connectivity with more than one ROI. To 
illustrate this case we show in figure 10 the region of interest for left hemisphere 
entorhinal cortex and its high communication sub-regions with subiculum, CA1 and 
CA32DG, indicating the entorhinal voxels where overlapping occurs. 
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Figure 10. Left hemisphere 3D voxel space representation of entorhinal cortex, showing communication 
sub-regions with subiculum (yellow), CA1 (green) and CA32DG (orange), and voxels where overlapping 
of sub-regions occur (brown). Sub-regions with subiculum and CA32DG overlap in medial areas of the 
entorhinal cortex. Sub-regions with CA1 and CA32DG overlap in lateral areas.  

 
 
Sensitivity to registration issues 
 
With multiple scans, whether of the same individual or different individuals, the 
procedure we have described raises questions of the accuracy of co-registration 
when the data from multiple scanning sessions are concatenated, as we did here. In 
particular, if non-equivalent voxels from various concatenated scans are incorrectly 
co-registered to the same standard space coordinates, estimation of the influence of 
a voxel in one ROI on voxels in another ROI will not come from concatenated signals 
of correctly equivalent voxels but from a mixture of signals of non-equivalent voxels. 
This problem is relevant given that mixture of signals has been reported as one of 
the most detrimental conditions for inference of fMRI functional and effective 
connectivity (Smith et al., 2011).  
   
To test the sensitivity of the procedure to such effects, we simulate two cases of 
incorrect co-registration in the single individual medial temporal lobe data. In the first 
case, for each of the first ten concatenated sessions, we randomly shifted each 
voxel in each ROI by zero or one voxel step in each of the x, y, and z coordinates. 
For the second case, the same process was carried out but shifting each voxel by 
zero, one, or two voxel steps in each coordinate. In both cases, the resulting 
estimated high communication sub-regions were qualitatively identical to those 
obtained with the original data, but with slightly reduced connectivity degree for each 
voxel. We illustrate these results in figure 11, where for the left hemisphere 
entorhinal cortex we show the high communication sub-region with subiculum for the 
original data (zero shifting) and the second case data (zero, one or two voxel 
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shifting). In both cases the sub-regions are qualitatively similar in location and 
density. We also show in figure 11 connectivity degree heatmaps for entorhinal 
cortex voxels. As previously mentioned, in the second case data (zero, one or two 
voxel shifting) the voxels in the communication sub-region have smaller connectivity 
degree than in the original data (zero shifting).  
 
 
 
 

 
 
 

Figure 11. Left hemisphere 3D voxel space representation of entorhinal cortex showing, (top row) high 
communication sub-region with subiculum for original data (shift = 0) and second case data (shift = 
0,1,2); (bottom row) connectivity degree heatmaps for original data (shift = 0) and second case data 
(shift = 0,1,2). The high communication sub-region is spatially similar in both cases but with differences 
in connectivity degrees. 

 
 
Application to resting state corticostriatal data 
 
Using deterministic fiber tractography on diffusion spectrum imaging data for 59 
individuals, Jarbo and Verstynen (2015) describe the intrahemispheric structural 
connectivity of inputs to the caudate nucleus and putamen from the orbitofrontal 
(OFC), dorsolateral prefrontal (DLPFC) and posterior parietal cortices. They show 
that anatomical connections coming from OFC, DLPFC and posterior parietal cortex 
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converge in respective regions of the caudate and the putamen, suggesting the 
presence of a network that integrates reward, executive control and spatial attention 
during spatial reinforcement learning. 
 
The Jarbo and Verstynen (2015) structural connectivity network together with well-
established knowledge about the direction of the flow of information in corticostriatal 
pathways (Wilson, 1989) can be represented with the graphical structure in figure 
12. 
 
 

 
 

Figure 12. Graphical structure for selected regions of interest in a corticostriatal circuitry. The cortical 
ROIs, OFC, DLPFC and parietal are direct causes of the caudate and the putamen. Cortical ROIs are 
interconnected but we do not specify the direction of the interaction.  
 
 
 
In accordance with the graphical structure in figure 12, we run the Voxelwise 
Conditional Independence algorithm for three conditional independence relations for 
the caudate nucleus, (caudate, OFC | DLPFC, parietal), (caudate, DLPFC | OFC, 
parietal), and (caudate, parietal | OFC, DLPFC); and three for the putamen 
(putamen, OFC | DLPFC, parietal), (putamen, DLPFC | OFC, parietal) and (putamen, 
parietal | OFC, DLPFC). We concatenate resting state fMRI data for 50 individuals3 
described in Jarbo and Verstynen (2015).  
 
Anatomical scans and raw resting state fMRI scans were provided to us by the 
Cognitive Axon Lab in Carnegie Mellon University. We include here general 
information about acquisition. Full details are available in Jarbo and Verstynen 
(2015). Anatomical T1-weighted high-resolution images acquired with an MPRAGE 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 The original fMRI resting-state data of Jarbo and Verstynen (2015) contained 55 
individuals. We removed an additional 5 individuals because of difficulties in the MNI 
standard space registration produced by non-brain structures. 
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sequence (1mm isotropic voxels, 176 slices). Resting state functional data consisted 
of 210 T2*-weighted volumes with a BOLD contrast with echo planar imaging (EPI) 
sequence (TR= 2000ms, TE = 29ms, voxel size =3.5mm isotropic, field of view  = 
224 x 224 mm, flip angle = 79o).  
 
We preprocessed the resting state functional data using FEAT (FMRI Expert 
Analysis Tool) Version 6.00, part of FSL (FMRIB's Software Library, 
www.fmrib.ox.ac.uk/fsl): motion correction using MCFLIRT (Jenkinson et al., 2002); 
non-brain removal using BET (Smith, 2002); grand-mean intensity normalization of 
the entire 4D dataset by a single multiplicative factor; highpass temporal filtering 
(Gaussian-weighted least-squares straight line fitting, with sigma=50.0s) and no 
spatial smoothing to prevent voxelwise BOLD signal mixing. We apply the artifact 
removal procedure FIX (Salimi-Korshidi et al., 2014; Griffanti et al., 2014) using ICA 
components obtained with MELODIC 3.14 (Beckmann and Smith, 2004), 
conservative threshold level of 5, and the standard training dataset, as suggested in 
the user guide (fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX/UserGuide). The cleaned functional 
data was registered to FSL’s MNI152 standard space (2mm isotropic voxels) using 
linear registration FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002) with 
spline interpolation. 
 
In contrast to Jarbo and Verstynen (2015) who used the SRI24 space multichannel 
atlas (Rohlfing et al., 2010) to select ROIs for their diffusion imaging analysis, we 
used the AAL atlas (Tzourio-Mazoyer et al., 2002) defined in the MNI space of the 
functional data. The six cortical ROIs (three per hemisphere) were created as 
indicated in Jarbo and Verstynen (2015): OFC was formed as an aggregation of 
gyrus rectus (Rectus); ventromedial prefrontal cortex (Frontal_Med_Orb); and 
opercular, orbital, and triangular parts of the inferior frontal gyrus (Frontal_Inf_Oper, 
Frontal_Inf_Orb, Frontal_Inf_Tri). DLPFC was formed as an aggregation of dorsal 
and orbital middle and superior frontal gyri (Frontal_Mid, Frontal_Mid_Orb, 
Frontal_Sup, Frontal_Sup_Orb). Parietal cortex as an aggregation of superior and 
inferior parietal lobules (Parietal_Sup, Parietal_Inf); angular gyrus (Angular) and 
supramarginal gyrus (SupraMarginal). Caudate and putamen ROIs were used as 
included in the AAL atlas. Figure 13 shows 3D rendered left and right hemisphere 
AAL ROIs for caudate and putamen. 
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Figure 13. Anterior and posterior views of 3D rendered left and right hemisphere caudate and putamen 
AAL ROIs. 

 
Given the number of voxels contained in each ROI in MNI space (2mm isotropic 
voxels), the covariance matrices to estimate the voxelwise conditional independence 
relations contain approximately 25,000 variables. Our resting state dataset does not 
include enough scanning sessions to concatenate and guarantee a larger number of 
datapoints than variables. To circumvent this dimensionality problem and be able to 
invert the covariance matrices, we applied FSL’s subsamp2 tool to downsample the 
MNI-registered functional data from 2mm isotropic voxels to 4mm isotropic voxels. 
The downsampling implied an eight-fold decrease in the number of voxels in the 
ROIs, thus reducing the number of variables in the covariance matrices to 
approximate 3,100 variables. This reduction was sufficient to obtain enough 
concatenated datapoints for the voxelwise conditional independence tests. The 
enlarged voxels may also aid with variations across individuals in the roles of 
neighboring voxels and with small co-registration errors. Results for left hemisphere 
high communication sub-regions in the caudate and in the putamen with OFC, 
DLPFC and posterior parietal cortex are shown in figures 14 - 16. Movies 6 – 11 
show corresponding rotating views. Results for right hemisphere are given in figures 
S9 – S11 in supplementary material.  
  
To contrast our functional results to the structural results of Jarbo and Verstynen 
(2015), we use NIfTI images at MNI 2mm space for group corticostriatal structural 
connectivity endpoints (see Jarbo and Verstynen (2015) for details on their group 
structural analysis), and mask these images with the AAL ROIs for caudate and 
putamen to extract voxelwise structural connectivity endpoints for each of the OFC, 
DLPFC and parietal cases. Caudate and putamen ROIs are represented in 3D voxel 
space plots at their original 2mm voxel resolution, showing in an assigned color, 
voxels with cortical connectivity endpoints for the OFC, DLPFC and parietal cases. 
For comparison, each of these voxelwise structural connectivity endpoints 3D plots 
was included as an inset box in the corresponding caudate and putamen functional 
connectivity 3D plot in figures 14 – 16.  
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Figure 14. Main boxes show 3D voxel space representations of left hemisphere functional high 
communication sub-regions (yellow) in the caudate (top row) and in the putamen (bottom row), for 
orbitofrontal cortex (OFC) at 4mm voxel resolution. Inset boxes show the corresponding structural 
connectivity endpoints with OFC obtained by Jarbo and Verstynen (2015) at 2mm voxel resolution. See 
movie 6 and 7. 
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Figure 15. Main boxes show 3D voxel space representation of left hemisphere functional high 
communication sub-regions (purple) in the caudate (top row) and in the putamen (bottom row), for 
dorsolateral prefrontal cortex (DLPFC) at 4mm voxel resolution. Inset boxes show the corresponding 
structural connectivity endpoints with DLPFC obtained by Jarbo and Verstynen (2015) at 2mm voxel 
resolution. See movie 8 and 9. 
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Figure 16. Main boxes show 3D voxel space representation of left hemisphere functional high 
communication sub-regions (pink) in caudate (top row) and in putamen (bottom row), for posterior 
parietal cortex (parietal) at 4mm voxel resolution. Inset boxes show corresponding structural 
connectivity endpoints with parietal cortex obtained by Jarbo and Verstynen (2015) at 2mm voxel 
resolution. See movie 10 and 11. 
 
 
 
 
Discussion 
 
In the hippocampus network case, concatenating ten medial temporal lobe resting 
state high resolution scans of the same individual, our Voxelwise Conditional 
Independence algorithm finds on purely statistical grounds, for each pair of regions 
of interest, spatially proximate voxels in different functional regions that are highly 
connected to neighboring and distant voxels. Qualitatively similar results are 
obtained with as few as five scans (see figure S4 and S8 in supplementary material). 
These results are in good agreement with those suggested by high resolution 
diffusion tensor imaging (Zeineh et al., 2012), and they are qualitatively stable under 
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misalignments of voxels by 1 or 2 voxel position in any direction. In the corticostriatal 
network case, downsampling the size of the voxels and concatenating resting state 
data from multiple individuals, we are able to recover voxel to voxel functional 
connections in the caudate and the putamen that follow qualitatively voxelwise 
patterns of structural connectivity from deterministic fiber tractography on diffusion 
spectrum imaging. The data analysis procedures of course differ and this may 
explain some of the discrepancies observed. The group structural connectivity 
conclusions in Jarbo and Verstynen (2015) were obtained by t-tests over 59 
individuals, whereas we have concatenated BOLD time series data from 50 of those 
individuals. The downsampling of the voxel size in our functional analysis and small 
spatial differences in the regions of interest possibly introduces some variations. In 
the illustrations above, we thresholded our results to select voxels with high 
functional connectivity degree, and while many of the highly functionally connected 
voxels correspond to structurally connected voxels, it may be that some of the 
structurally connected voxels have lower functional connectivity degree and thus 
were not included in the high communication sub-region. We also notice that in 
some cases voxels included in high communication sub-regions seem to lack 
structural connections, particularly in the posterior area of the putamen and in the 
utmost inferior area of the caudate. One plausible explanation is the presence of 
latent confounding variables that produce spurious functional connection estimates 
because they are not properly conditioned on. This scenario would arise if, for 
example, a cortical region of interest with inputs to the putamen and connected with 
the orbitofrontal cortex and with the dorsolateral prefrontal cortex is not properly 
included in our corticostriatal causal graph.    
 
Our procedure can be thought as an application of partial correlation estimation of 
functional connectivity (Salvador et al., 2005; Marrelec et al., 2006; Liu et al., 2008; 
Ferrarini et al., 2009; Marrelec and Fransson, 2011; Smith et al., 2011, 2013; Brier et 
al., 2015) but at voxel level scale, with a restricted set of variables in the conditioning 
set derived from a given ROI level causal graph and with the goal of detecting 
subsets of highly connected voxels within pairs of assumed causally directly 
connected ROIs.  
 
The analyses of BOLD data described here illustrate one method for resolving inter-
neural processes at the voxel level, that is, establishing causal connections between 
individual voxels. We have used the technique to estimate high communication sub-
regions based on the voxelwise connectivity degree, but it could be used for many 
other purposes, for example for identifying the internal causal structure of regions of 
interest or for identifying voxels near the physical boundaries of a region of interest 
that ought to be included within it or excluded from it.  
 
Alternative methods for the same purposes are possible and deserve to be 
investigated. Other conditional independence procedures with our strategy might use 
penalized sparse partial regression methods such as adaptive lasso (Zou, 2006) or 
glasso (Friedman et al., 2008), and recent implementations such as QUIC and 
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BigQUIC allow to solve problems for up to one million variables (Hsieh et al., 2013, 
2014). These methods have the disadvantage that a sparsity parameter needs to be 
chosen independently for each individual and pair of regions considered; and cross-
validated parameter selection require extensive computation for sets of variables of 
the size inspected here. The conditional independence method we have used has 
the advantages that it is reasonably fast and can be used with a false discovery rate 
for statistical error control, but it has some disadvantages. It requires a sample size 
large enough to avoid dimensionality restrictions, which, as in our applications, may 
require concatenating scans. Concatenation itself can produce non-causal 
associations (Ramsey, et al., 2011). This problem may be reduced with high-
dimensional methods such as glasso. Further, all conditional independence methods 
require prior knowledge of the directed graph of effective connections between 
regions of interest to properly define the dependencies that should be tested. 
Without such knowledge, partial correlation analysis introduces false positive 
connections between pairs of variables that have a common effect (Mumford and 
Ramsey, 2014). The methods therefore should be used only with some care when 
estimating effective connections at the voxel level. These limitations can in principle 
be addressed with the IMaGES algorithm (Ramsey, et al 2010, 2011), which, 
however, does not produce error probabilities, or with the PC algorithm (Spirtes and 
Glymour, 1991), or its modifications (Colombo and Maathuis, 2014), which allow 
false discovery rate error probabilities but are comparatively slow and require a 
method for conditional independence testing on multiple independent data sets 
(Fisher, 1950; Tillman, 2009). The computational challenges facing these several 
methods can in principle be addressed by parallelization on multiple-thread 
supercomputers (Ramsey, 2015). 
 
In contrast to conditional independence procedures, simple correlation methods are 
expected to produce misleadingly dense connections because they confound 
multiple pathways between and within multiple regions of interest.  For example, 
correlation does not identify the direct pathways from, e.g., dorsolateral prefrontal 
cortex to caudate, and the functional connectivity spatial patterns do not accord with 
the structural results. Even with a very low alpha level of 10-25 for the correlation 
significance test, the putamen and caudate connectivity pattern for each of the 
cortical inputs form a dense cluster of high-degree voxels located in the exactly 
same spatial region. In the medial temporal lobe data, using correlations with a very 
low alpha level of 10-14 for the correlation significance tests produces voxels with 
very high connectivity degree distributed across large areas of the corresponding 
ROIs without the tight spatial coherency observed in the high communication sub-
regions obtained by our algorithm. This is probably an artifact of the transitive 
closure of correlations among variables in causal chains and from correlation of 
variables sharing a common cause. 
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Conclusion 
 
Properly selected regions of interest contain voxels of neural cells that act more or 
less coherently to affect neural cells in voxels in other regions of interest, but the 
working of sub-groups of neural cells internal to a ROI is not uniform in its effects on 
cells in other ROIs. Some collections of neural cells will more directly receive 
incoming signals from an external source; some will send to an external source or 
sources; some will chiefly pass signals within a ROI; and some will have multiple 
roles. The specialization is not all-or-none but a matter of degree. fMRI regions of 
interest decomposition with multiple scans can to some degree distinguish these 
sub-regions and bring us closer to understanding the functional and causal roles of 
neural complexes. 
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APPENDIX 
 
Technical Remarks on the Voxelwise Conditional Independence Algorithm. 
 
(a) In the medial temporal lobe case, the α level used for the False Discovery Rate 
procedure in step 7 of the algorithm is quite low. The reason is that for our medial 
temporal lobe resting state fMRI data, distributions of the BOLD signals of individual 
voxels are moderately to extremely non-Gaussian according to the Anderson-Darling 
test of non-Gaussianity. As a result, the Gaussian Fisher Z transform does not apply; 
however, a generalization of the Fisher Z transform does apply (Hawkins et al., 
1989).  
 
Computation of the Generalized Fisher Z is much more time consuming than 
computation of the Gaussian Fisher Z. Instead, conditional independence relations 
for all voxels in two regions of interest were computed for both Gaussian Fisher Z 
and Generalized Fisher Z, finding that a Generalized Fisher Z cutoff index k of the 
FDR procedure at an α level of 0.001corresponded to Gaussian Fisher Z p-values in 
the range of 10-14 - 10-12. Thus, using a Gaussian Fisher Z, we choose an α level for 
FDR of 10-14 for the medial temporal lobe data in all cases. Choice of a higher α level 
for the Generalized Fisher Z comparisons would of course yield higher values for the 
Gaussian Fisher Z, with correspondingly higher connectivity degrees. 
 
(b) The Gaussian CDF in principle never has the value 1, but all numerical 
computational implementations return 1 for extreme positive values of the statistic. 
Values of 1 for the CDF correspond to p-values of 0, and hence computation of p-
values does not distinguish among very low values. Therefore, at a small risk of false 
positives (incorrect rejections of the conditional independence hypothesis) we ignore 
the possibility that in the FDR procedure, real values of computed p-values of 0 
could be > kα/m, where k is the index of the hypothesis test in the sorted list of p-
values and m is the number of tests.  
 
(c) In step 4 of the algorithm, the discounting of sample size in the calculation of the 
Gaussian Fisher Z for the partial correlations follows Spirtes et al., (2000).  
 
(d) Note that r(x, y) in step 3 of the algorithm is the correlation of x and y conditional 
on V \ <x, y>; where V is the set of all the voxels in Rx, Ry, and in the conditioning 
separating subset <Rz1,...,Rzn>; this conditional (or partial) correlation is easily 
calculated from the precision matrix, Q, and we use it here.  
 
(e) In some cases, as with the corticostriatal data used here, the number of voxels to 
be compared by method (a) above, for the selection of α level for the FDR, is 
infeasibly large. Instead, we chose the smallest α level that results in a non-singular 
distribution of degrees of connectivity of the voxels. For the corticostriatal data we 
select an α level for FDR of 0.001.  
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(f) For the False Discovery Rate computation we follow the Benjamini-Hochberg 
procedure (Benjamini and Hochberg, 1995). 
 
(g) The voxel connectivity degree empirical distribution can be very different among 
ROIs, varying in shape and domain depending on intrinsic connectivity properties of 
the regions of interest. For this reason, in step 9 of the algorithm we must compute 
the k-means clustering independently for each ROI connectivity degree distribution. 
 
(h) To guarantee the robustness of the k-means clustering result for each case, we 
run the k-means algorithm 1,000 times and choose the mode.  
 
(i) The algorithm was implemented in Java, and run in a 1.4Ghz dual core, 8G RAM, 
MacBook Air.  
 
(j) Java code for the algorithm is currently available on request but will be placed in a 
GitHub repository. 
 
(k) ROIs 3D renders and 3D voxel space figures were done in MATLAB R2015a, 
using functions patch and isonormals, and the package vol3d v2. 
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