New Results
Predicting symptom severity in autism spectrum disorder based on cortical thickness measures in agglomerative data
Elaheh Moradi, Budhachandra Khundrakpam, John D. Lewis, Alan C. Evans, Jussi Tohka
doi: https://doi.org/10.1101/039180
Elaheh Moradi
aDepartment of Signal Processing, Tampere University of Technology, Tampere, Finland
Budhachandra Khundrakpam
2McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
John D. Lewis
2McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
Alan C. Evans
2McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
Jussi Tohka
3Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Avd. de la Universidad, 30, 28911, Leganes, Spain
4Instituto de Investigacion Sanitaria Gregorio Marañon, Madrid, Spain
Article usage
Posted August 29, 2016.
Predicting symptom severity in autism spectrum disorder based on cortical thickness measures in agglomerative data
Elaheh Moradi, Budhachandra Khundrakpam, John D. Lewis, Alan C. Evans, Jussi Tohka
bioRxiv 039180; doi: https://doi.org/10.1101/039180
Subject Areas
- Biochemistry (13000)
- Bioengineering (9881)
- Bioinformatics (31666)
- Biophysics (16346)
- Cancer Biology (13399)
- Cell Biology (19100)
- Clinical Trials (138)
- Developmental Biology (10350)
- Ecology (15357)
- Epidemiology (2067)
- Evolutionary Biology (19613)
- Genetics (13003)
- Genomics (17989)
- Immunology (13101)
- Microbiology (30614)
- Molecular Biology (12776)
- Neuroscience (66874)
- Paleontology (490)
- Pathology (2067)
- Pharmacology and Toxicology (3560)
- Physiology (5551)
- Plant Biology (11450)
- Synthetic Biology (3189)
- Systems Biology (7849)
- Zoology (1775)