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ABSTRACT 

A model which treats the denatured and the native conformers as being confined to harmonic 

Gibbs energy wells has been used to rationalize the physical basis for the non-Arrhenius 

behaviour of spontaneously-folding fixed two-state systems. It is shown that at constant 

pressure and solvent conditions: (i) the rate constant for folding will be a maximum when the 

heat released upon formation of net molecular interactions is exactly compensated by the heat 

absorbed to desolvate net polar and non-polar solvent accessible surface area (SASA), as the 

denatured conformers driven by thermal noise bury their SASA and diffuse on the Gibbs 

energy surface to reach the activated state; (ii) the rate constant for unfolding will be a 

minimum when the heat absorbed by the native conformers to break various net backbone 

and sidechain interactions is exactly compensated by the heat of hydration released due to the 

net increase in SASA, as the native conformers unravel to reach the activated state; (iii) the 

activation entropy for folding will be zero, and the Gibbs barrier to folding will be a 

minimum, when the decrease in the backbone and the sidechain mobility is exactly 

compensated by the increase in entropy due to solvent-release, as the denatured conformers 

bury their SASA to reach the activated state; (iv) the activation entropy for unfolding will be 

zero, and the Gibbs barrier to unfolding will be a maximum when the increase in the 

backbone and sidechain mobility is exactly compensated by the negentropy of solvent-

capture on the protein surface, as the native conformers unravel to reach the activated state; 

(v) while cold denaturation is driven by solvent effects, heat denaturation is primarily due to 

chain effects; (vi) the speed-limit for the folding is ultimately due to conformational 

searching; and (vii) Levinthal’s paradox may have little basis if the entropy of solvent-release 

that accompanies protein folding is taken into consideration.  
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INTRODUCTION 

It was shown in the preceding papers, henceforth referred to as Papers I-III that the 

equilibrium and kinetic behaviour of spontaneously-folding fixed two-state systems can be 

analysed using parabolic approximation. While the theory and assumptions, and the basic 

equations underlying this procedure were described in Paper-I, equations governing 

temperature-dependence were derived in Paper-II.1,2 The framework from Papers I and II was 

then used to give a detailed description of the non-Arrhenius behaviour of the 37-residue 

FBP28 WW domain at an unprecedented temperature range and resolution (Paper-III).3 The 

purpose of this article is to give a detailed physical explanation for the non-Arrhenius 

behaviour of two-state systems in terms of chain and solvent effects, once again, using FBP28 

WW as an example.4 Because this article is primarily an extension of Paper-III, those aspects 

that were discussed adequately in Paper-III will not be readdressed here; consequently, any 

critical appraisal of the conclusions drawn here must be done in conjunction with Paper-III in 

particular, and Papers I and II, in general. 

RESULTS AND DISCUSSION 

Determinants of the enthalpies  

1. Activation enthalpy for folding  

The physical basis for the temperature-dependence of the activation enthalpy for the partial 

folding reaction [ ]D TS may be rationalized by deconvoluting it into its formal 

components. 

TS-D( ) TS-D(res-res)( ) TS-D(res-solvent)( ) TS-D(solvent-solvent)( )T T T TH H H H           (1) 

TS-D(res-res)( ) TS-D(backbone)( ) TS-D(sidechain)( )T T TH H H          (2) 

TS-D(res-solvent)( ) TS-D(nonpolar-solvent)( ) TS-D(polar-solvent)( )T T TH H H         (3) 

where ΔH
TS-D(T)

  is the total change in enthalpy for the activation of conformers from the DSE 

to the TSE at any given temperature, pressure and solvent conditions, and ΔH
TS-D(res-res)(T)

 is 

purely due to the formation of net backbone and side-chain contacts en route to the TSE, i.e., 

relative to whatever residual structure that pre-exists in the DSE under folding conditions 

(includes all possible kinds of molecular interactions such as hydrophobic and van der Waals 



Page 4 of 59 
 

interactions, hydrogen bonding, long-range electrostatic interactions and salt-bridges etc., 

including the enthalpy of ionization that stems from perturbed pK
a
s of ionisable residues).5-8 

The term ΔH
TS-D(res-solvent)(T)

 represents the activation enthalpy due to the desolvation of polar 

and non-polar residues (changes in the solvation shell; see Fig. 1 in Frauenfelder et al., 2009), 

while ΔH
TS-D(solvent-solvent)(T)

 is purely due to the reorganization of the bulk solvent.9,10  

Since water soluble globular proteins to which this entire discussion is relevant fold in ~55 M 

of water, to a first approximation, the contribution of the change in enthalpy due to the 

reorganization of bulk solvent
 
to ΔH

TS-D(T)
 may be ignored. The reasons are as follows: First, 

in most in vitro protein folding experiments the molar concentration of the protein under 

investigation ranges from sub-micromolar (in single molecule spectroscopy) to a few hundred 

micromolar (in NMR studies). Therefore, the ratio of the molar concentration of the bulk 

water to protein is ~107 at the lower-end, and about 105 at the higher-end. It is thus not too 

unreasonable to assume that such an incredibly small amount of solute will not be able to 

significantly alter the physical properties of bulk water. Second, although the properties of 

bulk water (density, dielectric constant, surface tension, viscosity etc.) invariably vary with 

temperature, particularly if the temperature range is substantial, the effects that stem from this 

variation will cancel out for any given temperature since we are calculating the difference 

between the values of the state functions of the reaction-states. That one can subtract out the 

contribution of bulk water is at the heart of differential scanning calorimetry: The heat 

absorbed or released at constant pressure by the protein+buffer cell is relative to that of the 

buffer cell. If the thermal behaviour of bulk water in protein+buffer cell is significantly 

different from the behaviour of water in the buffer cell, then the midpoint of heat 

denaturation, T
m
, and the equilibrium enthalpy of unfolding at T

m
 (ΔH

D-N(cal)(Tm)
) obtained 

from calorimetry  will not agree with ΔH
D-N(vH)(Tm)

 (van’t Hoff enthalpy) obtained from 

analysis of a sigmoidal thermal denaturation curve (obtained using spectroscopy, typically 

CD 217 nm for β-sheet proteins, CD 222 nm for α-helical proteins, and CD 280 nm for 

tertiary structure) using a two-state approximation (van’t Hoff analysis), even if the protein 

were a legitimate two-state folder.11,12 If and only if these arguments hold, we may write 

TS-D( ) TS-D(backbone+sidechain)( ) TS-D(polar solvent+non-polar solvent)( )

TS-D(chain)( ) TS-D(desolvation)( )

T T T

T T

H H H

H H

    

   
   (4) 



Page 5 of 59 
 

Of the two terms on the right-hand-side (RHS), the first term due to chain enthalpy is 

negative (exothermic) and favours, while the second term due to desolvation enthalpy is 

positive (endothermic) and disfavours the enthalpic activation of the denatured conformers to 

the TSE.9,13 Inspection of Figure 1 immediately demonstrates that for T ≤ T < T
H(TS-D)

,
 
the 

unfavourable desolvation enthalpy dominates over favourable chain enthalpy making it 

enthalpically unfavourable to activate the conformers in the DSE to the TSE (ΔH
TS-D(T)

 > 0), 

and for T
H(TS-D) 

< T ≤ T,
 
the favourable chain enthalpy dominates over the unfavourable 

desolvation enthalpy making it enthalpically favourable to activate the denatured conformers 

to the TSE (ΔH
TS-D(T)

 < 0); and these two opposing enthalpies cancel each other out at T
H(TS-D)

 

such that 2
( ) TS-D( )ln 0f T Tk T H RT      and k

f(T)
 is a maximum (Figure 1−figure 

supplement 1). Thus, a corollary is that for a two-state folder at constant pressure and 

solvent conditions (for example, no change in the pH of the solvent due to the temperature-

dependence of the pK
a
 of the constituent buffer), “the Gibbs barrier to folding is purely 

entropic, the solubility of the TSE as compared to the DSE is the greatest, and k
f(T)

 is a 

maximum, when the heat released upon formation of net molecular interactions is exactly 

compensated by the heat absorbed to desolvate net polar and non-polar SASA, as the 

denatured conformers propelled by thermal energy, bury their SASA and diffuse on the Gibbs 

energy surface to reach the activated state” (Figure 1−figure supplement 2; see Massieu-

Planck activation potentials in Paper-III).3  

We may now take this analysis one step further by introducing the notion of residual 

enthalpies. It is apparent from inspection of Eq. (4) that even if we have no information on 

the absolute values of the terms on the RHS, if for a given temperature we find that the left-

hand-side (LHS) is algebraically positive, it implies that ΔH
TS-D(T)

 is purely due to the 

residual desolvation enthalpy ( TS-D(desolvation)( ) 0TH   ) which by definition is the positive or 

endothermic remnant of the algebraic sum of the endothermic desolvation enthalpy and the 

exothermic chain enthalpy. Conversely, if we find that the LHS is algebraically negative at a 

given temperature, it implies that ΔH
TS-D(T)

 is purely due to the residual chain enthalpy (

TS-D(chain)( ) 0TH   ) which by definition is the negative or exothermic remnant of the algebraic 

sum of the endothermic desolvation enthalpy and the exothermic chain enthalpy (the 

superscripts δ+ or δ- indicate the algebraic sign of the residual quantities). Consequently, we 

may conclude from inspection of Figure 1 that for T ≤ T < T
H(TS-D)

, ΔH
TS-D(T)

 is purely due 
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to the residual desolvation enthalpy ( TS-D(desolvatTS-D( ion)( )) 0T THH    ), making it 

enthalpically unfavourable;  and for T
H(TS-D) 

< T ≤ T,
 
ΔH

TS-D(T) 
is purely due to the residual 

chain enthalpy ( TS-D(chTS-D( ain)() ) 0T THH     ), making it enthalpically favourable to activate 

the denatured conformers to the TSE. Naturally, when T = T
H(TS-D)

, the residual enthalpies 

become zero such that the activation of the denatured conformers to the TSE is enthalpically 

neutral. 

2. Change in enthalpy for the partial folding reaction[ ]TS N  

Applying similar considerations as above for the second-half of the folding reaction, we may 

write  

N-TS( ) N-TS(backbone + sidechain)( ) N-TS(nonpolar-solvent + polar-solvent)( )

N-TS(chain)( ) N-TS(desolvation)( )

 

              

T T T

T T

H H H

H H

    

   
    (5) 

Of the two terms on the RHS, the first term due to chain enthalpy is negative and favourable, 

while the second term due to desolvation enthalpy is positive and unfavourable. Unlike the 

ΔH
TS-D(T)

 function which changes its algebraic sign only once across the entire temperature 

range over which a two-state system is physically defined (T
α
 ≤ T ≤ T

ω
; see Paper-III),3 the 

behaviour of ΔH
N-TS(T)

 function is far more complex. Inspection of Figure 2 demonstrates 

that for the temperature regimes T  
≤ T < T

S()
 and T

H(TS-N)
 < T < T

S()
, the exothermic chain 

enthalpy dominates over the endothermic desolvation enthalpy. Consequently, we may 

conclude that the reaction [ ]TS N is enthalpically favoured and is purely due to the 

residual chain enthalpy ( N-TS(chN-TS( ain)() ) 0T THH     ). In contrast, for the temperature 

regimes T
S()

 < T < T
H(TS-N)

 and T
S()

 < T ≤ T, the endothermic desolvation enthalpy 

dominates over the exothermic chain enthalpy, leading to [ ]TS N  being enthalpically 

disfavoured, and is purely due to the residual desolvation enthalpy (

N-TS(desolvatN-TS( ion)( )) 0T THH    ). At the temperatures T
S()

, T
H(TS-N)

, and T
S()

, the residual 

enthalpies become zero, such that [ ]TS N from the viewpoint of enthalpy is neither 

favoured nor disfavoured (ΔH
N-TS(T) 

= 0). 
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3. Activation enthalpy for unfolding  

If we reverse the reaction-direction, i.e., for the partial unfolding reaction [ ]N TS  (note 

the change in subscripts that indicate the reaction-direction), we may write 

TS-N( ) TS-N(chain*)( ) TS-N(hydration)( )T T TH H H            (6) 

Unlike the first term on the RHS of Eq. (5), 
TS-N(chain*)( )TH on the RHS of Eq. (6) is 

endothermic since heat is absorbed by the native conformers to break net backbone and side-

chain interactions for them to be activated to the TSE. Similarly, unlike the endothermic 

desolvation enthalpy term on the RHS of Eq. (5), 
TS-N(hydration)( )TH on the RHS of Eq. (6) is 

exothermic since heat is released upon hydration of polar and non-polar SASA as the native 

conformers unravel and expose net SASA to reach the TSE. Inspection of Figure 2−figure 

supplement 1 demonstrates that for the temperature regimes T  
≤ T < T

S()
 and T

H(TS-N)
 < T < 

T
S()

, the endothermic 
TS-N(chain*)( )TH term dominates over the exothermic 

TS-N(hydration)( )TH

term, such that the activation of the native conformers to the TSE is enthalpically 

disfavoured, and is purely due to the residual enthalpy that stems from the heat absorbed to 

break various net backbone and side-chain interactions not being fully compensated by the 

heat of hydration released due to a net increase in SASA ( TS-N(chain*)TS-N ( )( ) 0T TH H   ). In 

contrast, for the temperature regimes T
S()

 < T < T
H(TS-N)

 and T
S()

 < T ≤ T, we have 

TS-N(hydration)( ) TS-N(chain*)( )T TH H   ; consequently, the activation of the native conformers to the 

TSE is enthalpically favoured and is purely due to the residual enthalpy of hydration (

TS-N(hydratTS-N( i n) o )( ) 0T TH H   ). At T
S()

, T
H(TS-N)

, and  T
S()

, we have 

TS-N(chain*)( ) TS-N(hydration)( )T TH H   such that the activation of the conformers from the NSE to 

the TSE is neither favoured nor disfavoured (ΔH
TS-N(T)  

= 0). As explained in Paper-III in 

considerable detail, although ( ) TS-N( )ln 0 0u T Tk T H       at T
S()

, T
H(TS-N)

, and T
S()

 

(Figure 2−figure supplement 2), the behaviour of the system at T
S() 

and T
S()

 is distinctly 

different from that at T
H(TS-N)

.3 While ΔG
TS-N(T) 

= ΔH
TS-N(T) 

= ΔS
TS-N(T)

 = 0, ΔG
TS-D(T)

 = ΔG
N-

D(T)
 > 0, ΔS

TS-D(T)
 = ΔS

N-D(T)
 ≠0,  and k

u(T) 
= k0 (the prefactor in the Arrhenius expression) at 

T
S() 

and T
S()

, the distinguishing features associated with T
H(TS-N)

 is that k
u(T) 

is a minimum 

(k
u(T) 

<< k0), ΔG
TS-N(T) 

> 0, and ΔS
TS-N(T) 

< 0 (see activation entropies and Gibbs energies 
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later). Thus, a corollary is that for a two-state folder at constant pressure and solvent 

conditions, “the Gibbs barrier to unfolding is purely entropic, the molar concentration of the 

conformers in the TSE as compared to those in the NSE is the least, and k
u(T)

 is a minimum, 

when the heat absorbed by the native conformers to break various net backbone and side-

chain interactions is exactly compensated by the heat of hydration released due to a net 

increase in SASA as the native conformers unravel and diffuse on the Gibbs energy surface to 

reach the TSE” (Figure 2−figure supplement 3). 

4. Change in enthalpy for the coupled reaction D N   

Now that the changes in enthalpies for the partial folding reactions [ ]D TS  and 

[ ]TS N  have been deconvoluted into their constituent chain and desolvation enthalpies 

across a wide temperature regime, the physical chemistry underlying the variation in ΔH
N-D(T)

 

(determined independently from thermal denaturation experiments at equilibrium) may be 

rationalized using the relationship N-D( ) TS-D( ) N-TS( )T T TH H H     , and by partitioning the 

physically definable temperature range into six temperature regimes using the reference 

temperatures T, T
S()

, T
H(TS-N)

, T
H
, T

H(TS-D)
, T

S()
, and T (see Table 1).  

Enthalpic Regime I (T  
≤ T < T

S()
): Inspection of Figure 3 demonstrates that while 

[ ]D TS  is enthalpically disfavoured and is purely due to the endothermic residual 

enthalpy of desolvation ( TS-D(desolvation)( ) 0TH   ), the reaction [ ]TS N is enthalpically 

favourable and is purely due to the exothermic residual chain enthalpy ( N-TS(chain)( ) 0TH   ). 

Because ΔH
N-D(T) 

> 0 for T < T
H
 (green curve in Figure 3B; see Paper-III and also Becktel 

and Schellman, 1987),3,14 we may write 

( ) ( )
N-D( ) TS-D(desolvation)( ) N-TS(chain)( ) 0

S S
T TT T T T T T T

H H H
   

 

   
         (7) 

As explained earlier, although we have no information on the absolute values of the terms on 

the RHS of Eq. (7), we can nevertheless work out from the algebraic sign of the 

independently determined LHS from thermal denaturation at equilibrium, which one of the 

terms on the RHS is dominant. Thus, the logical conclusion is that although the second-half 

of the folding reaction is enthalpically favoured ( N-TS(chain)( ) 0TH   ), it is unable to fully 

compensate for the unfavourable desolvation enthalpy generated in the first-half of the 
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folding reaction ( TS-D(desolvation)( ) 0TH   ) such that the coupled reaction D N is enthalpically 

disfavoured. When T = T
S()

, the second term on the RHS becomes zero, leading to

( ) ( )
N-D( ) TS-D(desolvation)( ) 0

S S
TT T T T T

H H
 



 
    (intersection of the red and the green curves to the 

left of the encircled area in Figure 3B). This implies that at T
S()

, ΔH
N-D(T)

 is primarily due to 

events occurring in the first-half of the folding reaction. 

Enthalpic Regime II (T
S() 

< T < T
H(TS-N)

): Inspection of Figure 3 shows that for this 

temperature regime, both [ ]D TS  and [ ]TS N are enthalpically disfavoured and are 

purely due to endothermic residual desolvation enthalpies.  

( ) (TS-N ) ( ) (TS-N )
N-D( ) TS-D(desolvation)( ) N-TS(desolvation)( ) 0

S H S H
T T TTT TTT T

H H H
 

 

   
        (8) 

Thus, the independently determined endothermic ΔH
N-D(T)

 for this regime is once again due to 

the enthalpic penalty of desolvation, but unlike Regime I, is determined by both the partial 

folding reactions. When T = T
H(TS-N)

,  the second term on the RHS of Eq. (8) becomes zero, 

leading to
( TS-N ) ( TS-N )

N-D( ) TS-D(desolvation)( ) 0
H H

TT T T T T
H H 

 
    (intersection of the red and the green 

curves inside the encircled area in Figure 3B). Consequently, we may conclude that at T
H(TS-

N)
, ΔH

N-D(T)
 is purely due to the endothermic residual desolvation enthalpy incurred in the 

reaction [ ]D TS . Further, at the two unique temperatures within this regime where ΔH
TS-

D(T)
 = ΔH

N-TS(T) 
(intersection of the blue and the red curves, and indicated by green pointers) 

we have N-D( ) TS-D(desolvation)( ) N-TS(desolvation)( )2 2 0T TTH H H       ; and in terms of the absolute 

enthalpies we have:  TS( ) D( ) N ( ) 2T T TH H H  . 

Enthalpic Regime III (T
H(TS-N)

< T < T
H

): Inspection of Figure 3−figure supplement 1 

shows that the reaction D N is endothermic and enthalpically disfavoured. What this 

implies is that although for this temperature regime the reaction [ ]TS N  is enthalpically 

favoured and is purely due to the exothermic residual chain enthalpy, it nevertheless does not 

fully compensate for the endothermic residual desolvation enthalpy incurred in the reaction

[ ]D TS , such that the coupled reaction D N is enthalpically disfavoured.  

(TS-N ) (TS-N )
N-D( ) TS-D(desolvation)( ) N-TS(chain)( ) 0

H H H H
T T T T T T TT TH H H 

   
         (9) 
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When T = T
H
, we have TS-D(desolvation)( ) N-TS(chain)( )

H
H

T T T T
T TH H 

 
   such that ΔH

N-D(T)
 = 0. A 

corollary is that for a two-state system at constant pressure and solvent conditions, the 

solubility of the NSE as compared to the DSE, or the equilibrium constant for folding is the 

greatest, and is driven purely by the difference in entropy between the NSE and the DSE 

when the endothermic residual desolvation penalty incurred in first-half of the folding 

reaction is exactly compensated by the exothermic residual chain enthalpy generated in the 

second-half of the folding reaction. 

Enthalpic Regime IV (T
H 

< T < T
H(TS-D)

): Inspection of Figure 3 and Figure 3−figure 

supplement 1 shows that the reaction D N is exothermic and enthalpically favourable 

(ΔH
N-D(T) 

< 0). Thus, we may conclude that although the activation of the denatured 

conformers to the TSE is enthalpically disfavoured and is purely due to the residual 

endothermic desolvation enthalpy, this is more than compensated by the exothermic residual 

chain enthalpy generated in the second-half of the folding reaction [ ]TS N , such that the 

coupled reaction D N is enthalpically favoured. 

(TS-D) (TS-D)
N-D( ) TS-D(desolvation)( ) N-TS(chain)( ) 0

H H H H
T T T T T TT T T

H H H 

   
        (10) 

When T = T
H(TS-D)

, the first term on the RHS of Eq. (10) becomes zero since the chain and 

desolvation enthalpies for the reaction [ ]D TS compensate each other exactly. 

Consequently, we have
( TS-D ) ( TS-D )

N-D( ) N-TS(chain)( ) 0
H H

TT T T T T
H H 

 
    (intersection of the blue 

and the green curves in Figure 3B), i.e., the exothermic and favourable ΔH
N-D(T)

 is primarily 

due to events occurring in the second-half of the folding reaction. 

Enthalpic Regime V (T
H(TS-D) 

< T < T
S()

): It is immediately apparent from inspection of 

Figure 3 that the enthalpically favourable coupled reaction D N  is a consequence of both 

the partial folding reactions being enthalpically favourable, and is purely due to exothermic 

residual chain enthalpy. 

(TS-D) ( ) (TS-D) ( )
N-D( ) TS-D(chain)( ) N-TS(chain)( ) 0

H S H S
T T T T T T TT TH H H

 

 

   
         (11) 

When T = T
S()

, the second term on the RHS of Eq. (11) becomes zero owing to the chain and 

desolvation enthalpies for the reaction[ ]TS N compensating each other exactly. 
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Consequently, we have
( ) ( )

N-D( ) TS-D(chain)( ) 0
S S

T T T T TTH H
 



 
    (intersection of the red and the 

green curves to the right of the encircled area in Figure 3B), i.e., ΔH
N-D(T)

 is primarily due to 

events occurring in the first-half of the folding reaction. Further, at the temperature where 

ΔH
TS-D(T)

 = ΔH
N-TS(T) 

(intersection of the blue and the red curves to the right of the encircled 

area in Figure 3B) we have N-D( ) TS-D(chain)( ) N-TS(chain)( )2 2 0T T TH H H        and 

 TS( ) D( ) N ( ) 2T T TH H H  . 

Enthalpic Regime VI (T
S() 

< T ≤ T): Inspection of Figure 3 shows that for this regime, the 

reaction [ ]D TS which is enthalpically favourable and purely due to the exothermic 

residual chain enthalpy, more than compensates for the endothermic residual desolvation 

enthalpy for the reaction [ ]TS N , such that the coupled reaction D N is enthalpically 

favourable. 

( ) ( )
N-D( ) TS-D(chain)( ) N-TS(desolvation)( ) 0

S S
T TT T T T T T T

H H H
   

 

   
         (12) 

Determinants of entropies 

1. Activation entropy for folding  

The physical basis for the temperature-dependence of the activation entropy for the partial 

folding reaction [ ]D TS  may be similarly rationalized by deconvoluting them into their 

formal components.  

TS-D( ) TS-D(res-res)( ) TS-D(res-solvent)( ) TS-D(solvent-solvent)( )T T T TS S S S          (13) 

TS-D(res-res)( ) TS-D(backbone)( ) TS-D(sidechain)( )T T TS S S          (14) 

TS-D(res-solvent)( ) TS-D(nonpolar-solvent)( ) TS-D(polar-solvent)( )T T TS S S         (15) 

where ΔS
TS-D(T)

 is the total change in entropy for the activation of the denatured conformers 

to the TSE, ΔS
TS-D(res-res)(T)

 is the change in entropy due to a change in the backbone and the 

side-chain mobility, ΔS
TS-D(res-solvent)(T)

 is the change in entropy due to reorganization of the 

solvent molecules in the solvation shell, and ΔS
TS-D(solvent-solvent)(T) 

is the change in entropy of 
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the bulk water. As discussed earlier, if to a first approximation we ignore the change in 

entropy due to reorganization of the bulk solvent, we may write 

TS-D( ) TS-D(backbone + sidechain)( ) TS-D(nonpolar-solvent + polar-solvent)( )

TS-D(chain)( ) TS-D(desolvation)( )             

T T T

T T

S S S

S S

    

   
   (16) 

Because the activation of denatured conformers to the TSE involves a net decrease in 

backbone and side-chain mobility as compared to the DSE, the first term on the RHS due to 

chain entropy is negative and opposes folding. In contrast, since solvent molecules are 

released from the solvation shell into the bulk water as the denatured conformers bury net 

polar and nonpolar SASA en route to the TSE, the desolvation entropy term is positive and 

favours the entropic activation of the denatured conformers to the TSE. Consequently, the 

magnitude and algebraic sign of ΔS
TS-D(T)

 is dependent on the intricate temperature-dependent 

balance between these two opposing entropies. 

Inspection of Figure 4 immediately demonstrates that for T 
≤ T < T

S
 the favourable entropy 

of the release of solvent molecules from the solvation shell dominates over the unfavourable 

chain entropy making it entropically favourable (ΔS
TS-D(T) 

> 0), and for T
S
 < T ≤ T the 

unfavourable chain entropy dominates over the favourable desolvation entropy making it 

entropically unfavourable (ΔS
TS-D(T) 

< 0) to activate denatured conformers to the TSE. These 

two opposing entropies cancel each other out at T
S
 such that 

TS-D( ) TS-D( ) = = 0T TG T S     

and ΔG
TS-D(T) 

is a minimum. A corollary is that for a two-state folder at constant pressure and 

solvent conditions, “the difference in SASA between the DSE and the TSE, the position of the 

TSE relative to the DSE along the heat capacity and entropic RCs, as well as the Gibbs 

activation energy for folding are all a minimum when the loss of entropy due to decreased 

backbone and side-chain mobility is exactly compensated by the entropy gained from solvent-

release, as the denatured conformers propelled by thermal energy bury their SASA and 

diffuse on the Gibbs energy surface to reach the TSE” (“The principle of least 

displacement”). 

We may once again take this analysis to another level by introducing the notion of residual 

entropies. Although we have no information on the absolute values of the terms on the RHS 

of Eq. (16), if we find that at any given temperature the LHS is algebraically positive, it 

implies that ΔS
TS-D(T)

 is purely due to the residual desolvation entropy ( TS-D(desolvation)( ) 0TS  ) 
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which by definition is the positive or favourable remnant of the algebraic sum of the positive 

desolvation entropy and the negative chain entropy. Conversely, if the LHS is negative at any 

given temperature, it implies that ΔS
TS-D(T)

 is purely due to the residual chain entropy (

TS-D(chain)( ) 0TS   ) which by definition is the negative or unfavourable remnant of the 

algebraic sum of the positive desolvation entropy and the negative chain entropy. Thus, we 

may conclude from inspection of Figure 4 that for T 
≤ T < T

S
, ΔS

TS-D(T)
 is purely due to the 

residual desolvation entropy ( TS-D(desolvatTS-D( ion)( )) 0T TSS    ) making it entropically 

favourable; and for T
S
 < T ≤ T, ΔS

TS-D(T)
 is purely due to the residual chain entropy (

TS-D(chTS-D( ain)() ) 0T TSS     ) making it entropically unfavourable to activate denatured 

conformers to the TSE. Obviously, when T = T
S
, the residual entropies become zero such that 

the activation of the denatured conformers to the TSE is entropically neutral.  

2. Change in entropy for the partial folding reaction[ ]TS N   

Similarly, for the second-half of the folding reaction we may write 

N-TS( ) N-TS (chain)( ) N-TS (desolvation)( )T T TS S S            (17) 

The first term on the RHS due to chain entropy is negative and unfavourable, while the 

second term due to desolvation entropy is positive and favourable. However, unlike the ΔS
TS-

D(T) 
function which changes its polarity only once across the physically definable temperature 

range, the behaviour of the ΔS
N-TS(T)

 function with temperature is far more complex. 

Inspection of Figure 5 demonstrates that for T  
≤ T < T

S()
 and T

S
 < T < T

S()
, the negative 

and unfavourable chain entropy dominates over the positive and favourable desolvation 

entropy, such that the reaction [ ]TS N is entropically disfavoured, and is purely due to the 

residual chain entropy ( N-TS(chN-TS( ain)() ) 0T TSS     ). In contrast, for T
S()

 < T < T
S
 and T

S()
 

< T ≤ T, the positive desolvation entropy dominates over the negative chain entropy, leading 

to [ ]TS N being entropically favoured, and is purely due to the residual desolvation 

entropy ( N-TS(desolvatN-TS( ion)( )) 0T TSS    ). At the temperatures T
S()

, T
S
, and T

S()
, the residual 

entropies become zero, such that [ ]TS N is entropically neither favoured nor disfavoured, 

i.e., 
N-TS( ) N-TS( ) = = 0T TG T S    . Importantly, while at T

S() 
and T

S()
 we have G

TS(T)
 = 
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G
N(T)

,  S
TS(T)

 = S
N(T)

 and ΔG
N-TS(T) 

is a maximum, at T
S
 we have G

TS(T)
 >> G

N(T)
, S

D(T)
 = S

TS(T)
 = 

S
N(T)

 with ΔG
N-TS(T) 

being a minimum and the most negative (see Gibbs energies later). A 

corollary is that for a two-state folder at constant pressure and solvent conditions, “the 

change in Gibbs energy for the flux of the conformers from the TSE to the NSE is most 

favourable and purely enthalpic when the loss of backbone and side-chain conformational 

freedom is exactly compensated by the release of solvent from the solvation shell, as the 

conformers in the TSE bury their SASA to reach the NSE.” Note that the term “flux” is 

operationally defined as the “diffusion of the conformers from one reaction-state to the other 

on the Gibbs energy surface.”  

3. Activation entropy for unfolding  

If we now reverse the reaction-direction, i.e., for the partial unfolding reaction [ ]N TS we 

may write 

TS-N( ) TS-N (chain*)( ) TS-N (hydration)( )T T TS S S            (18) 

Unlike the negative first term on the RHS of Eq. (17), 
TS-N (chain*)( )TS is positive since the 

backbone and side-chain mobility of the conformers in the TSE is greater than that of the 

native conformers. In contrast, unlike the positive second term on the RHS of Eq. (17), 

TS-N (hydration)( )TS is negative since solvent is captured on the protein surface as the native 

conformers expose net SASA and diffuse on the Gibbs energy surface to reach the TSE. 

Inspection of Figure 5−figure supplement 1 demonstrates that for T  
≤ T < T

S()
 and T

S
 < T 

< T
S()

, the positive and favourable 
TS-N (chain*)( )TS term dominates over the negative and 

unfavourable 
TS-N (hydration)( )TS term, such that the activation of the native conformers to the 

TSE is entropically favoured, and is purely due to the residual entropy that stems from the 

gain in the backbone and side-chain mobility not being fully compensated by the loss of 

entropy due to solvent capture on the protein surface ( TS-N(chain*)TS-N ( )( ) 0T TS S   ). In 

contrast, for T
S()

 < T < T
S
 and T

S()
 < T ≤ T, the TS-N (hydration)( )TS term dominates over the 

TS-N (chain*)( )TS leading to the activation of the native conformers to the TSE being entropically 

disfavoured, and is purely due to the residual negentropy of solvent capture (

TS-N(hydratTS-N( i n) o )( ) 0T TS S   ). At the temperatures T
S()

, T
S
, and T

S()
, the residual entropies 

become zero, such that the activation of the native conformers to the TSE is entropically 
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neutral, i.e., 
TS-N( ) TS-N( ) = = 0T TG T S    . Because ΔG

TS-N(T) 
= ΔH

TS-N(T) 
= ΔS

TS-N(T)
 = 0 at 

T
S() 

and T
S()

, unfolding is barrierless and k
u(T)

 is an absolute maximum for that particular 

solvent and pressure, i.e., k
u(T) 

= k0. Further, while the extrema of ΔG
TS-N(T)

 are a minimum at 

T
S() 

and T
S()

, it is a maximum at T
S
. Thus, for a two-state folder at constant pressure and 

solvent conditions, “the Gibbs barriers to unfolding, depending on the temperature, are the 

greatest as well as the least when the gain in entropy due to the increased backbone and side-

chain mobility is exactly compensated by the loss in entropy of the solvent due to its capture 

on the net SASA exposed, as the native conformers unravel to reach the TSE.” 

4. Change in entropy for the coupled reaction D N   

The deconvolution of the changes in entropies for the partial folding reactions [ ]D TS  

and [ ]TS N into their constituent chain and desolvation entropies enables the physical 

basis for the temperature-dependence of ΔS
N-D(T)

 (determined independently from thermal 

denaturation experiments at equilibrium using the relationship 

 N-D( ) N-D( )ln T TR T K T S      where K
N-D(T)

 is the equilibrium constant for D N ) to be 

rationalized. This is best illuminated by partitioning the physically definable temperature 

range into four regimes using the reference temperatures T, T
S()

, T
S
, T

S()
, and T (see Table 

1). 

Entropic Regime I (T  
≤ T < T

S()
): Inspection of Figure 6 demonstrates that while 

[ ]D TS  is entropically favoured and is purely due to the residual desolvation entropy (

TS-D(desolvation)( ) 0TS  ), the reaction [ ]TS N is entropically disfavoured and is purely due to 

the residual chain entropy ( N-TS(chain)( ) 0TS  ). Because ΔS
N-D(T) 

> 0 for T < T
S
 (green curve in 

Figure 6B; see also Paper-III), we may write 

( ) ( )
N-D( ) TS-D(desolvation)( ) N-TS(chain)( ) 0

S S
T TT T T T T T T

S S S
   

 

   
         (19) 

Thus, although the second-half of the folding reaction is entropically unfavourable, the 

favourable desolvation entropy generated in the first-half more than compensates for it, such 

that the coupled D N is entropically favoured. When T = T
S()

, the second term on the 

RHS becomes zero, leading to
( ) ( )

N-D( ) TS-D(desolvation)( ) 0
S S

TT T T T T
S S

 



 
    (intersection of the 
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red and the green curves at the extreme left in Figure 6B). This implies that at T
S()

, the 

favourable ΔS
N-D(T)

 is primarily due to events occurring in the first-half of the folding 

reaction. 

Entropic Regime II (T
S() 

< T < T
S
): Inspection of Figure 6 demonstrates that for this 

regime both the partial folding reactions are entropically favourable and are purely due to the 

residual desolvation entropies. Thus we may write 

( ) ( )
N-D( ) TS-D(desolvation)( ) N-TS(desolvation)( ) 0

S S S S
T T T T T T TT TS S S

 

 

   
         (20) 

Thus, the logical conclusion is that although the decrease in backbone and sidechain mobility 

disfavours D N , this is more than compensated by the release of solvent from the 

solvation shell, as the denatured conformers diffuse on the Gibbs energy surface to reach the 

NSE. Further, at the temperature where ΔS
TS-D(T)

 = ΔS
N-TS(T) 

(intersection of the blue and the 

red curves at the extreme left) we have N-D( ) TS-D(desolvation)( ) N-TS(desolvation)( )2 2 0T TTS S S        

and  TS( ) D ( ) N ( ) 2T T TS S S  . When T = T
S
, both the terms on the RHS become zero leading 

to the Gibbs energy of folding which is the most negative (or ΔG
D-N(T)

 is the greatest) being 

purely enthalpic. A corollary is that “equilibrium stability is always the greatest, and the 

position of the TSE relative to the DSE along the SASA, entropic and heat capacity RCs is 

always the least, when the decrease in the backbone and sidechain entropy that accompanies 

folding is exactly compensated by the gain in entropy that stems from solvent-release” (“The 

principle of least displacement”).  

Entropic Regime III (T
S 

< T < T
S()

): Inspection of Figure 6 demonstrates that for this 

regime both the partial folding reactions are entropically unfavourable and are purely due to 

the residual chain entropy. Thus we may write 

( ) ( )
N-D( ) TS-D(chain)( ) N-TS(chain)( ) 0

S S S S
T T T T T T T T T

S S S
 

 

   
          (21) 

Thus, although the release of solvent favours both the partial folding reactions, this does not 

fully compensate for the unfavourable entropy that stems from a decrease in backbone and 

sidechain mobility. Consequently, the reaction D N is entropically disfavoured and is 

purely due to residual chain entropy. When T = T
S()

, the second term on the RHS becomes 
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zero, leading to
( ) ( )

N-D( ) TS-D(chain)( ) 0
S S

T T T T TTS S
 



 
    (intersection of the red and the green 

curves). This implies that at T
S()

, the unfavourable ΔS
N-D(T)

 is primarily due to events 

occurring in the first-half of the folding reaction. Further, at the temperature where ΔS
TS-D(T)

 = 

ΔS
N-TS(T) 

(intersection of the blue and the red curves at the extreme right) we once again have 

the relationship N-D( ) TS-D(desolvation)( ) N-TS(desolvation)( )2 2 0T TTS S S        and 

 TS( ) D ( ) N ( ) 2T T TS S S  . 

Entropic Regime IV (T
S() 

< T ≤ T): Inspection of Figure 6 demonstrates that while 

[ ]TS N  is entropically favoured and is purely due to the residual desolvation entropy (

N-TS(desolvation)( ) 0TS  ), the reaction [ ]D TS entropically disfavoured and is purely to the 

residual chain entropy ( TS-D(chain)( ) 0TS  ). Because ΔS
N-D(T) 

< 0 for T > T
S
, we may write 

( ) ( )
N-D( ) TS-D(chain)( ) N-TS(desolvation)( ) 0

S S
T TT T T T T T T

S S S
   

 

   
         (22) 

Thus, the logical conclusion is that although the second-half of the folding reaction is 

entropically favourable, it is unable to compensate for the unfavourable chain entropy 

generated in the first-half, such that the coupled D N is entropically disfavoured. 

Determinants of Gibbs energies
 
  

Since the changes in enthalpies and entropies have been deconvoluted into their constituent 

chain and solvent components, it is relatively straightforward to rationalize the physical 

chemistry underlying the temperature-dependence of the difference in Gibbs energies 

between the various reaction-states.  

1. Gibbs activation energy for the partial folding reaction [ ]D TS   

This may be discussed by partitioning the physically meaningful temperature range into three 

distinct regimes using the reference temperatures T, T
S
, T

H(TS-D)
, and T (Figure 7 and 

Figure 7−figure supplement 1). 

Regime I for ΔG
TS-D(T)

 (T ≤ T < T
S
): Because ΔG

TS-D(T) 
> 0, the logical conclusion is that 

although the entropic component of ΔG
TS-D(T)

 favours the activation of the denatured 

conformers to the TSE and is purely due to the residual desolvation entropy (



Page 18 of 59 
 

TS-D(desolvation)( ) 0TS  ), it does not fully compensate for the unfavourable change in enthalpy 

that stems purely from residual desolvation enthalpy ( TS-D(desolvation)( ) 0TH   ). Thus, we may 

write 

TS-D( ) TS-D(desolvation)( ) TS-D(desolvation)( ) 0
S S

T T TT T T T T T
G H T S

 

 

   
         (23) 

Because chain parameters do not feature in Eq. (23), we may conclude that the Gibbs 

activation barrier to folding for this regime is ultimately due to solvent effects. At T
S
, the 

chain and desolvation entropies compensate each other exactly leading to TS-D(desolvation)( ) 0TS 

. Consequently, we have TS-D( ) TS-D(desolvation)( ) 0
S S

T TT T T T
G H 

 
    . Therefore, the Arrhenius 

expression for the rate constant for folding at T
S
 becomes (k0 is the temperature-invariant 

prefactor) 

TS-D( ) TS-D(desolvation)( )0 0
( )   =   exp exp

S

S S

T T
f T T T

T T T T

G H
k k k

RT RT




 

  
     

 

 

 
  (24) 

In summary, the Gibbs barrier to folding is a minimum and is purely due to the endothermic 

residual desolvation enthalpy, and occurs precisely at T
S
. Further, at this temperature, 

equilibrium stability is a maximum, and the position of the TSE relative to the DSE along the 

SASA, entropic, and heat capacity RCs, is a minimum.  

Regime II for ΔG
TS-D(T)

 (T
S
 < T < T

H(TS-D)
): In contrast to Regime I where the magnitude and 

algebraic sign of ΔG
TS-D(T)

 is determined by the imbalance between unfavourable and 

favourable terms, Regime II is characterised by the unfavourable and endothermic residual 

desolvation enthalpy ( TS-D(desolvation)( ) 0TH   ), and the negative and unfavourable residual 

chain entropy ( TS-D(chain)( ) 0TS  ), colluding to generate a barrier. Thus, we may write 

(TS-D) (TS-D)
TS-D( ) TS-D(desolvation)( ) TS-D(chain)( ) 0

S H S H
T T TT T T T T T

G H T S 

   
        (25) 

Importantly, unlike Regime I, the Gibbs barrier to folding for this regime is due to both chain 

and solvent effects. At T = T
H(TS-D)

 the chain and desolvation enthalpies compensate each 
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other exactly leading to 
( TS-D ) ( TS-D )

TS-D( ) TS-D(chain)( ) 0
H H

T TT T T T
G T S 

 
     . Therefore, the 

expression for k
f(T)

 at T
H(TS-D)

 becomes 

(TS-D)

(TS-D) (TS-D)

TS-D( ) TS-D(chain)( )0 0
( )   = e  xp exp

H

H H

T T
f T T T

T T T T
R

G S
k k

T
k

R




 

 


  
        

 (26) 

Because k
f(T) 

for any two-state folder at constant pressure and solvent conditions is a 

maximum at T
H(TS-D)

, the unfavourable residual chain entropy term in Eq. (26) implies that 

the speed-limit for the folding of any two-state folder for a particular solvent and pressure 

ultimately boils down to conformational searching.15 We will come back to this when we 

address Levinthal’s paradox.16  

Regime III for ΔG
TS-D(T)

 (T
H(TS-D)

< T ≤ T): Akin to Regime I and unlike Regime II, the 

magnitude and algebraic sign of ΔG
TS-D(T)

 for this regime is once again determined by the 

imbalance between unfavourable and favourable terms. Although the exothermic residual 

chain enthalpy favours the activation of the denatured conformers to the TSE (

TS-D(chain)( ) 0TH   ), it does not fully compensate for the unfavourable residual chain entropy (

TS-D(chain)( ) 0TS  ), such that the Gibbs barrier to folding is positive. Thus, we may write 

(TS-D) (TS-D)
TS-D( ) TS-D(chain)( ) TS-D(chain)( ) 0

H H
T T TT T T T T T

G H T S
 

 

   
         (27) 

Importantly, while Regime I is dominated by solvent effects, and Regime II by solvent and 

chain effects, the Gibbs barrier to folding for Regime III is ultimately due to chain effects. 

Further, although the relative contribution of the solvent and chain parameters to ΔG
TS-D(T)

 

within any given regime is gradual, the switch-over is abrupt and occurs precisely at T
S
 and 

T
H(TS-D)

. 

2. Change in Gibbs energy for the partial folding reaction[ ]TS N  

This may be discussed by partitioning the physically meaningful temperature range into five 

distinct regimes using the reference temperatures T, T
S()

, T
H(TS-N)

, T
S
, T

S()
, and T (Figure 

8 and Figure 8−figure supplement 1).  
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Regime I for ΔG
N-TS(T)

 (T  
≤ T < T

S()
): Because ΔG

N-TS(T)
< 0, we may conclude that 

although the reaction [ ]TS N is entropically disfavoured and is purely due to the residual 

chain entropy ( N-TS(chain)( ) 0TS  ), it is more than compensated by the exothermic residual 

chain enthalpy ( N-TS(chain)( ) 0TH   ). Thus, we may write 

( ) ( )
N-TS( ) N-TS(chain)( ) N-TS(chain)( ) 0

S S
T T T T T TT T T

G H T S
   

 

   
         (28) 

When T = T
S()

, both the terms on the RHS become zero; consequently, ΔG
N-TS(T)

 = − ΔG
TS-

N(T)
 = 0 and k

u(T)
 = k0. Because the solvent parameters do not feature in Eq. (28), we may 

conclude that this regime is dominated by chain effects.  

Regime II for ΔG
N-TS(T)

 (T
S() 

< T < T
H(TS-N)

): Although the reaction [ ]TS N is 

enthalpically disfavoured and is purely due to the residual desolvation enthalpy (

N-TS(desolvation)( ) 0TH   ), it is more than compensated by residual desolvation entropy (

N-TS(desolvation)( ) 0TS  ), such that ΔG
N-TS(T)

< 0. Therefore, we may write 

( ) (TS-N ) ( ) (TS-N )
N-TS( ) N-TS(desolvation)( ) N-TS(desolvation)( ) 0

S H S H
T T T TTT TTT

G H T S
 

 

   
       (29) 

Since chain parameters do not feature in Eq. (29), the change in Gibbs energy for this regime 

is ultimately due to solvent effects. When T = T
H(TS-N)

, the first term on the RHS becomes zero 

leading to 
( TS-N ) ( TS-N )

N-TS( ) N-TS(desolvation)( ) 0
H H

TT T T T T
G T S 

 
     . Now, if we reverse the reaction-

direction (i.e., the partial unfolding reaction [ ]N TS ) we have 

( TS-N ) ( TS-N )
TS-N( ) TS-N(hydration)( ) 0

H H
TT T T T T

G T S 

 
     where TS-N(hydration)( )TS is the residual 

negentropy of solvent capture (see activation entropy for unfolding). Consequently, the 

expression for k
u(T)

 which is a minimum at T
H(TS-N)

 becomes 

(TS-N)

(TS-N) (TS-N)

TS-N( ) TS-N(hydration)( )0 0
( )   =   exp exp

H

H H

T
u T T T

T T T T

TG S
k k k

RT R




 

  
        

 
  (30) 

Note that at this temperature the solubility of the TSE relative to the NSE is a minimum, or 

the Massieu-Planck activation potential for unfolding is a maximum. Further, in contrast to 

the maximum of k
f(T) 

being dominated by chain effects, the minimum of k
u(T)

 is ultimately due 
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to the difference in the size of the solvent shells of the conformers in the NSE and the TSE, 

including their mobility within the solvent shell. 

Regime III for ΔG
N-TS(T)

 (T
H(TS-N)

< T < T
S
): Unlike Regimes I and II where the favourable 

change in Gibbs energy is due to the favourable terms more than compensating for the 

unfavourable terms, this regime is characterised by the favourable and exothermic residual 

chain enthalpy ( N-TS(chain)( ) 0TH   ), and the favourable residual desolvation entropy (

N-TS(desolvation)( ) 0TS  ) complementing each other, such that ΔG
N-TS(T)

< 0. Therefore, we may 

write 

(TS-N ) (TS-N )
N-TS( ) N-TS(chain)( ) N-TS(desolvation)( ) 0

H S H S
T T T T T T T T T

G H T S 

   
        (31) 

Because both chain and solvent parameters feature in Eq. (31), we may conclude that this 

regime is due to both chain and solvent effects. When T = T
S
, the second term on the RHS 

becomes zero leading to N-TS( ) N-TS(chain)( ) 0
S S

TT T T T T
G H 

 
    . Now, if we reverse the 

reaction-direction (i.e., the partial unfolding reaction [ ]N TS ) we have 

TS-N( ) TS-N(chain*)( ) 0
S S

TT T T T T
G H 

 
    where TS-N(chain*)( )TH  is the residual heat taken up by the 

native conformers to break various net backbone and side-chain interactions as they are 

activated to the TSE (see activation enthalpy for unfolding). Consequently, the expression for 

k
u(T)

 at T
S
 is given by 

TS-N( ) TS-N(chain*)( )0 0
( ) ex  =   p exp

S

S S

T
u T T T

T T T T

TG H
k k

RT
k

RT




 

  
        

 
   (32) 

Regime IV for ΔG
N-TS(T)

 (T
S
 < T < T

S()
): Although the reaction [ ]TS N  is entropically 

disfavoured and is purely due to the residual chain entropy ( N-TS(chain)( ) 0TS  ), this is more 

than compensated by the exothermic chain enthalpy ( N-TS(chain)( ) 0TH   ), such that ΔG
N-TS(T)

< 

0. Therefore, we may write 

(ω) (ω)
N-TS( ) N-TS(chain)( ) N-TS(chain)( ) 0

S S S S
T T T T T T TT TG H T S 

   
         (33) 
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When T = T
S()

, both the terms on the RHS become zero; consequently, ΔG
N-TS(T)

 = − ΔG
TS-

N(T)
 = 0 and k

u(T)
 = k0. Because solvent parameters do not feature in Eq. (33), this regime is 

primarily due to chain effects.  

Regime V for ΔG
N-TS(T)

 (T
S() 

< T ≤ T): Although the reaction [ ]TS N  is enthalpically 

disfavoured and is purely due to the residual desolvation enthalpy ( N-TS(desolvation)( ) 0TH   ), this 

is more than compensated by the favourable residual desolvation entropy (

N-TS(desolvation)( ) 0TS  ), such that ΔG
N-TS(T)

< 0. Thus, we may write  

(ω ) ω (ω ) ω
N-TS( ) N-TS(desolvation)( ) N-TS(desolvation)( ) 0

S S
T TT T T T T T T

G H T S 

   
        (34) 

To summarize, while Regimes I and IV are dominated by chain effects, Regimes II and V are 

primarily due to solvent effects. In contrast, Regime III is dominated by both chain and 

solvent effects. Further, while the enthalpic and entropic components complement each other 

and favour the reaction [ ]TS N in Regime III, ΔG
N-TS(T) 

for all the rest of the temperature 

regimes is due to the dominance of the favourable terms over the unfavourable components. 

3. Change in Gibbs energy for the coupled reaction D N   

Now that we have detailed knowledge of how residual chain and desolvation enthalpies, and 

residual chain and desolvation entropies battle for dominance, or sometimes collude to 

determine the temperature-dependence of the magnitude and algebraic sign of the ΔG
TS-D(T) 

and ΔG
N-TS(T)

 functions, it is relatively straightforward to provide a physical explanation for 

the behaviour of two-state systems at equilibrium using N-D( ) N-D( ) N-D( )T T TG H T S     for the 

coupled reaction D N . This may best be accomplished by partitioning the physically 

meaningful temperature range into seven distinct regimes using the reference temperatures 

T, T
S()

, T
H(TS-N)

, T
H
, T

S
, T

H(TS-D)
, T

S()
, and T. However, before we perform a detailed 

deconvolution, akin to the treatment given to glycolysis in biochemistry textbooks, it is 

instructive to think of the reaction D N as a business venture. Because ΔG
TS-D(T)

 > 0 for 

all temperatures, we may think of the activation of the denatured conformers to the TSE as 

the “investment or the preparatory phase.” In contrast, since ΔG
N-TS(T)

 < 0 except for the 

temperatures T
S()

 and T
S()

, we may think of the second-half of the folding reaction as the 

“pay-off phase” (Figure 9). For the temperature regimes T  
≤ T < T

c
 (T

c
 is the midpoint of 
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cold denaturation) and T
m 

< T ≤ T (T
m
 is the midpoint of heat denaturation), the revenue 

generated in the pay-off phase does not fully compensate for the investment, and the 

company incurs a loss. In contrast, for T
c  

< T < T
m
, the company makes a net profit since the 

revenue generated in the pay-off phase more than compensates for the investment. While the 

net profit at T
c 

and T
m
, is zero, the same will be a maximum at T

S
 since the investment is the 

least and the pay-off is the greatest (Figure 10). Naturally, at T
S()

 and T
S()

 the returns on the 

investment is null; consequently, the loss incurred is identical to the investment.  

Regime I for ΔG
N-D(T)

 (T  
≤ T < T

S()
): Because the independently determined ΔG

N-D(T) 
> 0 

for this regime, substituting Eqs. (7) and (19) in the Gibbs equation gives 

( )

( )

TS-D(desolvation)( ) N-TS(chain)( )

N-D( )

TS-D(desolvation)( ) N-TS(chain)( )

0
S

S

T

T T T T
T

T T T

T

T

H H
G

T S S 

 

 

   

 

        
       

  (35) 

Although chain parameters appear in Eq. (35), since ΔH
N-D(T)

 and ΔS
N-D(T)

 are both 

independently positive for this regime (Figures 3B and 6B), we may conclude that the 

unfavourable change in Gibbs energy for this regime is ultimately due to the enthalpic 

penalty of desolvation paid by system to activate the denatured conformers to the TSE, or in 

short, this regime is dominated by solvent effects. When T = T
S()

, both N-TS(chain)( )TH  and 

N-TS(chain)( )TS become zero (or ΔG
N-TS(T) 

= 0; Figures 2, 5 and 8), leading to  

( ) ( )( )
N-D( ) TS-D(desolvation)( ) TS-D(desolvation)( ) TS-D( ) 0

S SS
T T T TT T T TT T

G H T S G
 

 

 
          (36) 

The parameter λ is the Marcus reorganization energy for protein folding, and by definition is 

the Gibbs energy required to compress the DSE under folding conditions to a state whose 

SASA is identical to that of the NSE but without the stabilizing native interactions (see 

Paper-I). 

Regime II for ΔG
N-D(T)

 (T
S() 

< T < T
H(TS-N)

): The relevant equations for this regime are Eqs. 

(8) and (20). However, since the cold denaturation temperature, T
c
, at which 

 N-D( ) ( ) ( )ln 0T u T f TG RT k k    (Figure 10−figure supplement 1) falls between T
S() 

and 

T
H(TS-N)

 (Table I) we may write 
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( ) (TS-N )

( ) (TS-N )

TS-D(desolvation)( ) N-TS(desolvation)( )

N-D( )

TS-D(desolvation)( ) N-TS(desolvation)( )
S H

S H

T T

T

T T T T

T
T

T T

H H
G

T S S



 

   

 

       
       

 (37) 

( )

N-D( ) N-D(desolvation)( ) N-D(desolvation)( )

(TS-N)

0,  <

0,  

0,  <

S c

T

H

T c

c

T

T T T

G H T S T T

T T T



 

 


       
 

  (38) 

where N-D(desolvation)( ) 0TH    is the endothermic residual desolvation enthalpy, and 

N-D(desolvation)( ) 0TS  is the residual desolvation entropy for the coupled reaction D N . 

Thus, for T
S()

 < T < T
c
 we have N-D(desolvation)( )TH   N-D(desolvation)( )TT S , and the net flux of the 

conformers will be from the NSE to the DSE. In contrast, for T
c
 < T < T

H(TS-N)
 we have

N-D(desolvation)( )TH   N-D(desolvation)( )TT S , and the net flux of the conformers will be from the DSE 

to the NSE. When T = T
c
, the favourable and unfavourable terms on the RHS of Eq. (38) 

compensate each other exactly leading to  

   
 

 

N-D desolvation ( )

N-D desolvation ( ) N-D desolvation ( )
N-D desolvation ( )

c

c c

c

T
cT T

T

H
H T S T

S


 



 
     
  

   (39) 

Consequently, the flux of the conformers from the DSE to the NSE will be identical to the 

flux in the reverse direction. Now, when T = T
H(TS-N)

, we have 
( TS-N )

N-TS(desolvation)( ) 0
H

T T T
H 


 

and k
u(T) 

is a minimum (Figure 2 and Figure 2−figure supplement 2), and Eq. (37) becomes  

(TS-N ) (TS-N )
N-D( ) TS-D(desolvation)( ) N-D(desolvation)( ) 0

H H
T TT T T T T

G H T S 

 
         (40) 

Thus, the reason why ΔG
N-D(T)

 < 0 at T
H(TS-N) 

is that  although the system incurs an enthalpic 

penalty to desolvate the protein surface in the reaction [ ]D TS , this is more than 

compensated by the entropy of solvent-release that accompanies D N . Because the chain 

parameters do not feature in Eqs. (37) - (40), we may conclude that this regime, including 

cold denaturation, is dominated by solvent effects. 

Regime III for ΔG
N-D(T)

 (T
H(TS-N)

< T < T
H

): The relevant equations for this regime are Eqs. 

(9) and (20). Substituting these in the Gibbs equation gives 
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(TS-N )

(TS-N )

TS-D(desolvation)( ) N-TS(chain)( )

N-D( )

TS-D(desolvation)( ) N-TS(desolvation)( )

0
H H

H H

T T

T T

T T T T

T T T

H H
G

T S S

 

   

 

        
       

 (41) 

Although the favourable and exothermic residual chain enthalpy term appears in Eq. (41), 

since ΔH
N-D(T)

 and ΔS
N-D(T)

 are both independently positive for this regime (Figures 3B and 

6B), we may conclude that the favourable change in Gibbs energy for this regime is 

ultimately due to the favourable entropy of solvent-release, and thus is dominated by solvent 

effects. When T = T
H
, we have TS-D(desolvation)( ) N-TS(chain)( ) N-D( ) 0T T TH H H      (Figure 3) 

leading to 

N-D( ) N-D(desolvation)( ) 0
H H

T TT T T T
G T S 

 
           (42) 

N-D(desolvation)( )
N-D( ) exp

H

H

T T T

T

T

T

S
K

R






 
    

 
      (43) 

Because K
N-D(T)

 is a maximum at T
H
, we may conclude that the solubility of the NSE as 

compared to the DSE is maximum, and is ultimately determined by favourable residual 

desolvation entropy that stems from the net decrease in the backbone and side-chain mobility 

being more than compensated by the entropy of net solvent-release, as the denatured 

conformers propelled by thermal noise bury their SASA and diffuse on the Gibbs energy 

surface to reach the NSE.  

Regime IV for ΔG
N-D(T)

 (T
H 

< T < T
S
): Although the relevant equations for this regime are 

identical to those describing the behaviour of the previous regime (Eq. (41)) except for the 

temperature limits, the interpretation is distinctly different.  

TS-D(desolvation)( ) N-TS(chain)( )

N-D( )

TS-D(desolvation)( ) N-TS(desolvation)( )

0
H S

H S

T T T T

T T T

T T

T T

H H
G

T S S

 

   

 

        
       

  (44) 

Because ΔH
N-D(T)

 < 0 and ΔS
N-D(T)

 > 0 for this regime (Figures 3B and 6B), we may conclude 

that the net flux of the conformers from the DSE to the NSE for this regime is ultimately due 

to the favourable entropy of solvent-release for the reaction D N (

N-D(desolvation)( ) TS-D(desolvation)( ) N-TS(desolvation)( ) 0T T TS S S       ) and the exothermic residual chain 
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enthalpy for the reaction [ ]TS N  ( N-TS(chain)( ) 0TH   ) complementing each other. In short, 

this regime is dominated by both chain and solvent effects. When T = T
S
, we have 

TS-D(desolvation)( ) N-TS(desolvation)( ) 0T TS S      (Figure 6) and Eq. (44) becomes 

N-D( ) TS-D(desolvation)( ) N-TS(chain)( ) 0
S S

TT T TTT T
G H H 

 
          (45) 

From Schellman’s seminal analysis we know that the stability of a two-state system is the 

greatest (or ΔG
N-D(T)

 is the most negative and a minimum) and is purely enthalpic at T
S
.14 Eq. 

(45) tells us that the magnitude of ΔG
N-D(T)

 at T
S
 is ultimately determined by the exothermic 

residual chain enthalpy generated in the second-half of the folding reaction. Because 

D-N ( ) D-N D-N ( ) D-N 0
S SS H T p T pT T H C G C        (see Eq. (10) in Becktel and Schellman, 

1987), and the difference in heat capacity between the DSE and the NSE is large and positive 

(ΔC
pD-N 

> 0), T
H
 and T

S
 will not differ by more than a few Kelvin (Figure 9B and Table I). 

Despite this small difference in temperature, we see that while the magnitude of ΔG
N-D(T)

 is 

ultimately down to solvent effects at T
H
, it is primarily due to chain effects at T

S
. Further, 

while both the partial folding reactions take part in generating these solvent effects at T
H
, the 

chain effects at T
S
 are primarily due to interactions forming in the second-half of the folding 

reaction. 

Regime V for ΔG
N-D(T)

 (T
S 

< T < T
H(TS-D)

): The relevant equations for this regime are Eqs. 

(10) and (21). Substituting these in the Gibbs equation gives 

(TS-D)

(TS-D)

TS-D(desolvation)( ) N-TS(chain)( )

N-D( )

TS-D(chain)( ) N-TS(chain)( )

TS-D(desolvation)( ) N-TS(chain)( ) N-D(chain)( )

0
S H

S H

T

T T

T T

T T

T T T

T T T

T

H H
G

T S S

H H T S

 

   

 

 

        
       

        
(TS-D)

0
S HT T T



 


(46) 

It is immediately apparent from inspection of the terms on the RHS that the only favourable 

term is the exothermic residual chain enthalpy ( N-TS(chain)( ) 0TH   ) generated in the second-

half of the folding reaction. Because ΔH
N-D(T)

, ΔS
N-D(T)

 and ΔG
N-D(T)

 are all independently 

negative for this regime (Figures 3B, 6B and 10B), we may conclude that the energetically 

favoured net flux of the conformers from the DSE to the NSE is primarily due to the residual 

heat liberated from backbone and side-enthalpy in the second-half of the folding reaction 
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more than compensating for all the unfavourable terms, or in short, this regime is dominated 

by chain effects. When T = T
H(TS-D)

, we have 
( TS-D )

TS-D(desolvation)( ) 0
H

T T T
H 


  and k

f(T) 
is a 

maximum (Figure 1 and Figure 1−figure supplement 1), and Eq. (46) becomes 

( TS-D ) ( TS-D )
N-D ( ) N-TS(chain)( ) N-D(chain)( ) 0

H H
T T TT T T T

G H T S 

 
          (47) 

Regime VI for ΔG
N-D(T)

 (T
H(TS-D) 

< T < T
S()

): The relevant equations for this regime are Eqs. 

(11) and (21). However, since T
m
 at which  N-D( ) ( ) ( )ln 0T u T f TG RT k k    (Figure 

10−figure supplement 1) falls between T
H(TS-D) 

and T
S()

 (Table I) we may write 

(TS-D) ( )

(TS-D) ( )

TS-D(chain)( ) N-TS(chain)( )

N-D( )

TS-D(chain)( ) N-TS(chain)( )
H S

H S

T T T

T T

T T
T

T T T

H H
G

T S S



 

  

 

   
  
       

  (48) 

(TS-D)

N-D( ) N-D(chain)( ) N-D(chain)( )

( )

0,  <

0,  

0,  <

H m

T m

m S

T T

T T T

G H T S T T

T T T

 



 


       
 

   (49) 

where N-D(chain)( ) 0TH    is the exothermic residual chain enthalpy, and N-D(chain)( ) 0TS  is the 

unfavourable residual chain entropy for the coupled reaction D N . Thus, for T
H(TS-D)

 < T 

< T
m
 we have N-D(chain)( )| |TH   N-D(chain)( )| |TT S , and the net flux of the conformers will be from 

the DSE to the NSE. In contrast, for T
m
 < T < T

S()
 we have N-D(chain)( )| |TH   N-D(chain)( )| |TT S

the net flux of the conformers will be from the NSE to the DSE. When T = T
m
, the favourable 

and unfavourable terms on the RHS of Eq. (49) compensate each other exactly leading to  

   
 

 

N-D chain ( )

N-D chain ( ) N-D chain ( )
N-D chain ( )

m

m m

m

T
mT T

T

H
H T S T

S


 



 
     
  

    (50) 

Consequently, the flux of the conformers from the DSE to the NSE will be identical to the 

flux in the reverse direction. When T = T
S()

, both N-TS(chain)( )TH  and N-TS(chain)( )TS  become 

zero (or ΔG
N-TS(T) 

= 0; Figures 2, 5 and 8), leading to 

( ) ( )( )
N-D( ) TS-D(chain)( ) TS-D(chain)( ) TS-D( ) 0

S SS
T TT T T TTT T T

G H T S G
 

 

 
           (51) 
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Because solvent parameters do not feature in Eqs. (48) - (51), we may conclude that this 

regime is dominated by chain effects. Importantly, we note that while cold denaturation is 

driven predominantly by solvent effects, heat denaturation is primarily due to chain effects.17 

Regime VII for ΔG
N-D(T)

 (T
S()

< T ≤ T): The relevant equations for this regime are Eqs. 

(12) and (22). Substituting these in the Gibbs equation gives 

( )

( )

TS-D(chain)( ) N-TS(desolvation)( )

N-D( )

TS-D(chain)( ) N-TS(desolvation)( )

0
S

S

T T

T

T T T T

T T T
T

H H
G

T S S 

 

 

   

 

      
     

   (52) 

Although the favourable and endothermic residual desolvation terms appear in Eq. (52), since 

ΔH
N-D(T)

 and ΔS
N-D(T)

 are both independently negative for this regime (Figures 3B and 6B), 

we may conclude that the unfavourable change in Gibbs energy for this regime is ultimately 

due to the unfavourable residual chain entropy generated in the second-half of the folding 

reaction, or in short, this regime is dominated by chain effects. 

To summarize, we see that the magnitude and algebraic sign of ΔG
N-D(T)

 across a wide 

temperature range is determined by both solvent and chain parameters: While the first three 

regimes are dominated by solvent effects (T  
≤ T < T

H
), the last three regimes are dominated 

by chain effects (T
S 

< T ≤ T). In contrast, Regime IV whose temperature range (T
H 

< T < T
S
) 

is not more than a few Kelvin and is the most stable region, is dominated by both solvent and 

chain effects. Importantly, the changeover from solvent-dominated regimes to chain-and-

solvent-dominated regime, followed by chain-dominated regimes is abrupt and occurs 

precisely at T
H
 and T

S
, respectively. Further, the temperature-dependence of the state 

functions of any given two-state system can be modulated by altering either the chain or 

solvent properties (see cis-acting and trans-acting factors in Paper-I); and the change brought 

forth by altering the chain parameters can, in principle, be negated by altering the solvent 

properties, and vice versa.  

However, despite its apparent rigour, this deconvolution is far too simplistic. Since in vitro 

protein folding reactions are almost never carried out in water but in a buffer which 

sometimes also contain other additives, the shell around the protein, although predominantly 

water, will invariably contain other species. Consequently, the desolvation enthalpy and 

entropy terms can vary significantly with the solvent composition even if the primary 
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sequence, pH, temperature and pressure are constant. This is because the enthalpic penalty 

incurred in removing, for example, a neutral or a charged species from the solvent-exposed 

surface of the denatured conformer before it can be buried en route to the NSE via the TSE 

may not be the same as removing water. Similarly, the entropic benefit that stems from 

stripping the protein surface depends on the nature of the species (for example, structure-

making kosmotropes vs structure-breaking chaotropes, see Figure 30.12 in Dill and 

Bromberg, 2003).18,19 This is precisely why changing the ionic strength, or adding co-

solvents can sometimes significantly alter the rate constants and equilibrium parameters, and 

is the basis for Hofmeister effects (addressed elsewhere).20-22 Given that in vitro folding itself 

is so complicated despite having precise knowledge of the experimental variables, one can 

readily comprehend (despite knowing little) the complexity of the folding problem inside the 

cell.23,24  

The coupling of partial exergonic and endergonic reactions such that the coupled total 

reaction is exergonic is a recurring theme in biology for driven reactions. Such coupling can 

occur in cis or in trans. While spontaneous reversible folding as detailed above is an example 

of cis-coupling, trans-coupling can occur either via free diffusion and encounter of two 

species, or through a common interface (protein allostery). Trans-coupling is central to 

signalling cascades, chaperone and chaperonin-mediated folding, and coupled binding and 

folding etc. A detailed discussion is beyond the scope of this article and is addressed 

elsewhere. 

Levinthal’s paradox 

Levinthal postulated in 1969 that the number of conformations accessible to even modestly-

sized polypeptides in their denatured states is astronomical; consequently, he concluded that 

they will not be able to fold to their native states purely by a random search of all possible 

conformations.16 This particular formulation of the question which has since come to be 

known as the “Levinthal’s paradox” enabled the protein folding problem to be explicitly 

defined and led to ideas such as pathways to protein folding and the kinetic and 

thermodynamic control of protein folding.25-30 Although, there have been various attempts to 

address this paradox− from a monkey’s random attempts to type Hamlet’s remark “Methinks 

it is like a weasel,”− to the use of energy landscape funnels and mean first-passage times 

which essentially suggest that the key to resolving this search problem can be as simple as 

applying a reasonable energy bias against locally unfavourable conformations,31-36 we will 
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instead ask “What is the ratio of the effective number of conformations in the DSE and the 

TSE if we account for the positive desolvation entropy that accompanies activation?” Now, if 

the total number of conformations accessible to the polypeptide in the DSE and the TSE at 

constant pressure and solvent conditions are denoted by Ω
DSE(chain)(T)

 and Ω
TSE(chain)(T)

, 

respectively, then the molar conformational entropies of the DSE and the TSE are given by 

the Boltzmann expressions DSE(chain)( )ln TR  and TSE(chain)( )ln TR  , respectively. Thus, Eq. (16) 

may be recast as 

TSE(chain)( )
TS-D( ) TS-D(desolvation)( )

DSE(chain)( )

ln  T
T T

T

S R S


   


     (53) 

The first term on the RHS due to chain entropy is negative, while the second term due to 

desolvation entropy is positive. Thus, for T 
≤ T < T

S
, the positive second-term on the RHS 

dominates, and for T
S
 < T ≤ T, the negative first-term dominates, causing the LHS to be 

positive and negative, respectively; and these two opposing quantities cancel each other out at 

T
S
 leading to ΔS

TS-D(T)
= 0 (Figure 4). Because ΔS

TS-D(T)
 < 0 for T

S
 < T ≤ T, and is purely due 

to the residual chain entropy, we may write 

TSE(chain)( )
TS-D( ) TS-D(chain)( )

DSE(chain)( )

ln
S S

S

Effective

T
T TT T T T T T

T T T T

S S R
 





   
 

  





   (54) 

DSE(chain)( ) TS-D( ) TS-D(chain)( )

TSE(chain)( )

exp exp
SS S

Effective

T T T

T T T TT T T T T T

S S

R R
 



    

    
            

 (55) 

It is imperative to note that the ratio on the RHS of Eq. (54) and the LHS of Eq. (55) is not 

the ratio of total accessible conformations, but rather the ratio of effective number of 

accessible conformations. The temperature-dependence of the effective ratio shown in 

Figure 11 emphasizes a very important principle: The ratio of total number of conformations 

available to the polypeptide in the DSE and in the TSE can be a very large number; however, 

the favourable entropy of solvent-release, depending on the temperature, will partially, or 

significantly, or even more-than-compensate for the decrease in the backbone and the 

sidechain conformational freedom, such that the effective ratio is sufficiently small. This is 

precisely why foldable proteins are able to fold within a finite time when temperature, 

pressure and solvent conditions favour folding. This compensating effect of solvent entropy 
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is certainly not limited to protein folding, and is often invoked in the explanation for 

anomalous increases in binding energies and strengths of hydrogen bonds, and rate 

accelerations in enzymatic reactions.37,38 As an aside, recasting Eq. (26) in terms of Eq. (55) 

demonstrates that when T = T
H(TS-D)

, the ratio of effective number of accessible 

conformations in the DSE to those in the TSE is identical to the ratio of the protein folding 

prefactor and the rate constant for folding.  

(TS-D) (TS-D)

0
DSE(chain)( )

( ) TSE(chain)( )

=   

H H

Effective

T

f T TT T T T

k

k
 




       (56) 

Thus, from the perspective of the parabolic hypothesis, Levinthal’s paradox appears to have 

little basis for T
c
 < T < T

m
, where the NSE is more stable than the DSE (note that we cannot 

calculate the effective ratio for T < T
S
 since for this temperature regime the entropy of solvent 

release that accompanies folding more than compensates for the unfavourable decrease in 

chain entropy). Indeed, if the effective ratio were astronomically large, as is the case at T = 

T (10149), the protein ideally will not be able to fold; and the only reason why the folding 

time is finite at T = T is that it is partially compensated by the exothermic change in 

enthalpy ( 1
( ) ( )0.2815 s 1 3.55sf T f Tk k    , Figures 1A and 7B). However, the 

criticism of the paradox cannot be levelled at Levinthal since he never stated that there exists 

a paradox;16,39 and the notion that there exist an astronomical number of conformations in the 

DSE is for a hypothetical case which may not be relevant to foldable proteins since their 

DSEs under folding conditions are never extended chains.7,8,40,41 In fact, Levinthal’s 

explanation offers a powerful insight into what might be happening in real scenarios as is 

evident from: “In nature, proteins apparently do not sample all of these possible 

configurations since they fold in a few seconds, and even postulating a minimum time from 

one conformation to another, the proteins would have to try on the order of 108 different 

conformations at most before reaching their final state.”16 The unfortunate propagation of 

this paradox probably has to do with the early work on the DSEs of proteins by Tanford and 

co-workers, which likened them to random coils in high concentration of denaturants.42,43 

Consequently, the “random coil” approximation for the DSEs of proteins− which essentially 

implies that all possible conformational states in the DSE have equal probability of being 

populated− became a deeply entrenched idea until the early nineties for two predominant 

reasons: (i) paucity of high-resolution structural data on the DSEs of proteins under folding 



Page 32 of 59 
 

conditions that suggested otherwise; and (ii) the relative ease of interpretation of the effect of 

perturbations (mutations, denaturants, co-solvents, temperature, pressure etc.) on folding 

equilibria, i.e., if the DSEs are assumed to be a random coils, the effect of perturbations on 

the energetics of the DSEs can be ignored, and conveniently be attributed to the native states 

whose structure is known to atomic or near-atomic resolution.7 Although it became 

increasingly apparent by the early nineties that the DSEs of proteins are not random 

coils,6,44,45 the discovery of proteins that fold in a simple two-state manner, and the 

introduction of two-point Brønsted analysis (Φ-value analysis) shifted the emphasis onto the 

TSEs of proteins.46,47 Since we now know that not only do the DSEs under folding conditions 

have a significant amount of residual structure that includes both short-range and long-range 

interactions, that they can be native-like, and can persist even under high concentration of 

denaturants, it is perhaps not too unreasonable to expect that even the total conformational 

space accessible to the denatured polypeptide under folding conditions may not be 

astronomical but restricted for the temperature-range within which the NSE is more stable 

than the DSE.7,8,48-51   

In conclusion, any explanation for protein folding that focusses purely on chain entropy and 

underestimates the contribution of the entropy of solvent-release will not only be inadequate 

but will also be misleading because it will erroneously: (i) portray protein folding as a 

phenomenon that is far more complex and daunting than it actually is; (ii) imply through use 

of the term “information” that the principles that govern protein folding are fundamentally 

different from those that determine the chemical reactions of small molecules; (iii) imply that 

there is such a thing as a “folding code” that translates a 1-dimensional chain into its 3-

dimensional structure; and (iv) imply that the protein folding problem was solved by 

evolution, since in all probability simple polymers would have folded and unfolded for 

possibly more than a billion years before life as we know it came into being.52 It is precisely 

for this reason it is illogical to state that “proteins fold in biologically relevant timescales” 

because the time-scale of biology is a consequence of physical chemistry, or as Feynman put 

it so well, “there is nothing that living things do that cannot be understood from the point of 

view that they are made of atoms acting according to the laws of physics.”53,54 

CONCLUDING REMARKS  

Owing to space constraints, the physics behind the origin of extreme thermal stability has not 

been addressed in this article. Nevertheless, for two proteins of identical chain lengths but 
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differing primary sequences, a decrease in ΔC
pD-N

 will concomitantly lead to a decrease in 

ΔC
pD-TS(T)

; and because ΔC
pTS-D(T)

 is the slope of the ΔH
TS-D(T)

 function, it essentially implies 

that ΔH
TS-D(T)

 becomes relatively insensitive to temperature such that T
H(TS-D)

 is shifted to 

higher temperatures. Equivalently, since the slope of ΔS
TS-D(T)

 is also related to ΔC
pTS-D(T)

, it 

implies that ΔS
TS-D(T)

 will also be relatively insensitive to temperature such that T
S
 is shifted 

to higher temperatures. Because the reference temperatures are interrelated (Table 1), a shift 

in T
S
 and T

H(TS-D)
 to higher temperatures implies a concomitant shift in T

m
 to higher 

temperatures. Although this can be achieved either by decreasing the SASA of the DSE (i.e., 

a more compact DSE) or increasing the SASA of the NSE (i.e., a more expanded NSE) or 

both, if the said two-state systems share the same native fold and similar primary sequences, 

increasing the SASA of the NSE would be an unlikely scenario; instead, thermal tolerance 

would primarily stem from changes in the SASA of the DSE. Because the SASA of the DSE 

is itself a function of its residual structure, all that needs to be done is increase the residual 

structure in the DSE.  This can be achieved via introduction of hydrophobic clusters, charge 

clusters and ion-pairs, disulfide bonds, metal ion coordination to residues such as histidines 

etc. in the DSE. These effects will be addressed elsewhere.  
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Table 1: Reference temperatures 

Temperature Value Remark 

T 182 K A two-state system is physically undefined for  T < T 

T
S()

 184.4 K m
TS-N(T) 

= 0, ΔH
TS-N(T) 

= ΔS
TS-N(T) 

= ΔG
TS-N(T) 

= 0, k
u(T)

 = k0 

T
CpTS-N()

 201 K ΔC
pTS-N(T)

 = 0 

T
c
 223.6 K Midpoint of cold denaturation, ΔG

D-N(T) 
= 0, k

f(T)
 = k

u(T)
 

T
H(TS-N)

 264.3 K ΔH
TS-N(T) 

= 0, k
u(T)

 is a minimum 

T
H
 272.9 K ΔH

TS-D(T) 
= ΔH

TS-N(T)
, ΔH

D-N(T) 
= 0, ΔH

TS-D(T) 
> 0, ΔH

TS-N(T) 
> 0,  

T
S
 278.8 K ΔS

TS-D(T) 
= ΔS

TS-N(T) 
= ΔS

D-N(T) 
= 0, ΔG

D-N(T)
 is a maximum 

T
H(TS-D)

 311.4 K ΔH
TS-D(T) 

= 0, k
f(T)

 is a maximum 

T
m
 337.2 K Midpoint of heat denaturation, ΔG

D-N(T) 
= 0, k

f(T)
 = k

u(T)
 

T
CpTS-N()

 361.7 K ΔC
pTS-N(T)

 = 0 

T
S()

 384.5 K m
TS-N(T) 

= 0, ΔH
TS-N(T) 

= ΔS
TS-N(T) 

= ΔG
TS-N(T) 

= 0, k
u(T)

 = k0 

T 388 K A two-state system is physically undefined for  T > T 
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FIGURES 

 

Figure 1.  

Temperature-dependence of the activation enthalpy for folding. 

(A) The variation in function with temperature. The slope of this curve varies with 

temperature, equals ΔC
pTS-D(T)

, and is algebraically negative. (B) An appropriately scaled 

version of the plot on the left to illuminate the three important scenarios: (i) ΔH
TS-D(T) 

> 0 for 

T ≤ T < T
H(TS-D)

; (ii) ΔH
TS-D(T) 

< 0 for T
H(TS-D) 

< T ≤ T; and (iii) ΔH
TS-D(T) 

= 0 when T = 

T
H(TS-D)

. Note that k
f(T)

 is a maximum at T
H(TS-D)

. The values of the reference temperatures are 

given in Table 1. 

 

 

 

 

 

 

 

 

Temperature (K)

180 210 240 270 300 330 360 390

 H
T

S
-D

(T
) 

(k
ca

l.m
ol

-1
)

-300

-200

-100

0

100

Temperature (K)

180 210 240 270 300 330 360 390

 H
T

S
-D

(T
) 

(k
ca

l.m
ol

-1
)

-40

-20

0

20

40

A B

TH(TS-D)
T

T



Page 40 of 59 
 

 

Figure 1−figure supplement 1.  

Temperature-dependence of k
f(T)

. 

(A) Temperature-dependence of k
f(T)

 on a linear scale. The slope of this curve is given by

2
( ) TS-D( )f T Tk H RT . (B) Temperature-dependence of k

f(T)
 on a logarithmic scale. The slope 

of this curve is given by 2
TS-D( )TH RT . The green dots represent the temperature T

S
 at 

which ΔG
D-N(T)

 is a maximum, ΔG
TS-D(T)

 is a minimum, and the absolute entropies of the 

DSE, the TSE and the NSE are identical. The red pointers indicate the temperature T
H(TS-D)

 at 

which  k
f(T)

 is a maximum, ΔH
TS-D(T) 

= 0, the Massieu-Planck activation potential for folding (

 TS-D  TG T ) is a minimum, and ΔG
TS-D(T)

 is purely entropic. The values of the reference 

temperatures are given in Table 1. 
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Figure 1−figure supplement 2.  

The solubility of the TSE relative to the DSE across a broad temperature regime. 

(A) K
TS-D(T)

 is a maximum when ΔH
TS-D(T)

= 0, or when the Massieu-Planck activation 

potential for folding,  TS-D  TG T , is a minimum, and this occurs precisely at T
H(TS-D)

. The 

slope of this curve is given by 2
TS-D( ) TS-D( )T TK H RT . The green dot represents T

S
, the 

temperature at which ΔG
D-N(T)

 is a maximum, ΔG
TS-D(T)

 is a minimum, and the absolute 

entropies of the DSE, the TSE and the NSE are identical. (B) The solubility of the TSE as 

compared to the DSE is the greatest when ΔH
TS-D(T)

= 0, or equivalently, when the Gibbs 

barrier to folding is purely entropic. The slope of this curve is given by

2
TS-D( ) TS-D( ) TS-D( )T T p TK H C RT  . The blue and red sections of the curve represent the 

temperature regimes T ≤ T ≤ T
H(TS-D)

  and  T
H(TS-D) 

≤ T ≤ T, respectively. The values of the 

reference temperatures are given in Table 1. 
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Figure 2.  

Temperature-dependence of the change in enthalpy for the partial folding reaction 

[ ]TS N . 

(A) The variation in ΔH
N-TS(T)

 with temperature. The slope of this curve varies with 

temperature and equals ΔC
pN-TS(T)

. The red pointers indicate the temperatures where ΔC
pN-

TS(T)
 (or −ΔC

pTS-N(T)
) is zero. (B) An appropriately scaled version of the plot on the left to 

illuminate the various temperature regimes. The net flux of the conformers from the TSE to 

the NSE is enthalpically: (i) favourable for T  
≤ T < T

S()
 and T

H(TS-N)
 < T < T

S()
 (ΔH

N-TS(T) 
< 

0); (ii) unfavourable for T
S()

 < T < T
H(TS-N)

 and T
S()

 < T ≤ T (ΔH
N-TS(T) 

> 0); and (iii) neither 

favourable nor unfavourable at  T
S()

, T
H(TS-N)

, and  T
S()

. At T
S()

 and T
S()

, we have the 

unique scenario: ΔG
N-TS(T) 

= ΔS
N-TS(T)

 = ΔH
N-TS(T) 

= 0, and k
u(T) 

= k0.  The values of the 

reference temperatures are given in Table 1. 
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Figure 2−figure supplement 1.  

Temperature-dependence of the activation enthalpy for unfolding. 

(A) The variation in ΔH
TS-N(T)

 function with temperature. The slope of this curve equals 

ΔC
pTS-N(T)

 and is zero at T
CpTS-N()

 and T
CpTS-N()

. (B) An appropriately scaled version of the 

figure on the left to illuminate the various temperature-regimes: (i) ΔH
TS-N(T)  

> 0 for T  
≤  T 

< T
S()

 and T
H(TS-N)

 < T < T
S()

; (ii) ΔH
TS-N(T) 

< 0 for T
S()

 < T < T
H(TS-N)

 and T
S()

 < T  ≤ T; 

and (iii) ΔH
TS-N(T) 

= 0 at  T
S()

, T
H(TS-N)

, and  T
S()

. Note that k
u(T)

 is a minimum at T
H(TS-N)

. 

Further, at T
S()

 and T
S()

, we have the unique scenario: ΔG
TS-N(T) 

= ΔS
TS-N(T)

 = ΔH
TS-N(T) 

= 0, 

and k
u(T) 

= k0, i.e., unfolding is barrierless; and for the temperature regimes T 
≤ T < T

S()
 and 

T
S() 

< T ≤ T, unfolding is once again barrier-limited but falls under the Marcus-inverted-

regime. This is in contrast to the conventional barrier-limited unfolding that occurs in the 

regime T
S()

< T < T
S()

 (see Figure 2−figure supplement 2). The values of the reference 

temperatures are given in Table 1. 
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Figure 2−figure supplement 2.  

Temperature-dependence of k
u(T)

. 

(A) Temperature-dependence of k
u(T)

 on a linear scale. The slope of this curve is given by

2
( ) TS-N( )u T Tk H RT . Unlike k

f(T)
 which has only one extremum, k

u(T)
 is a minimum at T

H(TS-N)
 

and a maximum (k
u(T) 

= k0) at T
S()

 and T
S()

 (green pointers). Although the minimum of k
u(T)

 

is not apparent on a linear scale,  the barrierless and the Marcus-inverted-regimes for 

unfolding are readily apparent (see Paper-III).3 (B) Temperature-dependence of k
u(T)

 on a 

logarithmic scale. The slope of this curve is given by 2
TS-N( )TH RT . The green dots 

represent the temperature T
S
 at which ΔG

D-N(T)
 and ΔG

TS-N(T)
 are both a maximum, and the 

absolute entropies of the DSE, the TSE and the NSE are identical. The red pointers indicate 

the temperature T
H(TS-N)

 at which k
u(T)

 is a minimum, ΔH
TS-N(T) 

= 0, the Massieu-Planck 

activation potential for unfolding (  TS-N  TG T ) is a maximum, and ΔG
TS-N(T)

 is purely 

entropic. The values of the reference temperatures are given in Table 1. 
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Figure 2−figure supplement 3.  

The solubility of the TSE relative to the NSE across a broad temperature regime. 

(A) K
TS-N(T)

 is a minimum when ΔH
TS-N(T)

= 0, or when the Massieu-Planck activation 

potential for unfolding,  TS-N  TG T , is a maximum; and this occurs precisely at T
H(TS-N)

. 

Further, K
TS-N(T)

 is unity at T
S()

 and T
S()

. The slope of this curve is given by 

2
TS-N( ) TS-N( )T TK H RT . The ordinate is shown on a log scale (base 10) to illuminate the 

minimum of K
TS-N(T)

. The green dot represents the temperature T
S
 at which ΔG

D-N(T)
 and 

ΔG
TS-N(T)

 are both a maximum, and the absolute entropies of the DSE, the TSE and the NSE 

are identical. (B) The solubility of the TSE as compared to the NSE is the least when ΔH
TS-

N(T)
= 0 or when the Gibbs barrier to unfolding is purely entropic. The slope of this curve is 

given by 2
TS-N( ) TS-N( ) TS-N( )T T p TK H C RT  . The point where the solubility of the TSE is 

identical to that of the NSE is indicated by the unlabelled green pointer, and described earlier, 

occurs precisely at T
S()

 and T
S()

. The blue and red sections of the curve represent the 

temperature regimes T ≤ T ≤ T
H(TS-N)

  and  T
H(TS-N) 

≤ T ≤ T, respectively. Note that the 

ordinate is on a log scale (base 10). The values of the reference temperatures are given in 

Table 1. 
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Figure 3.  

An overlay of ΔH
TS-D(T)

, ΔH
N-TS(T)

, and  ΔH
N-D(T)

 functions. 

(A) An overlay of ΔH
TS-D(T)

 and ΔH
N-TS(T) 

functions. At the temperatures where the functions 

intersect (green pointers, 195.5 K, 250 K, and 377.4 K), the absolute enthalpy of the TSE is 

exactly half the algebraic sum of the absolute enthalpies of the DSE and the NSE, i.e., 

 TS( ) D( ) N ( ) 2T T TH H H  . The intersection of the blue curve with the black reference line 

occurs at T
S()

, T
H(TS-N)

, and T
S()

. The intersection of the red curve with the black reference 

line occurs at T
H(TS-D)

. (B) An overlay of ΔH
TS-D(T)

, ΔH
N-TS(T)

, and ΔH
N-D(T) 

functions to 

illuminate the relative contribution of the enthalpies of the partial folding reactions  

[ ]D TS  and [ ]TS N  to the change in enthalpy of folding at equilibrium. The red and 

the green curves intersect at T
S()

, T
H(TS-N)

, and T
S()

, and the blue and the green curves 

intersect at T
H(TS-D)

. ΔH
N-D(T)

 = 0 at the temperature (T
H
) where the green curve intersects the 

black reference line. The net flux of the conformers from the DSE to the NSE is enthalpically 

unfavourable for T  
≤ T < T

H
, and favourable for T

H
 < T ≤ T. The values of the reference 

temperatures are given in Table 1. See Figure 3−figure supplement 1 for an appropriately 

scaled view of the intersections occurring inside the encircled region. 
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Figure 3−figure supplement 1  

An appropriately scaled view of the intersection of ΔH
TS-D(T)

, ΔH
N-TS(T)

, and  ΔH
N-D(T)

 

functions for the temperature regime T
H(TS-N)

< T < T
H

. 

Because ΔH
TS-D(T) 

> 0 and ΔH
N-TS(T) 

< 0 for T
H(TS-N)

< T < T
H
,  the positive ΔH

N-D(T)
 that stems 

from the coupling of the partial folding reactions  [ ]D TS  and [ ]TS N is primarily due 

to the net heat released in [ ]TS N not fully compensating for the net heat absorbed to 

activate the denatured conformers to the TSE. The intersection of ΔH
TS-D(T)

, ΔH
N-D(T)

 

functions  (red and green curves) occurs precisely at T
H(TS-N)

. When T = T
H
, ΔH

TS-D(T)
 = 

−ΔH
N-TS(T)

, i.e., the red and the blue curves are equidistant from the black horizontal 

reference line. The values of the reference temperatures are given in Table 1. 
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Figure 4.  

Temperature-dependence of the activation entropy for folding. 

(A) The variation in ΔS
TS-D(T)

 function with temperature. The slope of this curve varies with 

temperature and equals TS-D( )p TC T . (B) An appropriately scaled version of the figure on the 

left to illuminate the three temperature regimes and their implications: (i) ΔS
TS-D(T)

 > 0 for  T 

≤ T < T
S
; (ii) ΔS

TS-D(T)
 < 0 for T

S
 < T ≤ T; and (iii) ΔS

TS-D(T)
 = 0 when T = T

S
. The values of 

the reference temperatures are given in Table 1. 
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Figure 5.  

The variation in ΔS
N-TS(T)

 for the partial folding reaction [ ]TS N . 

(A) The variation in ΔS
N-TS(T)

 function with temperature. The slope of this curve, given by

N-TS( )p TC T , varies with temperature, and is zero at T
CpTS-N()

 and T
CpTS-N()

. (B) An 

appropriately scaled view of the plot on the left to illuminate the various temperature 

regimes. The flux of the conformers from the TSE to the NSE is entropically: (i) 

unfavourable for T  
≤ T < T

S()
 and T

S
 < T < T

S()
 (ΔS

N-TS(T) 
< 0); (ii) favourable for T

S()
 < T 

< T
S
 and T

S()
 < T ≤ T (ΔS

N-TS(T) 
> 0); and (iii) neutral at T

S()
, T

S
, and T

S()
.The values of the 

reference temperatures are given in Table 1. 
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Figure 5−figure supplement 1  

Temperature-dependence of the activation entropy for unfolding. 

(A) The variation in ΔS
TS-N(T)

 function with temperature for the partial unfolding reaction 

[ ]N TS . The slope of this curve, given by TS-N( )p TC T , and is zero at T
CpTS-N()

 and T
CpTS-

N()
. (B) An appropriately scaled version of the figure on the left to illuminate the temperature 

regimes and their implications: (i) ΔS
TS-N(T)  

> 0 for T 
≤ T < T

S()
 and T

S
 < T < T

S()
; (ii) ΔS

TS-

N(T) 
< 0 for T

S()
 < T < T

S
 and T

S() 
< T ≤ T; and (iii) ΔS

TS-N(T) 
= 0 at T

S()
, T

S
, and T

S()
. Note 

that at T
S()

 and T
S()

, we have the unique scenario: ΔG
TS-N(T) 

= ΔS
TS-N(T)

 = ΔH
TS-N(T) 

= 0, and 

k
u(T) 

= k0, i.e., unfolding is barrierless; and for the temperature regimes T 
≤ T < T

S()
 and T

S() 

< T ≤ T, unfolding is once again barrier-limited but falls under the Marcus-inverted-regime. 

This is in contrast to the conventional barrier-limited unfolding that occurs in the regime 

T
S()

< T < T
S()

. The values of the reference temperatures are given in Table 1. 
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Figure 6.  

An overlay of ΔS
TS-D(T)

, ΔS
N-TS(T)

, and  ΔS
N-D(T)

 functions. 

(A) An overlay of ΔS
TS-D(T)

 and ΔS
N-TS(T) 

functions for the partial folding reactions 

[ ]D TS  and [ ]TS N , respectively. At the high and low temperatures where the 

functions intersect (green pointers, 191.7 K and 375.5 K), the absolute entropy of the TSE is 

exactly half the algebraic sum of the absolute entropies of the DSE and the NSE, i.e., 

 TS( ) D( ) N ( ) 2T T TS S S  . The intersection of the blue curve with the black reference line 

occurs at T
S()

, T
S
, and T

S()
. The intersection of the red curve with the black reference line 

occurs at T
S
. (B) An overlay of ΔS

TS-D(T)
, ΔS

N-TS(T)
, and ΔS

N-D(T) 
functions to illuminate the 

relative contribution of the entropies of the partial folding reactions [ ]D TS  and 

[ ]TS N  to the change in entropy for the coupled reaction D N . While the red and the 

green curves intersect at T
S()

, T
S
, and T

S()
, all the three curves intersect at T

S
 (

D ( ) TS( ) N ( )T T TS S S  ). The net flux of the conformers from the DSE to the NSE is 

entropically favourable for T  
≤ T < T

S
 and unfavourable for T

S
 < T ≤ T. The values of the 

reference temperatures are given in Table 1. 
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Figure 7.  

Temperature-dependence of the Gibbs activation energy for folding. 

(A) ΔG
TS-D(T) 

is a minimum at T
S
, identical to  2

D-Nλ  m = 5.106 kcal.mol-1  at T
S()

 and 

T
S()

, and greater than λ for T ≤ T < T
S()

 and T
S() 

< T ≤ T (λ is the Marcus reorganization 

energy for protein folding), and TS-D( ) TS-D( ) 0T TG T S      at T
S
. (B) Despite large 

changes in ΔH
TS-D(T)

 (~ 400 kcal.mol-1) ΔG
TS-D(T)

 varies only by ~3.4 kcal.mol-1 due to 

compensating changes in ΔS
TS-D(T)

. See the appropriately scaled figure supplement for 

description. 
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Figure 7−figure supplement 1.  

Deconvolution of the Gibbs activation energy for the reaction [ ]D TS .. 

For T ≤ T < T
S
, TΔS

TS-D(T) 
> 0 but is more than offset by unfavourable ΔH

TS-D(T)
, leading to 

incomplete compensation and a positive ΔG
TS-D(T) 

( TS-D( ) TS-D( ) 0T TH T S    ). When T = T
S
, 

ΔG
TS-D(T)

 is a minimum and purely enthalpic ( TS-D( ) TS-D( ) 0T TG H    ). For T
S
 < T < T

H(TS-

D)
, the activation is enthalpically and entropically disfavoured (ΔH

TS-D(T) 
> 0 and TΔS

TS-D(T)
< 

0) leading to a positive ΔG
TS-D(T)

. In contrast, for T
H(TS-D) 

< T ≤ T, ΔH
TS-D(T) 

<  0 but is more 

than offset by the unfavourable entropy (TΔS
TS-D(T)

 <  0), leading once again to a positive 

ΔG
TS-D(T)

. When T = T
H(TS-D)

, ΔG
TS-D(T) 

is purely entropic ( TS-D( ) TS-D( ) 0T TG T S     ) and 

k
f(T)

 is a maximum. 
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Figure 8.  

Temperature-dependence of the change in Gibbs energy for the partial folding reaction 

[ ]TS N  

(A) In contrast to ΔG
TS-D(T)

 which has only one extremum, ΔG
N-TS(T) 

is a minimum at T
S
 and a 

maximum (zero) at T
S()

 and T
S()

; consequently, N-TS( ) N-TS( ) 0T TG T S     at T
S()

, T
S
 

and T
S()

. The values of the reference temperatures are given in Table 1. (B) Despite large 

changes in ΔH
N-TS(T)

, ΔG
N-TS(T)

 varies only by ~5 kcal.mol-1 due to compensating changes in 

ΔS
N-TS(T)

. See the appropriately scaled figure supplement for description. 
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Figure 8−figure supplement 1.  

Deconvolution of the change in Gibbs energy for the partial folding reaction [ ]TS N . 

These are appropriately scaled split views of Figure 8B. (A) For T 
≤ T < T

S()
, [ ]TS N  is 

entropically disfavoured (TΔS
N-TS(T) 

< 0) but is more than compensated by the exothermic 

enthalpy (ΔH
N-TS(T)  

< 0 ), leading to ΔG
N-TS(T)

 < 0. When T = T
S()

, ΔS
N-TS(T) 

= ΔH
N-TS(T)

 = 

ΔG
N-TS(T)

 = 0, and the net flux of the conformers from the TSE to the NSE is zero. For T
S() 

< 

T < T
H(TS-N)

, [ ]TS N is enthalpically unfavourable (ΔH
N-TS(T)

 > 0) but is more than 

compensated by entropy (TΔS
N-TS(T)

 > 0) leading to ΔG
N-TS(T)

 < 0. When T = T
H(TS-N)

, the net 

flux from the TSE to the NSE is driven purely by the favourable change in entropy (

N-TS( ) N-TS( ) 0T TG T S     ). For T
H(TS-N) 

< T < T
S
, the net flux of the conformers from the 

TSE to the NSE is entropically and enthalpically favourable (ΔH
N-TS(T)

 < 0 and TΔS
N-TS(T)

 > 

0) leading to ΔG
N-TS(T)

 < 0. When T = T
S
, the net flux is driven purely by the exothermic 

change in enthalpy ( N-TS( ) N-TS( ) 0T TG H    ). (B) For T
S
 < T < T

S()
,[ ]TS N is 

entropically unfavourable (TΔS
N-TS(T)

 < 0) but is more than compensated by the exothermic 

enthalpy (ΔH
N-TS(T)

 < 0) leading to ΔG
N-TS(T) 

< 0. When T = T
S()

, ΔS
N-TS(T) 

= ΔH
N-TS(T)

 = ΔG
N-

TS(T)
 = 0, and the net flux of the conformers from the TSE to the NSE is zero. For T

S()
< T ≤ 

T, [ ]TS N is enthalpically unfavourable (ΔH
N-TS(T)

 > 0) but is more than compensated by 

the favourable change in entropy (TΔS
N-TS(T)

 > 0), leading to ΔG
N-TS(T)

 < 0. 
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Figure 9.  

An overlay of ΔG
TS-D(T)

 and ΔG
N-TS(T)

 functions. 

Although both ΔG
TS-D(T)

 and ΔG
N-TS(T)

 are a minimum at T
S
 (black pointers), ΔG

TS-D(T)
 is 

always positive and ΔG
N-TS(T)

 is negative except for the temperatures T
S()

 and T
S()

 (green 

pointers). Further, ΔG
TS-D(T)

 is identical to the Marcus reorganization energy at T
S()

 and T
S()

 

(see Paper-III).3 

 

 

 

 

 

 

 

 

 

Temperature (K)

175 200 225 250 275 300 325 350 375 400

G
ib

bs
 E

ne
rg

y  
(k

ca
l.m

ol
-1

)

-6

-4

-2

0

2

4

6

GTS-D(T)
GN-TS(T)



Page 57 of 59 
 

 

Figure 10.  

Stability curve for the folding reaction D N . 

(A) Temperature-dependence of ΔG
N-D(T)

, ΔH
N-D(T)

, and TΔS
N-D(T)

. The green pointers 

identify the cold (T
c
) and heat (T

m
) denaturation temperatures. The green pointers identify T

c
 

and T
m
. The slopes of the red and black curves are given by N-D( ) N-D( )T TG T S      and 

N-D( ) N-DT pH T C    , respectively.  (B) An appropriately scaled version of plot on the left. 

T
H
 is the temperature at which ΔH

N-D(T)
 = 0, and T

S
 is the temperature at which ΔS

N-D(T)
 = 0. 

The values of the reference temperatures are given in Table 1. 
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Figure 10−figure supplement 1.  

The principle of microscopic reversibility. 

(A) k
f(T)

 is a maximum at T
H(TS-D)

 and k
u(T)

 is a minimum at T
H(TS-N)

. The slopes of the black 

and grey curves are given by 2
TS-D( )TH RT and 2

TS-N( )TH RT , respectively. (B) ΔG
TS-D(T)

 

and ΔG
TS-N(T)

 are a minimum and a maximum, respectively, at T
S
 (red pointers) leading to 

ΔG
D-N(T)

 being a maximum (or ΔG
N-D(T) 

a minimum) at T
S
. Equilibrium stability is thus a 

consequence or the equilibrium manifestation of the underlying kinetic behaviour. The rate 

constants are identical at T
c
 and T

m
, leading to

 D-N( ) ( ) ( ) TS-N( ) TS-D( )ln 0T f T u T T TG RT k k G G       . 
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Figure 11.  

The ratio of effective number of accessible chain conformations in the DSE to those in 

the TSE. 

(A) Temperature-dependence of the change in the ratio of the effective number of accessible 

conformations in the DSE to those in the TSE calculated according to Eq. (55) and shown on 

a log scale (base 10). (B) An appropriately scaled version of the plot on the left. Although the 

effective ratio is greater than the Avogadro number for T > ~382 K, and is about 10149 when 

T = T, it is reasonably small for the temperature regime T
S 

< T < T
m
. These calculations 

cannot be performed for T
 
< T

S
 since the entropy of solvent-release more than compensates 

for the decrease in chain entropy (Figure 4B). 
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