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Summary 
Signaling networks downstream of receptor tyrosine kinases are among the 

most extensively studied biological networks. However, it remains unclear 

whether signaling networks depend on biological context. Signaling networks 

encode causal influences - and not just correlations - between network 

components. Here, using a causal framework and systematic time-course assays 

of signaling proteins, we investigate the context-specificity of signaling networks 

in a cell line system. We focus on a well-defined set of signaling proteins profiled 

in four breast cancer cell lines under eight stimulus conditions and inhibition of 

specific kinases. The data, spanning multiple pathways and comprising 

approximately 70,000 phosphoprotein and 260,000 protein measurements, 

provide a wealth of testable, context-specific hypotheses, several of which we 

validate in independent experiments. Furthermore, the data provide a resource 

for computational methods development, permitting empirical assessment of 

causal network learning in a complex, mammalian setting. 

 

 

Introduction 
The complexity of mammalian receptor tyrosine kinase (RTK) signaling 

continues to pose challenges for the understanding of physiological processes 

and changes to such processes that are relevant to disease. Networks, 

comprising nodes and linking directed edges, are widely used to summarize and 

reason about signaling. Obviously, signaling systems depend on the 

concentration and localization of their component molecules, so signaling events 

may be influenced by genetic and epigenetic context. Indeed, in yeast there are 

striking examples of signaling links that are modulated by context (Good et al., 

2009; Zalatan et al., 2012). In disease biology, and cancer in particular, an 

improved understanding of signaling in specific contexts may have implications 

for precision medicine by helping to explain variation in therapeutic response 

and to inform rational therapeutic strategies. 

 

Much work has gone into elucidating genomic heterogeneity, notably 

intertumoral heterogeneity in cancer, and it has been shown that this 

heterogeneity is also manifested at the level of differential expression of 
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components of signaling pathways downstream of RTKs (Akbani et al., 2014; 

Gerlinger and Swanton, 2010; Nickel et al., 2012; Szerlip et al., 2012). However, 

differences in average protein abundance (as captured in differential expression 

or gene set analyses) are conceptually distinct from differences in the causal 

edge structure of signaling networks, with the latter implying a change in the 

ability of signals to pass between nodes. Causal relationships are also 

fundamentally distinct from statistical correlations: if there is a causal edge from 

node A to node B, then the abundance of B may be changed by intervention on A. 

In contrast, if A and B are merely correlated, but with no causal edge or pathway 

between them, intervention on A will have no effect on B, no matter how strong 

the correlation (for example, if both nodes are correlated due to co-regulation, 

but with no sequence of mechanistic events linking them).  

 

Canonical signaling pathways and networks (as described for example in 

textbooks and online resources) summarize evidence from multiple 

experiments, conducted in different cell types and growth conditions and 

therefore such networks are not specific to a particular context. Many well-

known links in such networks most likely hold in many contexts and so canonical 

networks remain a valuable source of insights. However, if causal signaling 

depends on context then using canonical networks alone will neglect context-

specific changes, with implications for reasoning, modeling and prediction. 

Unbiased “interactome” approaches (e.g. Rolland et al., 2014) continue to expand 

our view of the space of possible signaling interactions. However, due to the 

complex nature of genetic, epigenetic and environmental influences on signaling, 

such approaches cannot in general identify signaling events specific to biological 

context, e.g. specific to a certain cell type under defined conditions.  

 

Here, we studied context-specific signaling using human cancer cell lines. The 

data span 32 contexts each defined by the combination of (epi)genetics (breast 

cancer cell lines MCF7, UACC812, BT20 and BT549) and stimuli. In each of the 32 

(cell line, stimulus) contexts we carried out time-course experiments using kinase 

inhibitors as interventions. Reverse-phase protein arrays (RPPAs; Tibes et al. 

2006) were then used to interrogate signaling downstream of RTKs. We used 
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more than 150 high-quality antibodies targeting mainly total and 

phosphorylated proteins (see Table S1). The inhibitors applied in each context 

allowed elucidation of context-specific causal influences between inhibited and 

downstream phosphoproteins. We also modeled the data using recently 

developed methods rooted in probabilistic graphical models to reconstruct 

context-specific networks intended to capture causal interplay between all 

measured phosphoproteins (and not just interplay related to inhibited nodes). 

Our results support the notion of context-specificity in causal signaling. In 

addition, this paper adds to available resources in two ways: 

 Data resource for causal signaling. Interventional data are essential to 

go beyond observational statements about protein expression levels towards 

an understanding of causal signaling heterogeneity. The experimental design 

used here, spanning all combinations of context, inhibitor and time, allows 

for a very wide range of analyses, including, but not limited to, analyses of the 

kind presented here. Large patient datasets are now available in cancer (see, 

for example, the TCGA Research Network: http://cancergenome.nih.gov/), 

including functional phosphoprotein assays (Akbani et al., 2014), but 

systematic temporal profiling under interventions is not currently feasible in 

such settings. The data presented here complement available patient datasets 

by providing interventional readouts under defined conditions. Furthermore, 

the data and analyses provide a wealth of testable hypotheses regarding 

potentially novel and context-specific signaling links. 

 Computational biology benchmarking. Network reconstruction has 

long been a core topic in computational biology but performance with 

respect to learning of causal links has mainly been benchmarked using 

simulated data that may not adequately reflect the challenges of real data and 

relevant biology. A previous study established a synthetic network in yeast 

that was valuable to the computational biology community as it provided a 

gold-standard network in a biological model (Cantone et al., 2009). However, 

the number of nodes was small (five) and the synthetic system most likely 

does not reflect the complexity of mammalian regulation. The design of our 

experiments allows for systematic testing of causal network learning in a 

complex mammalian setting and provides a unique resource for development 
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of computational biology methods. The data presented here were used in the 

recent HPN-DREAM network inference challenge. The challenge focused on 

causal networks and the data were used to score more than 2000 submitted 

networks (full details of the challenge are described in Hill et al., 2016). 

 

  

Results 

Causal signaling links and context-specificity 

In the causal network formulation we use here, an edge or link has the 

interpretation that inhibition of the parent node can lead to a change in 

abundance of the child node that is not via any other node in the network. Figure 

1A shows an example where a change is observed in a phosphoprotein C under 

inhibition of an upstream protein A, but there is no edge between phospho-A and 

phospho-C because the causal effect of phospho-A on phospho-C occurs via 

phospho-B. However, if phospho-B were unobserved (or not even known to 

exist) and therefore not included in the network, in the framework we consider 

here the network would be defined as containing an edge between phospho-A 

and phospho-C. This would represent an effect of phospho-A on phospho-C that 

is physically indirect (since it is mediated via the unobserved node) but 

nevertheless causal (since intervention on A would change C).  

 

To illustrate the notion of a context-specific causal edge, consider the situation 

where there is a causal edge from phospho-A to phospho-B in cell line 1 under 

stimulus 1, and for this reason inhibition of A leads to a change in the level of 

phospho-B (Figure 1B). In contrast, in two other contexts, there is no (direct or 

indirect) causal edge from phospho-A to phospho-B and therefore no change in 

phospho-B under inhibition of A.  

 

Causation concerns changes under intervention and is fundamentally distinct 

from correlation. For example, consider the scenario where both phospho-E and 

phospho-F are regulated by phospho-D (possibly indirectly via unmeasured 

nodes), but there is no sequence of mechanistic events between phospho-E and 

phospho-F (Figure 1C). In this scenario, phospho-E and phospho-F may be 
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statistically correlated or dependent (due to co-regulation by phospho-D), but 

intervention on phospho-E would not be able to induce a change to phospho-F 

and therefore no causal edge should be placed between E and F. 

 

Overview of approach 

We considered four breast cancer cell lines (MCF7, UACC812, BT20 and BT549) 

derived from distinct epigenetic states and harboring different genomic 

aberrations (Barretina et al., 2012; Garnett et al., 2012; Heiser et al., 2012; Neve 

et al., 2006). Each cell line was serum starved for 24 hours and then, at time 

t=0min stimulated with one of eight different stimuli (Figure 2A). For each (cell 

line, stimulus) context, we carried out RPPA time-course assays consisting of a 

total of seven time points spanning four hours, and under five different kinase 

inhibitors plus DMSO as a control (Figure 2A and Experimental Procedures; here 

we focused on relatively short-term events – the assays included additional, later 

time points that were not used in our analyses).  To ensure that targets of the 

kinase inhibitors were effectively blocked, cells were treated with inhibitors for 

two hours before stimulus. Low concentrations of each inhibitor were used to 

minimize off-target effects (see Experimental Procedures). Due to the functional 

significance of phosphorylation, the analyses presented below focus on the 35 

phosphoproteins that were measured in all cell lines (see Experimental 

Procedures and Table S1). Context-specific changes under intervention were 

summarized as causal descendancy matrices (Figure 2B; see below). Machine 

learning methods were used to integrate the interventional data with known 

biology to reconstruct context-specific signaling networks (Figure 2C).  

  

Interventional time-course data specific to biological context 

Causal signaling links concern changes under intervention (and not merely 

differential protein expression or changes to statistical correlation between 

nodes). Comparing time-course data between inhibitor and control (DMSO) 

experiments allowed us to detect changes to phosphoprotein nodes caused by 

kinase inhibition (see Experimental Procedures for details). These changes are 

visualized in a global manner for cell lines UACC812 and MCF7 in Figure 3B, with 

DMSO time-courses shown in Figure 3A. In Figure 3B, the color coding indicates 
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direction of effect (see examples at bottom right of Figure 3B): green indicates a 

decrease under intervention relative to control (consistent with positive 

regulation) and red an increase under intervention (consistent with negative 

regulation). Corresponding visualizations for BT20 and BT549 are shown in 

Figure S1. 

 

Many effects, including many classical ones, are not stimulus-dependent. For 

example, phospho-p70S6K is reduced relative to control under mTOR inhibition 

(inhibitor AZD8055; Figure 3B, bottom right), in line with the known casual role 

of mTOR in regulating phosphorylation of p70S6K. It is important to note that 

since mTOR signaling is already active in serum starved cells (and not 

substantially triggered under any stimulus) the reduction in phospho-p70S6K 

under mTOR inhibition is seen at all time points, including t=0min. However, 

some changes under intervention are specific to individual stimuli. Some of these 

effects can be readily explained, such as the reduction in abundance of several 

phosphoproteins in the AKT and MAPK pathways under FGFR inhibition 

(inhibitor PD173074) for cell line MCF7 stimulated with FGF1. Other stimulus-

specific changes are less expected, including the decrease in abundance of 

phospho-AKT (phosphorylated at threonine 308) in cell line MCF7 under 

inhibition of mTOR/PI3K  (inhibitor BEZ235) that is observed in only four of the 

stimuli.  

 

Causal descendancy matrices summarize changes under intervention 

across multiple contexts 

Changes seen under inhibition of mTOR (catalytic inhibitor AZD8055) are 

summarized in Figure 4A (with phosphoproteins in rows and the 32 contexts in 

columns). Here, a filled-in box for phosphoprotein p in context c indicates a 

salient change under mTOR inhibition (see Experimental Procedures), consistent 

with a causal effect of mTOR on phosphoprotein p in context c. This effect could 

occur via a causal pathway involving other (measured or unmeasured) nodes. In 

other words, an entry in location (p,c) in the matrix indicates that 

phosphoprotein p is a descendant of mTOR in the causal signaling network for 

context c; we therefore refer to this matrix as a causal descendancy matrix for 
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mTOR. For comparison, an additional column shows proteins that are 

descendants of mTOR according to a canonical signaling network (Figure 4B; 

Experimental Procedures). Many of the stimulus-wide classical signaling links 

mentioned above are also conserved across cell lines. But there are also many 

examples of causal influences that are both non-canonical and cell line-specific; 

for example, the abundance of phospho-p38 is elevated in UACC812 cells treated 

with the mTOR inhibitor AZD8055 under serum stimulation whereas there is no 

change in phospho-p38 levels in cell line BT549 under the same conditions. 

Similarly, we obtained causal descendancy matrices for each of the other 

inhibitors in our study (Figure S2).  

 

We sought to validate some of the observed causal effects by western blot 

analysis (Experimental Procedures). Observations were selected for validation 

across both inhibitors and antibodies, and included instances of increase and 

decrease under inhibition, as well as instances where no effect was observed 

(Table S2). A summary of the number of observations tested for each cell line 

and inhibitor regime, and of validation success rate in independent experiments 

(i.e. new lysates) is shown in Figure 4C.   Overall we validated 78% of 

observations tested (104 out of 134 observations). There were 25 (antibody, 

inhibitor) combinations that for the same stimulus showed differing effects 

across cell lines in the RPPA data (and which were also tested by western 

blotting); 17 of these instances of heterogeneity across cell lines validated 

(68%). The corresponding validation rate for (antibody, inhibitor) combinations 

that for the same cell line showed differing effects across stimuli was only 3 out 

of 13 (23%). The inability to confirm some RPPA data observations with western 

blotting could represent biological variability, differential sensitivity between 

RPPA and western blotting, use of different antibodies or other technical issues.  

 

Machine learning of signaling networks 

We used a machine learning approach to learn context-specific causal networks 

over all measured phosphoprotein nodes (including those not intervened upon). 

Specifically we used a variant of dynamic Bayesian networks (see Experimental 

Procedures and references therein for details) that modeled the interventional 
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time-course data to learn networks simultaneously across all 32 contexts, whilst 

taking account of known biology (encoded as a prior network, Figure S3).  

 

Figure 5 summarizes networks across all 32 (cell line, stimulus) contexts. Here, 

we see that while many edges, including several classical signaling relationships, 

are near universal, others are cell line-specific, mirroring, via a global analysis, 

the inhibition data reported above (Figure 4A). The networks contained edges 

included in the prior network as well as many edges that were not. Across the 32 

contexts, networks contained an average of 49 edges (at a threshold of 0.2 

applied to the edge probabilities that are the output of the learning procedure) 

and, on average, 40% of edges in each network were not in the prior network 

(Table S3). We discuss potentially novel edges that were not in the prior (and 

their validation) below.  As discussed in Hill et al. (2016), the challenging nature 

of causal network learning means that empirical performance assessment is 

important. We used the train-and-test procedure described in Hill et al. (2016) to 

systematically assess causal network learning (see Experimental Procedures). 

We found that the models were able to achieve significant agreement with 

unseen test interventional data in most of the contexts (Figure S4). However, we 

note that such empirical assessment is an open area in causal inference and the 

assessment procedure used here is subject to a number of caveats (see 

Discussion).  

  

Validation of context-specific signaling hypotheses 

In the global networks we identified 235 edges that were not in the prior 

network but that had edge probability scores above a threshold of 0.2. These 

potentially novel edges shared 35 parent proteins, 4 of which were inhibited in 

the original dataset.  Five edges with parent nodes not among those inhibited in 

the original RPPA data were selected for validation by western blot.  Edge 

selection was done on the basis of biological interest and availability of 

sufficiently specific inhibitors for the parent nodes (Figure 6).  We note that our 

computational approach predicts presence/absence of each edge and its 

direction, but not sign (activating or inhibiting). 
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For each of the five edges we tested contexts in which the edge was predicted as 

well as those in which the edge was not predicted.  We inhibited the parent node 

and observed whether this altered abundance of the predicted child node. We 

found evidence supporting each of the five predicted causal edges, but with often 

complex context-dependence.  These results – and their agreement and 

disagreement with context-specific predictions from network modeling – are 

summarized in Figure 6F,G.       

 

A novel edge from Chk2_pT68 to p38_pT180/Y182 (for phosphoproteins we give 

the protein name before an underscore which is followed by the phosphorylation 

site(s)) was predicted only in cell line BT549 (Figure 5).  When Chk2 is inhibited 

with AZD7762 in BT549 cells, phospho-p38 decreases under FBS and NRG1 

(where the edge was predicted) as well as under insulin (where the edge was not 

predicted; Figure 6A).  In contrast, there is no change in phospho-p38 in BT20 

cells under AZD7762 treatment, consistent with the absence of the edge in the 

BT20 networks.  Here we see that the edge validates in a cell line-specific but not 

stimulus-specific manner.  However, it is important to note that AZD7762 

inhibits Chk1 and Chk2 with equal potency and also demonstrates activity, albeit 

lower, against other kinases. Whether this explains why AZD7762 demonstrated 

activity in insulin treated cells, which was not predicted by the model, remains to 

be established. 

 

The networks predicted an edge from p38_pT180/Y182 to JNK_pT183/T185 in 

BT549 and BT20 cells (under stimulus with FBS) and in BT549 cells (under 

HGF).  Upon inhibition of p38 with VX702 in BT20 and BT549 cells stimulated 

with FBS, we observe an increase in phospho-JNK (Figure 6B).  We also observe a 

modest increase in phospho-JNK in UACC812 cells, although the phospho-p38 to 

phospho-JNK edge was not predicted in UACC812.   

 

 An edge from Src_p416 to NFκβ-p65_pS536 was predicted only in BT20 cells 

stimulated with EGF.  Upon inhibition of Src with KX2391 both before and after 

stimulation with EGF, an increase in the abundance of phospho-NFκβ was 

observed in BT20 cells, consistent with the presence of a causal link (Figure 6C).  
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The connection between phospho-Src and phospho-NFκβ was also observed in 

MCF7, where the edge was not predicted.  

 

An edge from p70S6K_pT389 to p27_pT198 was predicted in all of the UACC812 

and BT549 networks.  The edge was also predicted in MCF7 networks for PBS, 

insulin, FGF, NRG1, and IGF1 and in the BT20 NRG1 network.  When p70S6K was 

inhibited in UACC812 cells with PF4708671, a change in phospho-p27 was 

observed only at the zero time point before stimulus was added (Figure 6D).  In 

MCF7 cells stimulated with HGF, phospho-p27 decreased in abundance under 

p70S6K inhibition; however, the edge was not predicted in this context.  When 

PF4708671-treated MCF7 cells were stimulated with IGF, a context in which the 

edge was predicted with high probability, no change in phospho-p27 was 

observed.  Similarly, there was no change in phospho-p27 in BT20 cells that had 

been treated with PF4708671 and stimulated with HGF.  

 

In BT549 an edge was predicted from Chk2_pT68 to YAP_pS127 under HGF and 

insulin.  BT549 cells treated with the Chk2 inhibitor AZD7762 exhibit an increase 

in phospho-YAP (Figure 6E).  This edge was not predicted in any other cell line 

tested.  However, in both UACC812 and MCF7 cells treated with AZD7762, a 

decrease in the abundance of phospho-YAP is observed.  Active Chk2 appears to 

decrease phospho-YAP in BT549 cells (where the edge was predicted) and 

increase phospho-YAP in UACC812 and MCF7 cells (where the edge was not 

predicted).  These results are consistent with the existence of a causal influence 

of phospho-Chk2 on phospho-YAP in all of these cell lines, and not just in BT549 

as predicted.  

 

Thus, we see evidence for each of the five novel edges, demonstrating the utility 

of our approach in generating testable hypotheses.  Furthermore, the validation 

data support the notion of differences in causal links between contexts (Figure 

6F,G). However, although we see effects in several contexts in which they were 

predicted, effects are also seen in contexts in which they were not predicted, 

suggesting that predictions are not accurate in terms of precisely which contexts 

the effect is specific to. 
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Discussion  

The data and analyses presented here support the view that causal signaling 

networks can depend on biological context. We focused on breast cancer cell 

lines. These represent contexts that are genetically perturbed but with a shared 

tissue-of-origin. The causal signaling heterogeneity that we observed suggests 

that substantial differences could exist between, for example, samples from 

different tissue types or divergent environmental conditions. This strongly 

argues for a need to refine existing models of signaling for specific contexts, not 

least in disease biology. 

 

Given the range of potentially relevant contexts – spanning combinations of 

multiple factors, including genetic, epigenetic and environmental – we do not 

believe that characterization of causal signaling across multiple contexts can 

feasibly be done using classical approaches in a protein-by-protein manner. 

Rather, it will require high-throughput data acquisition and computational 

analysis. Such a program of research requires an appropriate conceptual 

framework, rich enough to capture regulatory relationships, but still tractable 

enough for large-scale investigation. Furthermore, for practical application, such 

an approach will also need to be sufficiently robust to missing or unknown 

variables. Causal models may provide an appropriate framework because, unlike 

purely correlational models, they allow for reasoning about change under 

intervention and are, to a certain extent, robust to missing variables. In 

particular, causal descendancy matrices (Figures 4A and S2) are robust to 

missing variables in the sense that addition of a protein (row) to the matrix 

would not change the existing entries (since the claim that node A has a causal 

influence on node B is consistent with missing intermediate nodes). A systematic 

program of investigation into context-specific signaling will be important for 

cancer biology, but perhaps even more so for the many other disease areas in 

which signaling is influential, but that have to date been less well represented 

than cancer in signaling studies. 

 

Our results extend the well-established notion of genomic intertumoral 

heterogeneity in cancer to the level of signaling phenotype. We found that cell 
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line-specific findings were more reliable than stimulus-specific findings. This 

may be due to the magnitude of epigenetic and genetic differences between cell 

lines being more marked than differences between stimuli, all of which activated 

closely related cell surface receptors. 

 

We attempted to validate five predicted edges that were not present in the prior 

network. All five edges showed causal effects in validation experiments, but only 

one (phospho-Chk2 to phospho-p38; Figure 6A) in a manner consistent with 

context-specific predictions. In common with most protein profiling studies, 

including both low- and high-throughput techniques, our experiments were 

based on bulk assays and can therefore only elucidate signaling heterogeneity at 

the level of cell populations; we did not consider cell-to-cell heterogeneity, tumor 

stromal interactions, nor the spatial heterogeneity of tumors that plays an 

important role in vivo (Bedard et al., 2013; González-García et al., 2002). 

However, our data have implications for inter- and intra-tumoral heterogeneity 

because they suggest the possibility that in vivo causal signaling networks – and 

in turn the cell fates and disease progression events that they influence – may 

depend on the local micro-environment. Further work will be needed to 

elucidate such dependence and to draw out its implications.  

 

In the future, signaling models may start to play a role in clinical informatics, for 

example by helping to inform rational assignment of targeted therapies. An 

implication of the context-specificity we report is that such analyses may require 

models that are learned, or at least modified, for individual samples (or subsets 

of samples). While causal models are in some ways simpler than fully dynamical 

ones, causal inference remains fundamentally challenging and is very much an 

open area of research. For this reason, alongside advances in relevant assays, a 

personalized, network-based approach will require suitable empirical 

diagnostics, a view that echoes long-standing empirical critiques of causal theory 

(e.g. Freedman & Humphreys 1999). Hill et al. (2016) used the data presented 

here to score, in an automated manner, over 2000 networks (~70 methods each 

applied to infer 32 context-specific networks) submitted to the HPN-DREAM 

network inference challenge and we used this assessment procedure here. Such 
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assessment procedures could in the future allow for automated quality control, 

for example rejecting networks that are not sufficiently consistent with unseen 

interventional readouts (e.g. we did not obtain statistically significant 

performance under any test inhibitor for the (BT549, EGF) context; see Figure 

S4). However, as discussed in Hill et al. (2016) the assessment approach remains 

limited in several ways and this argues for caution in interpreting the relatively 

good performance with respect to the assessment procedure reported here. Of 

particular relevance to context-specificity, we note that the assessment 

procedure focuses on global agreement with held-out interventional data and 

not specifically on identification of differences between contexts. Indeed, our 

validation experiments showed that although all novel edges that were tested 

validated in one or more contexts, network predictions were not accurate with 

respect to the precise context(s) in which changes were seen.  

 

Recently, Carvunis and Ideker (2014) proposed a view of cellular function 

involving hierarchies of elements and processes and not just networks. Building 

detailed dynamical or biophysical models over hierarchies spanning multiple 

time and spatial scales may prove infeasible. A more tractable approach may be 

to extend coarser causal models of the kind used here in a hierarchical direction, 

for example by allowing causal links to cross scales and subsystems. Thus, the 

approach we pursued – of causal models based on context-specific perturbation 

data – could in the future be used to populate models over cellular hierarchies. 

 

 

Experimental Procedures 

Preparation of RPPA samples 

Breast epithelial cells in log-phase of growth were harvested, diluted in the 

appropriate media (RPMI or DMEM) containing 10% fetal bovine serum, and 

then seeded into 6 well plates at an optimized cell density. BT20 cells were 

plated at 230,000 cells/ well; BT549 cells were plated at 175,000 cells/ well; 

MCF7 cells were plated at 215,000 cells/ well; and UACC812 cells were plated at 

510,000 cells/well. After 24 hour growth at 37C and 5% CO2 in complete 

medium, cells were synchronized by incubating with serum-free medium for an 
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additional 24 hours. The medium was then exchanged with fresh serum-free 

medium containing either: 15nM AZD8055, 50nM GSK690693, 50nM BEZ235, 

150nM PD173074, 10nM GSK1120212 in combination with 50nM GSK690693, 

or vehicle alone (0.05% DMSO) and incubated for two hours prior to stimulation. 

Cells were then either harvested (0 time point) or stimulated by addition of 

200uL per well of 10X stimulus (either PBS, Fetal Bovine Serum, 100ng/mL EGF, 

200ng/mL IGF1, 100nM insulin, 200ng/mL FGF1, 1ug/mL NRG1, or 500 ng/mL 

HGF) for 0, 5, 15, 30 or 60 minutes, or 2, 4, 12 ,24, 48 or 72 hours prior to protein 

harvest. Cells were washed twice with PBS and lysed by adding 50uL of lysis 

buffer (1% Triton X-100, 50mM HEPES, pH 7.4, 150mM NaCl, 1.5mM MgCl2, 

1mM EGTA, 100mM NaF, 10mM Na pyrophosphate, 1mM Na3VO4, 10% glycerol, 

containing freshly added protease and phosphatase inhibitors from Roche 

Applied Science 04693116001 and 04906845001, respectively). Lysates were 

collected by scraping after 20 minutes incubation on ice. Lysates were spun at 

4°C in a tabletop centrifuge at 15,000 RPM for 10 minutes and soluble proteins 

contained in the supernatant were collected. Protein concentration was 

determined by the Pierce BCA Protein Assay according to manufacturer’s 

protocol. Protein was then diluted to 1 mg/mL and 30uL of the diluted lysate 

was mixed with 10uL 4X SDS sample buffer (40% Glycerol, 8% SDS, 0.25M Tris-

HCL, pH 6.8 and 10% v/v 2-mercaptoethanol added fresh) and boiled for 5 

minutes prior to freezing and shipment to MD Anderson Cancer Center 

Functional Proteomics Core Facility (Houston, Texas) for Reverse Phase Protein 

Array (RPPA) analysis (Tibes et al., 2006). 

 

RPPA methodology has been described previously (see e.g. Akbani et al., 2014) 

and is also outlined in Extended Experimental Procedures. Antibodies used in 

the assay go through a validation process as previously described (Hennessy et 

al., 2010) to assess specificity, quantification and dynamic range. The validation 

status of each antibody can be found in Table S1. 

 

Western Blot Analysis 

Cells were grown as described above. Additional inhibitors were used to 

generate lysates for novel edge validations following the protocol laid out above. 
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The inhibitors, all used at 1μM, were AZD7762, KX2-391, PF4708671, and VX-

702 (see Figure 6 for targets). Lysates were harvested 15 minutes after 

stimulation and protein concentrations quantified as described above. 

Denatured lysates were run on 4–12% Bis-Tris gradient gels (Invitrogen). Gels 

were transferred to immobilin-FL PVDF membranes (Millipore) before being 

immunoblotted with indicated antibodies (Table S5). 

 

Data quality control and pre-processing 

Several further quality control and pre-processing steps were performed prior to 

analysis of the RPPA time-course data. These steps are briefly summarized 

below, with some additional details provided in Extended Experimental 

Procedures.   

 

Several samples were excluded from analysis because they did not pass quality 

control (Table S6). These samples were identified using protein loading 

correction factors, variance across antibodies, and signal-to-noise ratio analysis 

(see Extended Experimental Procedures). In addition, data for the combination 

of inhibitors GSK690693 & GSK1120212 (AKTi & MEKi) for cell lines BT549 (all 

stimuli) and BT20 (PBS and NRG1 stimuli only) were excluded since none of the 

expected effects of MEKi were observed in these samples. 

 

A batch normalization procedure was performed for cell line UACC812 due to 

samples for this cell line being split across two batches. Normalization was 

performed using samples that were common to both batches and is fully 

described in Extended Experimental Procedures. Data were log transformed and 

replicates (only present for t=0 samples and some DMSO samples) were 

averaged. Prior to input into our network inference pipeline, imputation was 

performed for missing data by linear interpolation of adjacent time points. 

 

To facilitate comparisons between cell lines, the analyses presented here focused 

on the set of phosphoprotein antibodies common to all four lines. This set 

contained two highly correlated pairs of antibodies (r > 0.9 for all cell lines), 

consisting of phosphoforms of the same protein: GSK3αβ_pS21_pS9, GSK3_pS9 
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and S6_pS235_S236, S6_pS240_S244. Only one antibody out of each pair was 

included in analyses, resulting in a final set of 35 phosphoprotein antibodies. A 

full list of antibodies can be found in Table S1. 

 

Identification of changes under kinase inhibition 

We used a procedure centered on paired t-tests to determine which 

phosphoproteins show a salient change in abundance under each kinase 

inhibitor. Details are described in Hill et al. (2016), but also outlined below for 

completeness. 

 

For each phosphoprotein, inhibitor regime and (cell line, stimulus) context, a 

paired t-test was used to assess whether mean phosphoprotein abundance 

under DMSO control is significantly different to mean abundance under the 

inhibitor regime (mean values calculated over seven time points). Some 

phosphoproteins show a clear response to the stimulus under DMSO control, 

with abundance increasing and then decreasing over time (a “peak” shape), 

while others show a less clear response due to signal already being present prior 

to stimulus. For phosphoproteins falling into the former category (according to a 

heuristic), paired t-tests were repeated, but this time restricted to intermediate 

time points within the peak. This focuses on the portion of the time-course 

where an inhibition effect, if present, should be seen. The p-value from the 

repeated test was retained if smaller than the original p-value. For each (cell line, 

stimulus) context and inhibitor regime, the resulting set of p-values (one p-value 

for each phosphoprotein) were corrected for multiple testing using the adaptive 

linear step-up procedure for controlling the FDR (Benjamini et al., 2006).  

  

For each (cell line, stimulus) context, a phosphoprotein was deemed to show a 

salient change under a given inhibitor regime if two conditions were satisfied. 

First, the corresponding FDR value had to be less than 5% and, second, the effect 

size (log2 ratio between DMSO control and inhibitor conditions) had to be 

sufficiently large relative to replicate variation.  The latter condition is an 

additional filter to remove small effects. The phosphoproteins satisfying these 

criteria are depicted in Figures 3B, 4A, S1 and S2. We note that the overall 
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procedure is heuristic and that the FDR values should not be interpreted 

formally. 

 

A phosphoprotein p showing a salient change under an inhibitor is consistent 

with a node targeted by the inhibitor having a causal effect on the 

phosphoprotein. Since this effect can be direct or indirect, phosphoprotein p can 

be regarded as a descendant of the inhibitor target node in the underlying 

signaling network. That is, there exists a directed path starting from the node 

targeted by the inhibitor and ending at phosphoprotein p.  

 

Network learning 

Networks were learned for each of the 32 (cell line, stimulus) contexts using 

dynamic Bayesian networks (DBNs), a type of probabilistic graphical model for 

time-course data (see e.g. Hill et al., 2012; Husmeier, 2003; Murphy, 2002). 

Specifically we used a variant called interventional DBNs or iDBNs (Spencer et al., 

2015), that uses ideas from causal inference (Pearl, 2009; Spirtes et al., 2000) to 

model interventions and thereby improve ability to infer causal relationships; 

model specification followed Spencer et al. (2015). Although interested in 

learning context-specific networks, we expect a good proportion of agreement 

between contexts. Therefore, rather than learn networks for each context 

separately, we used a joint approach to learn all networks together (Oates et al., 

2014). A prior network was used (Figure S3); this was curated manually with 

input from literature (Weinberg, 2013) and online resources. The extent to 

which context-specific networks are encouraged to agree with each other and 

with the prior network is controlled by two parameters, 𝜆 and 𝜂 respectively, as 

described in detail in Oates et al. (2014). These parameters were set (to 𝜆 = 3 

and 𝜂 = 15) by considering a grid of possible values and selecting an option that 

provides a reasonable, but conservative amount of agreement, allowing for 

discovery of context-specific edges that are not in the canonical prior network. 

The network learning approach resulted in a score (edge probability) for each 

possible edge in each context-specific network. The network estimates were 

robust to moderate data deletion and precise specification of the biological prior 

network and its strength (Figure S5). Furthermore, the analyses were 
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computationally efficient, requiring approximately 30 minutes to learn all 32 

context-specific networks using serial computation on a standard personal 

computer (Intel i7-2640M 2.80GHz processor, 8GB RAM).  

 

Assessing performance of causal network learning 

The ability of our network learning approach to estimate context-specific causal 

networks was systematically assessed using a train and test scheme proposed by 

Hill et al. (2016) in the context of the HPN-DREAM network inference challenge 

associated with the RPPA data presented here. In brief, networks were learned 

on a training dataset consisting of a subset of the inhibitors, and the causal 

validity of the networks was then assessed using held-out data from an unseen, 

test inhibitor. In contrast to Hill et al. (2016) where, due to factors specific to the 

challenge setting, a single iteration of train and test was used, we iterated over 

available inhibitors. Full details of the assessment approach can be found in Hill 

et al. (2016), but for completeness we also provide an outline in Extended 

Experimental Procedures. 

 

 

Figure Captions 

 

Figure 1. Causal Effects in Signaling 

(A) An example causal network for a kinase phosphorylation cascade consisting 

of three phosphoproteins. Phospho-A phosphorylates and activates protein B, 

which in turn phosphorylates protein C. Due to the influence of phospho-A on 

protein B, inhibition of A leads to a change in abundance of phospho-B. Although 

there is no direct physical influence of A on C, such a change is also observed for 

phospho-C since it is influenced by B, and is therefore a descendant of A in the 

causal network. (B) Causal edges may be context-specific. In the example shown, 

there is a causal edge from phospho-A to phospho-B for the (cell line 1, stimulus 

1) context, but not for (cell line 2, stimulus 1) or (cell line 1, stimulus 2). (C) 

Correlation and causation. Phospho-E and phospho-F are correlated due to 

regulation by the same protein (phospho-D). However, there is no causal 
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relationship (direct or indirect) between phospho-E and phospho-F and 

inhibition of protein E would not result in a change in phospho-F. 

 

Figure 2. Data-Driven Reconstruction of Context-Specific Causal Signaling 

Networks. 

(A) Overview of experimental approach. Reverse-phase protein arrays (RPPA) 

were used to investigate protein signaling in four human breast cancer cell lines 

under eight different stimuli. The combinations of cell line and stimulus defined 

32 (cell line, stimulus) contexts. Prior to stimulus, cell lines were serum starved 

and treated with kinase inhibitors or DMSO control. RPPA assays were 

performed for each context at multiple time points post-stimulus, using more 

than 150 high-quality antibodies to target specific proteins, including 

approximately 40 phosphoproteins (the precise number of antibodies varies 

across cell lines; see Experimental Procedures and Table S1). (B) Causal 

descendancy matrices (CDMs). CDMs summarizing changes under intervention 

across all contexts were constructed for each intervention. (C) Overview of 

causal network learning procedure. Interventional time-course data for each 

context were combined with existing biological knowledge in the form of a prior 

network to reconstruct context-specific phosphoprotein signaling networks. 

Networks were learned across all 32 contexts jointly using a variant of dynamic 

Bayesian networks designed for use with interventional data (see Experimental 

Procedures). 

 

Figure 3. Phosphoprotein Time-Course Data and Context-Specific Changes 

Under Inhibition for Breast Cancer Cell Lines UACC812 and MCF7. 

(A) Phosphoprotein time-courses under DMSO control. Rows correspond to 35 

phosphoproteins (a subset of the full set of 48; see Experimental Procedures for 

details) and columns correspond to the eight stimuli. Each time-course shows 

log2 ratios of phosphoprotein abundance relative to abundance at t = 0. Shading 

represents average log2 ratio for t > 0. (B) Phosphoprotein time-courses under 

kinase inhibition. Each of the five vertical blocks corresponds to a different 

inhibition regime. Within each block, rows and columns are as in (A). Each time-

course shows log2 ratios of phosphoprotein abundance under inhibition relative 
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to abundance under DMSO control. Shading represents direction of changes in 

abundance due to inhibitor: Green denotes a decrease in abundance (see yellow 

box example), red denotes an increase (see blue box example) and gray denotes 

no salient change. See Experimental Procedures for details of statistical analysis. 

For both (A) and (B), plots were generated using a modified version of the 

DataRail software (Saez-Rodriguez et al., 2008). Each phosphoprotein is plotted 

on its own scale and phosphoproteins are ordered by hierarchical clustering of 

all data. See Figure S1 for corresponding plots for cell lines BT549 and BT20.  

 

Figure 4. Non-Canonical and Context-Specific Signaling. 

(A) Causal descendancy matrix showing causal effects observed under mTOR 

inhibitor AZD8055 in each of the 32 (cell line, stimulus) contexts. Rows represent 

phosphoproteins and columns represent contexts (see Figure 3). Black boxes 

indicate phosphoproteins that show a salient change under mTOR inhibition in a 

given context (see Experimental Procedures) and can therefore be regarded as 

causal descendants of mTOR in the signaling network for that context. The final 

column on the right indicates phosphoproteins that are descendants of mTOR in 

the canonical mTOR signaling pathway shown in (B). Phosphoproteins are 

ordered first by canonical column and then by hierarchical clustering of all data. 

See Figure S2 for causal descendancy matrices for the other inhibitor regimes. 

(B) Canonical mTOR signaling pathway. Blue nodes are descendants of mTOR in 

the network and white nodes are non-descendants. The pathway shown is a 

subnetwork of the prior network used within the network inference procedure 

(Figure S3). (C) Summary of western blot validations of causal effects observed 

in RPPA data.  A number of observations from the RPPA data were chosen for 

validation via western blot analysis.  The number of phosphoprotein validations 

attempted (“Tested”) and the number of these that successfully validated 

(“Validated”) are presented for various (cell line, stimulus, inhibitor) 

combinations.  Summary totals are also presented for each cell line, each 

inhibitor and across all validation experiments. See also Table S2. 
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Figure 5. Context-Specific Signaling Networks Reconstructed Using a 

Machine Learning Approach. 

Data for 35 phosphoproteins were analyzed using a machine learning approach 

based on interventional dynamic Bayesian networks, integrating also known 

biology in the form of a prior network. This gave a set of scores (edge 

probabilities) for each possible edge in each (cell line, stimulus) context (see 

Experimental Procedures). For each cell line, a summary network was obtained 

by averaging edge probability scores across the eight stimulus-specific networks 

for that cell line. Edge color denotes cell line. Only edges with average 

probabilities greater than 0.2 are shown. A black edge indicates an edge that 

appears (i.e. is above the 0.2 threshold) in all four cell lines. Edge thickness is 

proportional to the average edge probability (average taken across all 32 

contexts for black edges). Solid/dashed edges were present/not present in the 

prior network respectively. Edges are directed with the child node indicated by a 

circle. Edge signs are not reported; the modeling approach does not distinguish 

between excitatory and inhibitory causal effects. Network visualized using 

Cytoscape (Shannon et al., 2003). See also Figure S3, Table S3 and Table S4. 

 

Figure 6. Validation of Novel Network Edges  

Western blot analysis to validate selected context-specific network edges that 

were not in the prior network. Edges tested were: (A) phospho-Chk2 to 

phospho-p38 ; (B) phospho-p38 to phospho-JNK; (C) phospho-Src to phospho-

NFκB; (D) phospho-p70S6K to phospho-p27; and (E) phospho-Chk2 to phospho-

YAP. Orange boxed areas indicate observed changes in abundance of the 

predicted child node under inhibition of the parent node in a single (cell line, 

stimulus) context. Edge probabilities output by the network learning procedure 

are shown for each context tested (“edge strength”). (F) A summary of the 

validation experiments.  ‘NA’ denotes “not applicable” – the experiment was not 

run.  ‘NE’ denotes “no edge” – there was no change in child node abundance upon 

inhibition of the parent node.  An arrow indicates results consistent with an 

activating parent node.  A stunted line represents results consistent with an 

inhibitory edge.  Symbols are colored orange to indicate that an edge was 

predicted for the corresponding cell line under one of the stimuli tested. (G) 
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Summary of agreement and disagreement between predicted edges and 

validation experiments. First row indicates whether validation experiments 

showed evidence for the edge in a (cell line, stimulus) context in which it was 

predicted. Second and third rows concern the cell line- and stimulus-specificity 

of each edge respectively:  a green tick denotes specificity in (partial) agreement 

with predictions from inferred networks; an orange tick denotes specificity, but 

not in agreement with predictions in terms of the precise contexts in which 

effects were seen; a red cross indicates that specificity was not observed in the 

validation experiments, despite being predicted by the networks. 
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