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Abstract

Current evolutionary biology models usually assume that a phenotype undergoes gradual

change. This is in stark contrast to biological intuition, which indicates that change can also

be punctuated — the phenotype can jump. Such a jump can especially occur at speciation, i.e.

dramatic change occurs that drives the species apart. Here we derive a central limit theorem

for punctuated equilibrium. We show that, if adaptation is fast, for weak convergence to hold,

dramatic change has to be a rare event.
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1 Introduction

A long–standing debate in evolutionary biology is whether changes take place at times of speciation

(punctuated equilibrium Eldredge and Gould [16], Gould and Eldredge [20]) or gradually over time

(phyletic gradualism, see references in Eldredge and Gould [16]). Phyletic gradualism is in line with

Darwin’s original envisioning of evolution (Eldredge and Gould [16]). On the other hand, the theory

of punctuated equilibrium was an answer to what fossil data was indicating (Eldredge and Gould

[16], Gould and Eldredge [19, 20]). A complete unbroken fossil series was rarely observed, rather
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distinct forms separated by long periods of stability (Eldredge and Gould [16]). Darwin saw “the

fossil record more as an embarrassment than as an aid to his theory” (Eldredge and Gould [16]) in

the discussions with Falconer at the birth of the theory of evolution. Evolution with jumps was pro-

posed under the name “quantum evolution” (Simpson [32]) to the scientific community. However,

only later (Eldredge and Gould [16]) was punctuated equilibrium re–introduced into contemporary

mainstream evolutionary theory. Mathematical modelling of punctuated evolution on phylogenetic

trees seems to be still in its infancy (but see Bokma [8, 10, 11], Mattila and Bokma [23], Mooers

and Schluter [25], Mooers et al. [26]). The main reason is that we do not seem to have sufficient

understanding of the stochastic properties of these models. An attempt was made in this direction

(Bartoszek [5]) — to derive the tips’ mean, variance, covariance and interspecies correlation for a

branching Ornstein–Uhlenbeck (OU) process with jumps at speciation, alongside a way of quantita-

tively assessing the effect of both types of evolution.

Combining jumps with an OU process is attractive from a biological point of view. It is con-

sistent with the original motivation behind punctuated equilibrium. At branching, dramatic events

occur that drive species apart. But then stasis between these jumps does not mean that no change

takes place, rather that during it “fluctuations of little or no accumulated consequence” occur (Gould

and Eldredge [20]). The OU process fits into this idea because if the adaptation rate is large enough,

then the process reaches stationarity very quickly and oscillates around the optimal state. This then

can be interpreted as stasis between the jumps — the small fluctuations. Mayr [24] supports this

sort of reasoning by hypothesizing that “The further removed in time a species from the original

speciation event that originated it, the more its genotype will have become stabilized and the more

it is likely to resist change.”

In this work we build up on previous results (Bartoszek [5], Bartoszek and Sagitov [6]) and

study in detail the asymptotic behaviour of the average of the tip values of a branching OU process

with jumps at speciation points evolving on a pure birth tree. To the best of our knowledge the

work here is the first to analytically consider the effect of jumps on a branching OU process in a

phylogenetic context. It is possible that some of the results could be special subcases of general

results on branching Markov processes (Ren et al. [29, 30]). However, these studies use a very
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heavy functional analysis apparatus, which unlike the direct one here, is completely inaccessible to

the applied reader. We can observe the same competition between the tree’s speciation and OU’s

adaptation (drift) rates, resulting in a phase transition when the latter is half the former (the same as

in the no jumps case Adamczak and Miłoś [1, 2], Bartoszek and Sagitov [6]). We show here that if

large jumps are rare enough, then the contemporary sample mean will be asymptotically normally

distributed. Otherwise the weak limit can be characterized as a “normal distribution with a random

variance”. Such probabilistic characterizations are important as there is a lack of tools for punctuated

phylogenetic models. This is partially due to an uncertainty of what is estimable, especially whether

the contribution of gradual and punctuated change may be disentangled (but Bokma [11] indicates

that they should be distinguishable). Large sample size distributional approximations will allow for

choosing seeds for numerical maximum likelihood procedures and sanity checks if the results of

numerical procedures make sense. Most importantly the understanding of the limiting behaviour of

evolutionary models with jumps will allow us to see the effects of these jumps, especially how much

do they push the populations out of stationarity.

In Section 2 we introduce the considered probabilistic model. Then in Section 3 we present the

main results. Section 4 is devoted to a series of technical convergence lemmata that characterize the

speed of decay of the effect of jumps on the variance and covariance of tip species. Finally in Section

5 we calculate the first two moments of a scaled sample average, introduce a submartingale related

to the model and put this together with the previous convergence lemmata to prove the Central Limit

Theorems of this paper.

2 A model for punctuated stabilizing selection

2.1 Phenotype model

Stochastic differential equations (SDEs) are today the standard language to model continuous traits

evolving on a phylogenetic tree. The general framework is that of a diffusion process

dX(t) = µ(t,X(t))dt +σadBt . (1)
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The trait follows Eq. (1) along each branch of the tree (with possibly branch specific parameters). At

speciation times this process divides into two processes evolving independently from that point. The

full generality of Eq. (1) is not implemented in contemporary phylogenetic comparative methods

(PCMs). Currently they are focused on the OU processes

dX(t) =−α(X(t)−θ(t))dt +σadBt , (2)

where θ(t) can be piecewise linear, with different values assigned to different regimes (see e.g.

Bartoszek et al. [7], Butler and King [12], Hansen [21]). There have been a few attempts to go

beyond the diffusion framework into Lévy process, including Laplace motion, (Bartoszek [4, 5],

Duchen et al. [14], Landis et al. [22]) and jumps at speciation points (Bartoszek [5], Bokma [9, 10]).

We follow in the spirit of the latter and consider that just after a branching point, with a probability

p, independently on each daughter lineage, a jump can occur. We assume that the jump random

variable is normally distributed with mean 0 and variance σ2
c < ∞. In other words, if at time t there

is a speciation event, then just after it, independently for each daughter lineage, the trait process

X(t+) will be

X(t+) = (1−Z)X(t−)+Z(X(t−)+Y ), (3)

where X(t−/+) means the value of X(t) respectively just before and after time t, Z is a binary random

variable with probability p of being 1 (i.e. jump occurs) and Y ∼N (0,σ2
c ). The parameters p and

σ2
c can, in particular, differ between speciation events.

2.2 The branching phenotype

In this work we consider a fundamental model of phylogenetic tree growth — the conditioned on

number of tip species pure birth process. We first introduce some notation, illustrated in Fig. 1 (see

also Bartoszek [5], Bartoszek and Sagitov [6], Sagitov and Bartoszek [31]). We consider a tree that

has n tip species. Let U (n) be the tree height, τ(n) the time from today (backwards) to the coalescent

of a pair of randomly chosen tip species, τ
(n)
i j the time to coalescent of tips i, j, ϒ(n) the number of

4



speciation events on a random lineage, υ(n) the number of common speciation events for a random

pair of tips bar the splitting them event and υ
(n)
i j the number of common speciation events for a tips i,

j bar the splitting them event. Furthermore let Tk be the time between speciation events k and k+1,

pk and σ2
c,k be respectively the probability and variance of the jump just after the k–th speciation

event on each daughter lineage.

The above intuitive descriptions can be made more precise. We first introduce two separate

labellings for the tip and internal nodes of the tree. Let the origin of the tree have label “0”. Next

we label from “1” to “n− 1” the internal nodes of the tree in their temporal order of appearance.

The root is “1”, the node corresponding to the second speciation event is “2” and so on. We label

the tips of the tree from “1” to “n” in an arbitrary fashion. This double usage of the numbers “1”

to “n− 1” does not generate any confusion as it will always be clear whether one refers to a tip or

internal node.

Definition 2.1

NTip(t) = {set of tip nodes at time t}

Definition 2.2

U (n) = inf{t ≥ 0 : NTip(t) = n}

Definition 2.3 For i ∈ NTip(U (n)),

ϒ
(i,n) = {number of nodes on the path from the root (internal node 1, including it) to tip node i}

Definition 2.4 For i ∈ NTip(U (n)),

I(i,n)=
(

I(i,n)j : I(i,n)j is a node on the root to tip node i path and I(i,n)j < I(i,n)k for 1≤ j < k ≤ ϒ
(i,n)
)ϒ(i,n)

j=1

Definition 2.5 For i ∈ NTip(U (n)) and r ∈ {1, . . . ,n−1}, let 1(i,n)r be a binary random variable such
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that

1(i,n)r = 1 iff r ∈ I(i,n).

Definition 2.6 For i ∈ NTip(U (n)) and r ∈ {1, . . . ,ϒ(n)
i }, let J(i,n)r be a binary random variable

equalling 1 iff a jump took place just after the r–th speciation event in the sequence I(i,n).

Definition 2.7 For i ∈ NTip(U (n)) and r ∈ {1, . . . ,n− 1}, let Z(i,n)
r be a binary random variable

equalling 1 iff 1(i,n)r = 1 and J(i,n)k = 1, where I(i,n)k = r.

Definition 2.8 For i, j ∈ NTip(U (n)),

I(i, j,n) = I(i,n)∩ I( j,n)

Definition 2.9 For i, j ∈ NTip(U (n)),

υ
(i, j,n) = |I(i, j,n)|−1

Remark 2.10 We have the −1 in the above definition of υ(i, j,n) as we are interested in counting

the speciation events that could have a jump common to both lineages. As the jump occurs after a

speciation event, the jumps connected to the coalescent node of tip nodes i and j cannot affect both

of these tips.

Definition 2.11 For i, j ∈ NTip(U (n)) and r ∈ {1, . . . ,max{I(i, j,n)}− 1}, let 1(i, j,n)r be a binary ran-

dom variable such that

1(i, j,n)r = 1 iff r ∈ I(i, j,n).

Definition 2.12 For i, j ∈ NTip(U (n)),

τ
(i, j,n) =U (n)− inf{t ≥ 0 : N(t) = max

(
I(i, j,n)

)
}
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Definition 2.13 For i, j ∈ NTip(U (n)) and r ∈ {1, . . . ,υ(n)
i, j }, let J(i, j,n)r be a binary random variable

equalling 1 iff J(i,n)r = 1 and J( j,n)
r = 1.

Definition 2.14 For i, j ∈ NTip(U (n)) and r ∈ {1, . . . ,n−1}, let Z(i, j,n)
r be a binary random variable

equalling 1 iff Z(i,n)
r = 1 and Z( j,n)

r = 1.

Definition 2.15 Let R be uniformly distributed on {1, . . . ,n} and (R,K) be uniformly distributed on

the set of ordered pairs drawn from {1, . . . ,n} (i.e. Prob((R,K) = (r,k)) =
(n

2

)−1, for 1≤ r < k≤ n)

τ(n) = τ(R,K,n), ϒ(n) = ϒ(R,n), υ(n) = υ(R,K,n), I(n) = I(R,n), Ĩ(n) = I(R,K,n),

1i = 1(R,n)i , 1̃i = 1(R,K,n)
i , Ji = J(R,n)i , J̃i = J(R,K,n)

i , Zi = Z(R,no)
i , Z̃i = Z(R,K,n)

i .

Remark 2.16 For the sequences I(n), I(r,n), I(R,n), Ĩ(n), I(r,k,n), I(R,K,n) the i–th element is naturally

indicated as I(n)i , I(r,n)i , I(R,n)i , Ĩ(n)i , I(r,k,n)i , I(R,K,n)
i respectively.

Remark 2.17 We drop the n in the superscript for the random variables 1i, 1̃i, Ji, J̃i, Zi and Z̃i as

their distribution does not depend on n. In fact, in principle, there is no need to distinguish between

the version with and without the tilde. However, such a distinction will make it more clear to what

one is referring to in the derivations of this work.

The following simple, yet very powerful, Lemma comes from the uniformity of the choice of

pair to coalesce at the i–th speciation event in the backward description of the Yule process. The full

proof can be found in Bartoszek [5] on p. 45.

Lemma 2.18 For all i ∈ {1, . . . ,n−1}

E
[
1̃i
]
= E [1i] = Prob(1i = 1) =

2
i+1

.

We called the model a conditioned one. By conditioning we consider stopping the tree growth

just before the n+ 1 species occurs, or just before the n–th speciation event. Therefore, the tree’s

height U (n) is a random stopping time. The asymptotics considered in this work are when n→ ∞.
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Figure 1: A pure–birth tree with the various time components marked on it. If we “randomly sample”
node “A”, then ϒ(n) = 3 and the indexes of the speciation events on this random lineage are I(n)3 = 4

I(n)2 = 2 and I(n)1 = 1. Notice that I(n)1 = 1 always. The between speciation times on this lineage are
T1, T2, T3+T4 and T5. If we “randomly sample” the pair of extant species “A” and “B”, then υ(n) = 1
and the two nodes coalesced at time τ(n). The random index of their joint speciation event is Ĩ1 = 1.
See also Bartoszek [5]’s Fig. A.8. for a more detailed discussion on relevant notation. The internal
node labellings 0–4 are marked on the tree.

The key model parameter describing the tree component is λ , the birth rate. At the start, the

process starts with a single particle and then splits with rate λ . Its descendants behave in the same

manner. Without loss generality we take λ = 1, as this is equivalent to rescaling time.

In the context of phylogenetic methods this branching process has been intensively studied (e.g.

Bartoszek and Sagitov [6], Crawford and Suchard [13], Edwards [15], Gernhard [17, 18], Mulder

and Crawford [27], Sagitov and Bartoszek [31], Steel and McKenzie [35]), hence here we will

just describe its key property. The time between speciation events k and k+ 1 is exponential with
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parameter k. This is immediate from the memoryless property of the process and the distribution

of the minimum of exponential random variables. From this we obtain some important properties

of the process. Let Hn = 1+ 1/2+ . . .+ 1/n be the n–th harmonic number, x > 0 and then their

expectations and Laplace transforms are (Bartoszek and Sagitov [6], Sagitov and Bartoszek [31])

E
[
U (n)

]
= Hn,

E
[
e−xU(n)

]
= bn,x,

E
[
τ(n)
]

= n+1
n−1 Hn− 2

n−1 ,

E
[
e−xτ(n)

]
=


2−(n+1)(x+1)bn,x

(n−1)(x−1) x 6= 1,

2
n−1 (Hn−1)− 1

n+1 x = 1,

where

bn,x =
1

x+1
· · · n

n+ x
=

Γ(n+1)Γ(x+1)
Γ(n+ x+1)

∼ Γ(x+1)n−x,

Γ(·) being the gamma function.

Now let Yn be the σ–algebra that contains information on the Yule tree and jump pattern. Bar-

toszek [5] previously studied the branching OU with jumps model and it was shown (but, therein for

constant pk and σ2
c,k and therefore there was no need to condition on the jump pattern) that, condi-

tional on the tree height and number of tip species the mean and variance of an arbitrary tip species,

X (n)
r , are

E
[
X (n)r |Yn

]
= θ + e−αU(n)

(X0−θ)

Var
[
X (n)r |Yn

]
= σ2

a
2α

(1− e−2αU(n)
)+

ϒ(r,n)

∑
i=1

σ2
c,I(r,n)i

J(r,n)i e
−2α(Tn+...+T

I(r,n)i +1
)

.
(4)

A key difference that the phylogeny brings in is that the tip measurements are correlated through the

tree structure. One can easily show that conditional on Yn, the covariance between an arbitrary pair

of extant traits, X (n)
r and X (n)

k is
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Cov
[
X (n)

r ,X (n)
k |Yn

]
=

σ2
a

2α
(e−2ατ(r,k,n) − e−2αU(n)

)+
υ(r,k,n)

∑
i=1

σ
2
c,I(r,k,n)i

J(r,k,n)i e
−2α(τ(r,k,n)+...+T

I(r,k,n)i +1
)

.

(5)

We will call, the considered model the Yule–Ornstein–Uhlenbeck with jumps (YOUj) process.

Remark 2.19 Keeping the parameter θ constant on the tree is not as simplifying as it might seem.

Varying θ models have been considered since the introduction of the OU process to phylogenetic

methods (Hansen [21]). However, it can very often happen that the θ parameter is constant over

whole clades, as these species share a common optimum. Therefore, understanding the model’s

behaviour with a constant θ is a crucial first step. Furthermore if constant θ clades are far enough

apart one could think of them as independent samples and attempt to construct a test (based on

normality of the species’ averages) if jumps have a significant effect (compare Thms. 3.1 and 3.5).

2.3 Martingale formulation

Our main aim is to study the asymptotic behaviour of the sample average and it actually turns out

to be easier to work with scaled trait values, Y (n) = (X (n) − θ)/
√

σ2
a /2α. Denoting δ = (X0 −

θ)/
√

σ2
a /2α we have

E
[
Y (n)

]
= δbn,α . (6)

The initial condition of course will be Y0 = δ0. Just as was done by Bartoszek and Sagitov [6] we

may construct a martingale related to the average

Y n =
1
n

n

∑
i=1

Y (n)
i .

Then (cf. Lemma 10 of Bartoszek and Sagitov [6]), we define

Hn := (n+1)e(α−1)U(n)
Y n, n≥ 0.
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This is a martingale with respect to Fn, the σ–algebra containing information on the Yule n–tree

and the phenotype’s evolution.

3 Asymptotic regimes — main results

Branching Ornstein–Uhlenbeck models commonly have three asymptotic regimes (Adamczak and

Miłoś [1, 2], Ané et al. [3], Bartoszek [5], Bartoszek and Sagitov [6], Ren et al. [29, 30]). The

dependency between the adaptation rate α and branching rate λ = 1 governs in which regime the

process is. If α > 1/2, then the contemporary sample is similar to an i.i.d. sample, in the critical

case, α = 1/2, we can, after appropriate rescaling, still recover the “near” i.i.d. behaviour and if

0 < α < 1/2, then the process has “long memory” (“local correlations dominate over the OU’s

ergodic properties”, Adamczak and Miłoś [1, 2]). In the OU process with jumps setup the same

asymptotic regimes can be observed, even though Adamczak and Miłoś [1, 2], Ren et al. [29, 30])

assume that the tree is observed at a given time point, t, with nt being random. In what follows here,

the constant C may change between (in)equalities. It may in particular depend on α . We illustrate

the below Theorems in Fig. 2.

Theorem 3.1 Assume that the jump probabilities and jump variances are constant equalling p and

σ2
c < ∞ respectively. Let Y n = (Xn−θ)/

√
σ2

a /2α be the normalized sample mean of the YOUj pro-

cess with Y 0 = δ0. The process Y n has the following, depending on α , asymptotic with n behaviour.

(I) If 0.5 < α , then the conditional variance of the scaled sample mean σ2
n := nVar

[
Y n|Yn

]
converges in P to a random variable σ2

∞ with mean

E
[
σ2

∞

]
= 1+ 2pσ2

c
σ2

a
+ 4pσ2

c
2α(2α−1)σ2

a
.

The scaled sample mean,
√
(n) Y n converges weakly to random variable whose characteristic

function can be expressed in terms of the Laplace transform of σ2
∞

φ√
(n) Y n

(x) = L (σ2
∞)(x

2/2).
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(II) If 0.5=α , then the conditional variance of the scaled sample mean σ2
n := n ln−1 nVar

[
Y n|Yn

]
converges in P to a random variable σ2

∞ with mean

E
[
σ2

∞

]
= 2+4pσ2

c (σ
2
a /(2α))−1.

The scaled sample mean,
√

(n/ lnn) Y n converges weakly to random variable whose charac-

teristic function can be expressed in terms of the Laplace transform of σ2
∞

φ√
(n/ lnn) Y n

(x) = L (σ2
∞)(x

2/2).

(III) If 0 < α < 0.5, then nαY n converges almost surely and in L2 to a random variable Yα,δ with

first two moments

E
[
Yα,δ

]
= δΓ(1+α),

E
[
Y 2

α,δ

]
=

(
2pσ2

c (σ
2
a /(2α))−1 1+2α

1−2α
− (1−δ 2)

)
Γ(1+2α).

Remark 3.2 For the a.s. and L2 convergence to hold in Part (III), it suffices that the sequence of

jump variances is bounded. Of course, the first two moments will differ if the jump variance is not

constant.

Definition 3.3 A subset E ⊂N of positive integers is said to have density 0 (e.g. Petersen [28]) if

lim
n→∞

1
n

n−1

∑
k=0

χE(k) = 0,

where χE(·) is the indicator function of the set E.

Definition 3.4 A sequence an converges to 0 with density 1 if there exists a subset E ⊂N of density

0 such that

lim
n→∞,n/∈E

an = 0.
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Theorem 3.5 If σ4
c,n pn is bounded and goes to 0 with density 1, then depending on α the process

Y n has the following asymptotic with n behaviour.

(I) If 0.5 < α , then
√
(n) Y n is asymptotically normally distributed with mean 0 and variance

(2α +1)/(2α−1).

(II) If 0.5 = α , then
√
(n/ lnn) Y n is asymptotically normally distributed with mean 0 and vari-

ance 2.

Remark 3.6 The assumption σ4
c,n pn → 0 with density 1 is an essential one for the limit to be a

normal distribution, when α ≥ 0.5. This is visible from the proof of Lemma 4.5. In fact, this is the

key difference that the jumps bring in — if they occur too often (or with too large magnitude), then

they will disrupt the weak convergence.

One natural way is to keep σ2
c,n constant and allow pn → 0, the chance of jumping becomes

smaller relative to the number of species. Alternatively σ2
c,n→ 0, which could mean that with more

and more species — smaller and smaller jumps occur at speciation. Actually, this could be biologi-

cally more realistic — as there are more and more species, then there is more and more competition

and smaller and smaller differences in phenotype drive the species apart. Specialization occurs and

tinier and tinier niches are filled.

4 Key convergence lemmata

We will now prove a series of technical lemmata describing the asymptotics of driving components

of the considered YOUj process.

Lemma 4.1 (Lemma 11 of Bartoszek and Sagitov [6])

Var
[
E
[
e−2ατ(n) |Yn

]]
=


O(n−4α) 0 < α < 0.75,

O(n−3 lnn) α = 0.75,

O(n−3) 0.75 < α.

(7)
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Figure 2: Left: α = 0.25 centre: α = 0.5 and right: α = 1. Top row: examples of simulated
YOUj process trajectories, bottom row: histograms of sample averages, left: scaled by 1/Γ(3/2),

centre: scaled by
√

n ln−1 n/2, right: scaled by
√

n/3. In all three cases, p = 0.5, σ2
c = 1, σ2

a = 1,
X0 = θ = 0. The phylogenetic trees are pure birth trees with λ = 1 conditioned on number of
tips, n = 30 for the trajectory plots and n = 200 for the histograms. The histograms are based on
10000 simulated trees. The sample mean and variances of the scaled data in the histograms are left:
(−0.006,0.360), centre: (−0.033,1.481) and right: (0.004,1.008). The gray curve painted on the
histograms is the standard normal distribution. The phylogenies are simulated by the TreeSim R
package (Stadler [33, 34]) and simulations of phenotypic evolution and trajectory plots are done by
newly implemented functions of the, available on CRAN, mvSLOUCH R package (Bartoszek et al.
[7]).

PROOF For a given realization of the Yule n-tree we denote by τ
(n)
1 and τ

(n)
2 two independent versions

of τ(n) corresponding to two independent choices of pairs of tips out of n available. We have,

E
[(

E
[
e−2ατ(n) |Yn

])2
]
= E

[
E
[

e−2α(τ
(n)
1 +τ

(n)
2 )|Yn

]]
= E

[
e−2α(τ

(n)
1 +τ

(n)
2 )

]
.
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Let πn,k be the probability that two randomly chosen tips coalesced at the k–th speciation event. We

know that (cf. Bartoszek and Sagitov [6], Steel and McKenzie [35])

πn,k = 2
n+1
n−1

1
(k+1)(k+2)

.

Writing

f (a,k,n) :=
k+1

a+ k+1
· · · n

a+n
=

Γ(n+1)Γ(a+ k+1)
Γ(k+1)Γ(a+n+1)

and as the times between speciation events are independent and exponentially distributed we obtain

E
[(

E
[
e−2ατ(n) |Yn

])2
]
=

n−1

∑
k=1

f4α(k,n)π2
n,k +2 ∑

k1<k2

f2α(k1,k2) f4α(k2,n)πn,k1πn,k2 .

On the other hand,

(
E
[
e−2ατ(n)

])2
=
(
∑
k1

f2α(k1,n)πn,k1

)(
∑
k2

f2α(k2,n)πn,k2

)
.

Taking the difference between the last two expressions we find

Var
[
E
[
e−2ατ(n) |Yn

]]
= ∑

k

(
f4α(k,n)− f2α(k,n)2

)
π2

n,k

+2
n−1
∑

k1=1

n−1
∑

k2=k1+1
f2α(k1,k2)

(
f4α(k2,n)− f2α(k2,n)2

)
πn,k1πn,k2 .

Using the simple equality

a1 · · ·an−b1 · · ·bn =
n

∑
i=1

b1 · · ·bi−1(ai−bi)ai+1 · · ·an

we see that it suffices to study the asymptotics of,

15



n−1

∑
k=1

An,kπ
2
n,k and

n−1

∑
k1=1

n−1

∑
k2=k1+1

f2α(k1,k2)An,k2πn,k1πn,k2 ,

where

An,k :=
n

∑
j=k+1

f2α(k, j)2
( 4α2

j( j+4α)

)
f4α( j,n).

To consider these two asymptotic relations we observe that for large n

An,k . 4α
2 bn,4α

b2
k,2α

n

∑
j=k+1

b2
j,2α

b j,4α

1
j(4α + j)

.C
bn,4α

b2
k,2α

n

∑
j=k+1

j−2 .C
bn,4α

b2
k,2α

k−1.

Now since πn,k =
2(n+1)

(n−1)(k+2)(k+1) , it follows

n−1

∑
k=1

An,kπ
2
n,k .Cbn,4α

n−1

∑
k=1

1
k5b2

k,2α

.Cn−4α
n

∑
k=1

k4α−5 .C


n−4α 0 < α < 1

n−4 lnn α = 1

n−4 1 < α

and

n−1
∑

k1=1

n−1
∑

k2=k1+1
f2α(k1,k2)An,k2πn,k1πn,k2 .Cbn,4α

n−1
∑

k1=1

n−1
∑

k2=k1+1

1
bk1 ,2α bk2 ,2α

1
k2

1k3
2

. n−4α
n−1
∑

k1=1
k2α−2

1

n−1
∑

k2=k1+1
k2α−3

2 .C



n−4α
n−1
∑

k1=1
k4α−4

1 0 < α < 1

n−4
n
∑

k2=2
k−1

2

k2
∑

k1=1
1 α = 1

n−4α
n
∑

k2=2
k4α−4

2 1 < α

.C



n−4α 0 < α < 0.75

n−3 lnn α = 0.75

n−3 0.75 < α < 1

n−4
n
∑

k2=2
1 α = 1

n−3 1 < α

.C



n−4α 0 < α < 0.75

n−3 lnn α = 0.75

n−3 0.75 < α < 1

n−3 α = 1

n−3 1 < α.

16



Summarizing

n−1
∑

k1=1

n−1
∑

k2=k1+1
f2α(k1,k2)An,k2πn,k1πn,k2 .C


n−4α 0 < α < 0.75

n−3 lnn α = 0.75

n−3 0.75 < α < 1.

Notice that obviously Var
[
E
[
e−2ατ(n) |Yn

]]
= Var

[
E
[
e−2ατ(n) |Yn

]]
.

�

Remark 4.2 The above Lemma 4.1 is a corrected version of Bartoszek and Sagitov [6]’s Lemma 11.

There it is wrongly stated that Var
[
E
[
e−2ατ(n) |Yn

]]
= O(n−3) for all α > 0. From the above we can

see that this holds only for α > 3/4. This does not however change Bartoszek and Sagitov [6]’s main

results. If one inspects the proof of Theorem 1 therein, then one can see that for α > 0.5 it is required

that Var
[
E
[
e−2ατ(n) |Yn

]]
= O(n−(2+ε)), where ε > 0. This by Lemma 4.1 holds. Bartoszek and

Sagitov [6]’s Thm. 2 does not depend on the rate of convergence, only that Var
[
E
[
e−2ατ(n) |Yn

]]
→

0 with n. This remains true, just with a different rate.

Lemma 4.3 For random variables (ϒ(n), I(n),(Ji)
ϒ(n)

i=1 ) derived from the same random lineage and a

fixed jump probability p we have

Var

[
E

[
ϒ(n)

∑
i=1

Jie
−2α(Tn+...+T

I(n)i +1
)

|Yn

]]
. p


n−4α 0 < α < 0.25

n−1 lnn α = 0.25

n−1 0.25 < α.

(8)

PROOF We introduce the random variables

Ψ
∗(n) :=

ϒ(n)

∑
i=1

Jie
−2α(Tn+...+T

I(n)i +1
)

and

φ
∗
i := Zie−2α(Tn+...+Ti+1) E [1i|Yn] .

17



Obviously

E
[
Ψ
∗(n) |Yn

]
=

n−1

∑
i=1

φ
∗
i .

Immediately (for i < j)

E [φ ∗i ] = 2p
i+1

bn,2α

bi,2α
,

E
[
φ ∗i φ ∗j

]
= 4p2

(i+1)( j+1)
bn,4α

b j,4α

b j,2α

bi,2α
,

E
[
φ ∗i

2] = p bn,4α

bi,4α
E
[
(E [1i|Yn])

2
]
.

The term E
[
(E [1i|Yn])

2
]

can be [see Lemma 11 in 6] expressed as E
[
1(1)i 1(2)i

]
where 1(1)i and 1(2)i

are two independent copies of 1i, i.e. we sample two lineages and ask if the i–th speciation event is

on both of them. This will occur if these lineages coalesced at a speciation event k ≥ i. Therefore

E
[
1(1)i 1(2)i

]
= 2

i+1

n−1
∑

k=i+1
πk,n +πi,n =

n+1
n−1

2
i+1

(
n−1
∑

k=i+1

2
(k+1)(k+2) +

1
i+2

)
= n+1

n−1
2

i+1

( 2
i+2 −

2
n+1 +

1
i+2

)
= n+1

n−1
6

(i+1)(i+2) −
2

n−1
2

i+1 .

Together with the above

E
[
φ
∗
i

2
]
= p

bn,4α

bi,4α

(
n+1
n−1

6
(i+1)(i+2)

− 1
n−1

4
i+1

)
.

Now

18



Var

[
n−1

∑
i=1

φ
∗
i

]
=

n−1

∑
i=1

(
E
[
φ
∗
i

2
]
− (E [φ ∗i ])

2
)
+2

n−1

∑
i< j

(
E
[
φ
∗
i φ
∗
j
]
−E [φ ∗i ]E

[
φ
∗
j
])

(9)

=
n−1

∑
i=1

(
p

bn,4α

bi,4α

(
n+1
n−1

6
(i+1)(i+2)

− 1
n−1

4
i+1

)
− 4p2

(i+1)2

(
bn,2α

bi,2α

)2
)

+2
n−1

∑
i< j

(
4p2

(i+1)( j+1)
bn,4α

b j,4α

b j,2α

bi,2α

− 4p2

(i+1)( j+1)
bn,2α

bi,2α

bn,2α

b j,2α

)

. 2p
n−1

∑
i=1

1
(i+1)2

(
3

bn,4α

bi,4α

−2p
(

bn,2α

bi,2α

)2
)

I

+4p(n−1)−1
n−1

∑
i=1

bn,4α

bi,4α

(
3

(i+1)2 −
1

i+1

)
II

+8p2
n−1

∑
i< j

(
1

(i+1)( j+1)
b j,2α

bi,2α

(
bn,4α

b j,4α

−
(

bn,2α

b j,2α

)2
))

.
III

We use the equality [cf. Lemma 11 in 6]

a1 · · ·am−b1 · · ·bm =
m

∑
i=1

b1 · · ·bi−1(ai−bi)ai+1 · · ·am

and consider the three parts in turn.

I

n−1
∑

i=1

1
(i+1)2

(
3 bn,4α

bi,4α
−2p

(
bn,2α

bi,2α

)2
)

=
n−1
∑

i=1

1
(i+1)2

((
bn−1,2α

bi,2α

)2(
3n

n+4α
− 2pn2

(n+2α)2

)
+3

n−1
∑

k=i+1

(
bk−1,2α

bi,2α

)2(
k

k+4α
− k2

(k+2α)2

)
bn,4α

bk,4α

)

=
n−1
∑

i=1

1
(i+1)2

((
bn−1,2α

bi,2α

)2
n2

(n+2α)2
(3−2p)n+(3−2p)4α+n−112α2

n+4α
+3

n−1
∑

k=i+1

(
bk−1,2α

bi,2α

)2
k2

(k+2α)2
4α2

k(k+4α)

bn,4α

bk,4α

)
. (3−2p)n−4α

n
∑

i=1
i4α−2 +12α2n−4α

n
∑

i=1
i4α−3

19



∼


Cn−4α 0 < α < 0.25

Cn−1 lnn α = 0.25

(3−2p)(4α−1)−1n−1 0.25 < α.

II

n−1
n−1
∑

i=1

bn,4α

bi,4α

(
6

(i+1)2 − 1
i+1

)
. 6n−4α−1

n
∑

i=1
i4α−2−n−4α−1

n
∑

i=1
i4α−1 ∼


−(4α)−1n−1 0 < α < 0.25

−n−1 α = 0.25

−(4α)−1n−1 0.25 < α.

III

n−1
∑

i< j

(
1

(i+1)( j+1)
b j,2α

bi,2α

(
bn,4α

b j,4α
−
(

bn,2α

b j,2α

)2
))

= bn,4α

n−1
∑

i< j

1
(i+1)( j+1)

1
bi,2α b j,2α

n
∑

k= j+1

b2
k,2α

bk,4α

4α2

k(k+4α)

.Cn−4α
n
∑

i< j
i−1+2α j−2+2α ∼



Cn−4α 0 < α < 0.25

Cn−1 lnn α = 0.25

(1−2α)−1(4α−1)−1n−1 0.25 < α < 0.5

n−1 α = 0.5

(2α−1)−1(4α−1)−1n−1 0.5 < α.

Putting these together we obtain

Var
[

n−1
∑

i=1
φ ∗i

]
. pC


n−4α 0 < α < 0.25

n−1 lnn α = 0.25

n−1 0.5 < α.

On the other hand the variance is bounded from below by
III

. Its asymptotic behaviour is tight as

the calculations there are accurate up to a constant (independent of p). This is further illustrated by

20



graphs in Fig. 3.

Figure 3: Numerical evaluation of scaled Eq. (9) for different values of α . The scaling for left:
α = 0.1 equals n−4α , centre: α = 0.25 equals n−1 logn and right α = 1 equals (2p(3−2p)/(4α−
1)−4p/(4α)+32p2α2(1/(8α2)+1/(2α(2α−1))−1/(4α2)−1−1/((2α−1)(4α−1))))n−1. In
all cases, p = 0.5.

�

Corollary 4.4 Let pn and σ2
c,n be respectively the jump probability and variance at the n–th speci-

ation event, such that the sequence σ4
c,n pn is bounded. We have

n ln−1 nVar
[

n−1
∑

i=1
σ2

c,iφ
∗
i

]
→ 0 for α = 0.25,

nVar
[

n−1
∑

i=1
σ2

c,iφ
∗
i

]
→ 0 for 0.25 < α.

iff σ4
c,n pn→ 0 with density 1.

PROOF We consider the case, α > 0.25. Notice that in the proof of Lemma 4.3 Var
[
∑

n−1
i=1 φ ∗i

]
.

pn−4α
∑

n−1
i=1 i4α−2. If the jump probability and variance are not constant, but as in the Corollary,

then Var
[
∑

n−1
i=1 σ2

c,iφ
∗
i

]
. n−4α

∑
n−1
i=1 piσ

4
c,ii

4α−2.

The Corollary is a consequence of a more general ergodic property that if u > 0 and the sequence

ai→ 0 with density 1, then

n−u
n−1

∑
i=1

aiiu−1→ 0.
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For 1 ≤ u the above is a direct consequence of Petersen [28]’s Lemma 6.2 (p. 65). For 0 < u < 1

take a subsequence N0(n)≤ nu, such that N0(n)→ ∞, N0(n)n−u→ 0 and aN0(n)↘ 0. Then

n−u
n−1
∑

i=1
aiiu−1 ≤ N0(n)n−u +aN0(n)n

−u
n−1
∑

i=N0(n)+1
iu−1→ 0.

On the other hand if ai does not go to 0 with density 1, then limsup
n

n−u
n−1
∑

i=1
aiiu−1 > 0.

When α = 0.25 we obtain the Corollary using the same ergodic argumentation for ln−1 n∑
n−1
i=1 piσ

4
c,ii
−1.

�

Lemma 4.5 For random variables (υ(n), Ĩ(n),
(
J̃i
)υ(n)

i=1 ) derived from the same random pair of lin-

eages and a fixed jump probability p

Var

[
E

[
υ(n)

∑
i=1

J̃ie
−2α(τ(n)+...+T

Ĩ(n)i +1
)

|Yn

]]
. p


n−4α 0 < α < 0.5,

n−2 lnn α = 0.5,

n−2 0.5 < α.

(10)

PROOF We introduce the notation

Ψ
(n) :=

υ(n)

∑
i=1

J̃ie
−2α(τ(n)+...+T

Ĩ(n)i +1
)

and by definition we have

Var

[
E

[
υ(n)

∑
i=1

J̃ie
−2α(τ(n)+...+T

Ĩ(n)i
)
]]

= E
[(

E
[
Ψ

(n)|Yn

])2
]
−
(

E
[
Ψ

(n)|Yn

])2
.

We introduce the random variable

φi = Z̃i1̃ie−2α(Tn+...+Ti+1)

and obviously (for i1 < i2)
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E [φi] = 2p
i+1 bn,2α/bi,2α ,

E
[
φ 2

i
]

= 2p
i+1 bn,4α/bi,4α ,

E [φi1φi2 ] = 4p2

(i1+1)(i2+1)
bn,4α

bi2 ,4α

bi2 ,2α

bi1 ,2α
.

As usual let (τ(n)1 ,υ
(n)
1 ,Ψ

(n)
1 ) and (τ

(n)
2 ,υ

(n)
2 ,Ψ

(n)
2 ) be two independent copies of (τ(n),υ(n),Ψ(n))

[cf. Lemma 11 in 6] and now

E
[(

E
[
Ψ(n)|Yn

])2
]
= E

[
E
[
Ψ

(n)
1 |Yn

]
E
[
Ψ

(n)
2 |Yn

]]
= E

[
E
[
Ψ

(n)
1 Ψ

(n)
2 |Yn

]]
= E

[
Ψ

(n)
1 Ψ

(n)
2

]
.

Writing out

Var
[
E
[
Ψ

(n)|Yn

]]
= E

[
Ψ

(n)
1 Ψ

(n)
2

]
−
(

E
[
Ψ

(n)
])2

(11)

=
n−1

∑
k=1

π
2
k,n

( I

k−1

∑
i=1

(
E
[
φ

2
i
]
−E [φi]

2
)
+2

II

k−1

∑
1=i1<i2

(E [φi1φi2 ]−E [φi1 ]E [φi2 ])

)

+2
n−1

∑
1=k1<k2

πk1,nπk2,n

(
k1−1

∑
i=1

(
E
[
φ

2
i
]
−E [φi]

2
)

III

+2
k1−1

∑
1=i1<i2

(E [φi1 φi2 ]−E [φi1 ]E [φi2 ])

IV

+2
k1−1

∑
i1=1

k2−1

∑
i2=1

(E [φi1φi2 ]−E [φi1 ]E [φi2 ])

V

)
.

We first observe

E
[
φ 2

i
]
−E [φi]

2 = 2p
i+1

(
bn,4α

bi,4α
− 2p

i+1

(
bn,2α

bi,2α

)2
)
= 2p

i+1

(
(i+1)2

(i+1+2α)2
(i+1)+(4α−1)+(i+1)−14α(α−1)

(i+1+4α)

bn,4α

bi+4α

+4α2 bn,4α

b2
i,2α

n−1
∑

j=i+2

b2
j,2α

b j,4α

1
j( j+4α) +

(
bn,2α

bi,2α

)2 n(1−2p)+4α(1−2p)+n−14α2

n+4α

)

and
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E [φi1φi2 ]−E [φi1 ]E [φi2 ] =
4p2

(i1+1)(i2+1)

(
bn,4α

bi2 ,4α

bi2 ,2α

bi1 ,2α
−
(

bn,2α

bi1 ,2α

)(
bn,2α

bi2 ,2α

))
= 4p2

(i1+1)(i2+1)
bn,4α bi2 ,2α

bi1 ,2α b2
i2 ,2α

(
n
∑

j=i2+1

b2
j,2α

b j,4α

4α2

j( j+4α)

)
.

Using the above we consider each of the five components in this sum separately.

I

n−1
∑

k=1
π2

k,n

k−1
∑

i=1

(
E
[
φ 2

i
]
−E [φi]

2
)

. 4pn−4α
n
∑

i=1

(
i4α−1 +(4α−1)i4α−2 +4α(α−1)i4α−3 +4α2i4α−2 +(1−2p)i4α−1

) n
∑

k=i+1
k−4

. pC


n−4α 0 < α < 0.75

n−3 lnn α = 0.75

n−3 0.75 < α

II

n−1
∑

k=1
π2

k,n

k−1
∑

1=i1<i2
(E [φi1φi2 ]−E [φi1 ]E [φi2 ]). 64α2 p2n−4α

n
∑

k=1
k−4

k
∑

i1=1
i2α−1
1

k
∑

i2=i1+1
i2α−2
2

. Cp2



n−4α
n
∑

i1=1
i4α−2
1

n
∑

k=i1+1
k−4 0 < α < 0.5

n−2
n
∑

k=1
k−4

k
∑

i2=2
1 α = 0.5

n−4α
n
∑

i1=1
i4α−2
1

n
∑

k=i1+1
k−4 0.5 < α

.Cp2


n−4α 0 < α < 1

n−4 lnn α = 1

n−4 1 < α

III

n−1
∑

1=k1<k2

πk1,nπk2,n
k1−1
∑

i=1

(
E
[
φ 2

i
]
−E [φi]

2
)

. 8pn−4α
n
∑

i=1

(
i4α−1 +(4α−1)i4α−2 +4α(α−1)i4α−3 +4α2i4α−2 +(1−2p)i4α−1

) n
∑

k1=i+1
k−3

1

. pC


n−4α 0 < α < 0.5

n−2 lnn α = 0.5

n−2 0.5 < α
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IV

n−1
∑

1=k1<k2

πk1,nπk2,n
k1−1
∑

1=i1<i2
(E [φi1φi2 ]−E [φi1 ]E [φi2 ])

. 64α2 p2n−4α
n
∑

1=k1<k2

k−2
1 k−2

2

k1
∑

1=i1<i2

(
i2α−1
1 i2α−2

2

)
. p2C


n−4α 0 < α < 0.75

n−4α lnn α = 0.75

n−3 0.75 < α

V

n−1
∑

1=k1<k2

πk1,nπk2,n
k1−1
∑

i1=1

k2−1
∑

i2=1
(E [φi1φi2 ]−E [φi1 ]E [φi2 ])

. 64α2 p2n−4α
n
∑

1=k1<k2

k−2
1 k−2

2

k1
∑

i1=1

k2
∑

i2=1

(
i2α−1
1 i2α−2

2

)

. 64α2 p2n−4α



n
∑

i1=1
i2α−1
1

n
∑

k1=i1+1
k−2

1

(
n
∑

i2=1
i2α−2
2

n
∑

k2=i2+1
k−2

2

)
α /∈ {0.5,1}

n
∑

k1=1
k−1

1

(
n
∑

k2=k1+1
k−2

2 Hk2

)
α = 0.5

1
2

n
∑

1=k1<k2

k−1
2 α = 1

. p2C



n−2 α = 0.5

n−4α
n
∑

i1=1
i2α−1
1

n
∑

k1=i1+1
k−2

1 α ∈ (0,1)\{0.5}

n−3 α = 1

n−2α−2
n
∑

i1=1
i2α−1
1

n
∑

k1=i1+1
k−2

1 1 < α

. p2C


n−4α 0 < α ≤ 0.5

n−2α−1 0.5 < α < 1

n−3 1≤ α.

Putting I–V together we obtain

Var
[
Ψ

(n)
]
≤ pC


n−4α 0 < α < 0.5

n−2 lnn α = 0.5

n−2 0.5 < α.
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The variance is bounded from below by
III

and as these derivations are correct up to a constant

(independent of p) the variance behaves as above. This is further illustrated by graphs in Fig. 4.

Figure 4: Numerical evaluation of scaled Eq. (11) for different values of α . The scaling for left:
α = 0.35 equals n−4α , centre: α = 0.5 equals 16p(1− p)n−2 logn and right α = 1 equals (32p(1−
p)(1/(4α−2)−1/(4α−1))/(4α))n−2. In all cases, p = 0.5.

�

The proof of the next Corollary, 4.6, is exactly the same as of Corollary 4.4.

Corollary 4.6 Let pn and σ2
c,n be respectively the jump probability and variance at the n–th speci-

ation event, such that the sequence σ4
c,n pn is bounded. We have

n ln−1 nVar
[

n−1
∑

i=1
σ2

c,iφi

]
→ 0 for α = 0.5,

nVar
[

n−1
∑

i=1
σ2

c,iφi

]
→ 0 for 0.5 < α.

iff σ4
c,n pn→ 0 with density 1.

5 Proof of the Central Limit Theorems 3.1 and 3.5

To avoid unnecessary notation it will be always assumed that under a given summation sign the ran-

dom variables (ϒ(n), I(n),(Ji)
ϒ(n)

i=1 ) are derived from the same random lineage and also (υ(n), Ĩ(n),
(
J̃i
)υ(n)

i=1 )

are derived from the same random pair of lineages
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Lemma 5.1 Conditional on Yn the first two moments of the scaled sample average are

E
[
Y n|Yn

]
= δe−αU(n)

E
[
Y 2

n|Yn

]
= n−1− (1−δ 2)e−2αU(n)

+(1−n−1)E
[
e−2ατ(n) |Yn

]
+n−1(σ2

a /(2α))−1 E

[
ϒ(n)

∑
k=1

σ2
c,I(n)k

Jke
−2α(Tn+...+T

I(n)k +1
)

|Yn

]

+(1−n−1)(σ2
a /(2α))−1 E

[
υ(n)

∑
k=1

σ2
c,Ĩ(n)k

J̃ke−2α(τ(n)+...+TĨk+1)|Yn

]
,

Var
[
Y n|Yn

]
= n−1− e−2αU(n)

+(1−n−1)E
[
e−2ατ(n) |Yn

]
+n−1(σ2

a /(2α))−1 E

[
ϒ(n)

∑
k=1

σ2
c,I(n)k

Jke−2α(Tn+...+TIk+1)|Yn

]

+(1−n−1)(σ2
a /(2α))−1 E

[
υ(n)

∑
k=1

σ2
c,Ĩ(n)k

J̃ke
−2α(τ(n)+...+T

Ĩ(n)k +1
)

|Yn

]
,

PROOF The first equality is immediate. The variance follows from

Var [Y1 + . . .+Yn|Yn] = n(1− e−2αU(n)
)+(σ2

a /(2α))−1
n
∑

i=1

ϒ(i,n)

∑
k=1

σ2
c,I(i,n)k

J(i,n)k e
−2α(Tn+...+T

I(i,n)k
)

+2
n
∑

i< j

(
(e−2ατ(i, j,n) − e−2αU(n)

)+

(σ2
a /(2α))−1

υ(i, j,n)

∑
k=1

σ2
c,I(i, j,n)k

J(i, j,n)k e
−2α(τ(i, j,n)+...+T

I(i, j,n)k
)
)

= n−n2e−2αU(n)
+n(n−1)E

[
e−2ατ(n) |Yn

]
+n(σ2

a /(2α))−1 E

[
ϒ(n)

∑
k=1

σ2
c,I(n)k

Jke
−2α(Tn+...+T

I(n)k +1
)

|Yn

]

+n(n−1)(σ2
a /(2α))−1 E

[
υ(n)

∑
k=1

σ2
c,Ĩ(n)k

J̃ke
−2α(τ(n)+...+T

I(n)k
)

|Yn

]

This immediately entails the second moment.

�

Lemma 5.2 Assume that the jump probability is constant, equalling p, at every speciation event.

Let
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an(α) =


n2α 0 < α < 0.5,

n ln−1 n 0.5 = α,

n 0.5 < α

and then for all α > 0 and n greater than some n(α)

Wn := an(α)E
[
Ψ

(n)|Yn

]
,

is a submartingale and furthermore Wn converges a.s. and in L1 to a random variable W∞ with

expectation

E [W∞] =


2p(2α +1)/(2α(1−2α)) 0 < α < 0.5,

4p 0.5 = α,

4p/(2α(2α−1)) 0.5 < α.

PROOF PROOF FOR α > 0.5

Wn+1 = (n+1) 2
(n+1)n

n+1
∑

i< j
Ψ

(n+1)
i j

= e−2αTn+1

(
n−1

n Wn +
2
n

n
∑

i=1
ξi

ϒ(i,n)

∑
k=1

J(i,n)k e
−2α(Tn+...+T

I(i,n)k +1
)

+ 2
n

n
∑

i=1
ξi

n
∑
j 6=i

υ(i, j,n)

∑
k=1

J(i, j,n)k e
−2α(τ(i, j,n)+...+T

I(i, j,n)k +1
)
)

= e−2αTn+1

(
n−1

n Wn +
2
n

n
∑

i=1
ξiΨ

∗(n)
i + 2

n

n
∑

i=1
ξi

n
∑
j 6=i

Ψ
(n)
i j

)
,

where ξi is a binary random variable indicating whether it is the i–th lineage that split (see Fig 5).

Obviously the distribution of the vector (ξ1, . . . ,ξn) is uniform on the n–element set {(1,0, . . . ,0), . . . ,(0, . . . ,0,1)}.

In particular note
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Figure 5: The situation of the process between the n–th and n+1–st split. Node m split so ξm = 1
and ξi = 0 for i 6= m. The time between the splits is Tn+1 ∼ exp(n+1).

E [Wn+1|Yn] = n+1
n+1+2α

(
n−1

n Wn +
2
n2 E

[
n
∑

i=1
Ψ∗

(n)

i |Yn

]
+ 2

n2 E

[
n
∑

i=1

n
∑
j 6=i

Ψ
(n)
i j |Yn

])
= n+1

n+1+2α

(
n−1

n Wn +
2
n E
[
Ψ∗

(n) |Yn

]
+ 2n(n−1)

n2 E
[
Ψ(n)|Yn

])
= n+1

n+1+2α

(
n−1

n Wn +
2
n E
[
Ψ∗

(n) |Yn

]
+ n−1

n Wn

)
= n+1

n+1+2α

(
2 n−1

n Wn +
2
n E
[
Ψ∗

(n) |Yn

])
= 2 (n−1)(n+1)

n(n+1+2α)Wn +
2(n+1)

n(n+1+2α) E
[
Ψ∗

(n) |Yn

]
≥ Wn for n large enough.

Therefore Wn will be a submartingale with respect to Yn from a certain n. We know that E [Wn]<CE

for some constant CE , as E [Wn]→ 4p/(2α(2α−1)) [Appendix A.2. 5] and hence by the martingale

convergence theorem Wn →W∞ a.s. for some random variable W∞. As all expectations are finite

E [W∞]<∞. Furthermore Var [Wn]<CV , for some constant CV , as, by Lemma 4.5, Var [Wn]→ 8p(1−

p)/2α , indicating E [Wn]→ E [W∞] and therefore E [W∞] = 4p/(2α(2α − 1)). Also the previous

implies uniform integrability of {Wn} and hence L1 convergence.

PROOF FOR α = 0.5 is the same as the proof for α > 0.5 except that we will have for n large enough

E [Wn+1|Yn]≥ 2
(n−1)(n+1) lnn
n(n+2) ln(n+1)

Wn +
2(n+1)

n(n+2) ln(n+1)
E
[
Ψ
∗(n) |Yn

]
≥Wn.

Now following again Bartoszek [5]’s Appendix A.2. we have E [Wn]→ 4p and Var [Wn]→ 8p(1− p)

(Lemma 4.5).
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PROOF FOR 0 < α < 0.5 is the same as the proof for α > 0.5 except that we will have for n large

enough

E [Wn+1|Yn]≥ 2
(n+1)2α(n−1)
n2α(n+1+2α)

Wn +
2(n+1)2α+1

n(n+1+2α)
E
[
Ψ
∗(n) |Yn

]
≥Wn.

Following Bartoszek [5]’s Appendix A.2. we obtain E [Wn]→ 2p(2α + 1)/(1− 2α) and Var [Wn]

converges to a constant by Lemma 4.5.

�

PROOF OF THEOREM 3.1, PART (I), α > 0.5

We will show convergence in probability of the conditional mean and variance

µn :=
√

nE
[
Y n|Yn

] P−→ 0 n→ ∞

σ2
n := nVar

[
Y n|Yn

] P−→ σ2
∞ n→ ∞,

for a finite mean and variance random variable σ2
∞. Then due to the conditional normality of Y n this

will give the convergence of characteristic functions and the desired weak convergence, i.e.

E
[
eix
√

n·Y n
]
= E

[
eiµnx−σ2

n x2/2
]
→ E

[
e−σ2

∞x2/2
]
.

Using Lemma 5.1 and that the Laplace transform of the average coalescent time [Lemma 3 in 6]

is

E
[

e−2ατ
(n)
i j

]
=

2− (n+1)(2α +1)bn,2α

(n−1)(2α−1)
=

2
2α−1

n−1 +O(n−2α) (12)

we can calculate

E [µn] = δ E
[
e−αU(n)

]
= δbn,α = O(n−α),

Var [µn] = n
(

E
[
µ2

n
]
− (E [µn])

2
)
= δ 2n

(
E
[
e−2αU(n)

]
−
(

E
[
e−αU(n)

])2
)
= δ 2n

(
bn,2α −b2

n,α
)

= δ 2αnbn,2α

n
∑
j=1

b2
j,α

b j,2α

1
j( j+2α) = O(n−2α+1).
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Therefore we have µn→ 0 in L2 and hence in P.

Lemma 5.1 states that

σ2
n = 1−ne−2αU(n)

+n(1−n−1)E
[
e−2ατ(n) |Yn

]
+(σ2

a /(2α))−1 E

[
ϒ(n)

∑
k=1

σ2
c,I(n)k

Jke
−2α(Tn+...+T

I(n)k +1
)

|Yn

]

+n(1−n−1)(σ2
a /(2α))−1 E

[
υ(n)

∑
k=1

σ2
c,Ĩ(n)k

J̃ke
−2α(τ(n)+...+T

Ĩ(n)k +1
)

|Yn

]

Using Lemmata 4.1, 4.3, 4.5, 5.2, Bartoszek [5]’s Appendix A.2 and remembering that pk, σ2
c,k were

assumed constant (equalling p, σ2
c respectively), by looking at the individual components we can

see that

σ
2
n

P−→ 1+
2pσ2

c

σ2
a

+
σ2

c W∞

σ2
a

=: σ
2
∞.

By Lemma 5.2

E
[
σ

2
∞

]
= 1+

2pσ2
c

σ2
a

+
4pσ2

c

2α(2α−1)σ2
a
.

PROOF OF PART (II), α = 0.5

This is proved in the same way as PART (I) except with the normalizing factor of the order of n ln−1 n.

PROOF OF PART (III), 0 < α < 0.5

We notice that the martingale Hn = (n+ 1)e(α+1)U(n)
Y n has uniformly bounded second moments.

Namely by boundedness of σ2
c , Lemma 5.1 and Cauchy–Schwarz
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E
[
H2

n
]
= (n+1)2 E

[
e2(α−1)U(n)

E
[
Y 2

n|Yn

]]
≤Cn2

(
n−1 E

[
e−2(1−α)U(n)

]
+E

[
e−2(1−α)U(n)−2ατ(n)

]
+n−1(σ2

a /(2α))−1 E
[
e−2(1−α)U(n)

Ψ∗
(n)
]
+(σ2

a /(2α))−1 E
[
e−2(1−α)U(n)

Ψ(n)
])

≤Cn2
(

n−1n−2(1−α)+n−2(1−α)n−2α +n−1n−2(1−α)n−4α +n−2(1−α)n−4α

)
≤C

(
n−1+2α +1+n−2α−1 +n−2α

)
→C < ∞.

Hence, supn E
[
H2

n
]
< ∞ and by the martingale convergence theorem, Hn→ H∞ a.s. and in L2. As

was done by Bartoszek and Sagitov [6] we obtain (Bartoszek and Sagitov [6]’s Lemma 9) nαY n→

V (α−1)H∞ a.s. as in L2. Notice that for the convergence to hold in this regime, it is not required that

σ2
c,n is constant, only bounded. We may also obtain directly the first two moments of nαY n (however,

for these formulae to hold, σ2
c,n has to be constant)

nα E
[
Y n
]

= δnα bn,α → δΓ(1+α)

n2α E
[
Y 2

n

]
= n2α−1− (1−δ 2)n2α bn,2α +n2α(1−n−1)E

[
e−2ατ(n)

]
+n2α−1σ2

c (σ
2
a /(2α))−1 E

[
Ψ∗

(n)
]
+n2α σ2

c (σ
2
a /(2α))−1 E

[
Ψ(n)

]
→ −(1−δ 2)Γ(2α +1)+ 1+2α

1−2α
Γ(1+2α)2pσ2

c (σ
2
a /(2α))−1.

PROOF OF THEOREM 3.5, PART (I), α > 0.5

From the proof of Part (I), Theorem 3.1 we know that µn→ 0 in probability. By the same ergodic

argument as in Corollary 4.4 we obtain
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E
[
σ2

n
]

= n
(

n−1−E
[
e−2αU(n)

]
+(1−n−1)E

[
e−2ατ(n)

]
+n−1(σ2

a /(2α))−1 E

[
ϒ(n)

∑
k=1

σ2
c,I(n)k

Jke
−2α(Tn+...+T

I(n)k +1
)
]

+(1−n−1)(σ2
a /(2α))−1 E

[
υ(n)

∑
k=1

σ2
c,Ĩ(n)k

J̃ke
−2α(τ(n)+...+T

Ĩ(n)k +1
)
])

→ 2α+1
2α−1 .

Furthermore Corollaries 4.4 and 4.6 imply

Var
[
σ2

n
]

= n2 Var
[
Var
[
Y n|Yn

]]
= n−2 Var [Var [Y1 + . . .+Yn|Yn]]

≤ C
(

n2 Var
[
e−2αU(n)

]
+(n−1)2 Var

[
E
[
e−2ατ(n) |Yn

]]
+(σ2

a /(2α))−2 Var

[
E

[
ϒ(n)

∑
k=1

σ2
c,I(n)k

Jke
−2α(Tn+...+T

I(n)k +1
)

|Yn

]]

+(n−1)2(2σ2
a /(2α))−2 Var

[
E

[
υ(n)

∑
k=1

σ2
c,Ĩ(n)k

J̃ke
−2α(τ(n)+...+T

Ĩ(n)k +1
)

|Yn

]])
→ 0.

Therefore we obtain that σ2
n → (2α +1)/(2α−1) in probability and by convergence of character-

istic functions

E
[
eix
√

n·Y n
]
= E

[
eiµnx−σ2

n x2/2
]
→ E

[
e−((2α+1)/(2α−1))x2/2

]
we obtain the asymptotic normality. Notice that on the other hand

Var
[
σ2

n
]
≥ n−2 Var

[
−n2e−2αU(n)

+n(n−1)(2σ2
a /(2α))−1 E

[
υ(n)

∑
k=1

σ2
c,Ĩ(n)k

J̃ke
−2α(τ(n)+...+T

Ĩ(n)k +1
)

|Yn

]]

≥
(

1− 1√
2

)(
n2 Var

[
e−2αU(n)

]
+(n−1)2(2σ2

a /(2α))−2 Var

[
E

[
υ(n)

∑
k=1

σ2
c,Ĩ(n)k

J̃ke
−2α(τ(n)+...+T

Ĩ(n)k +1
)

|Yn

]])

implying that the convergence pnσ4
c,n→ 0 with density 1 is a necessary assumption for the asymp-

totic normality.
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PROOF OF PART (II), α = 0.5 This is proved in the same way as PART (I) except with the

normalizing factor of the order of n ln−1 n.
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