A fractional order network model for ZIKA

H. A. A. El-Saka
Mathematics Department, Faculty of Science, Damietta University,
34517, New Damietta, Egypt
Email: halaelmsaka@yahoo.com

E. Ahmed
Mathematics Department, Faculty of Science, Mansoura University,
35516, Mansoura, Egypt
Email: magd45@yahoo.com

Abstract
Zika is a fast spreading epidemic. So far it is known to have two transmission routes
one via mosquito and the other is via sexual contact. It is dangerous on pregnant women
otherwise it is mild or asymptomatic. Therefore we present a fractional order network model
for it.

Keywords: Fractional-order, Zika epidemic, homogenous network, stability, numerical sol-
lutions.

1 Introduction
Zika is a fast spreading epidemic. Within one year it has spread to more than 32 countries
including south, central and north America. One case appeared in Europe and in Australia.
Therefore it should be studied using networks [22]. So far it is known to have two transmission
routes one via mosquito and the other is via sexual contact. It is dangerous on pregnant women
otherwise it is mild or asymptomatic. Therefore we expect that in the future the second route
will be more difficult to control. Fractional order (FO) models [14-18] are quite useful in epidemic
models to predict the spread of diseases, how to prevent epidemics and so much more. Therefore
we present a fractional order network model for ZIKA. The benefit of simple models is that we
can average out some of this complexity and try to understand the big picture. Our model will
be useful as a conceptual tool for modeling the impact of interventions aiming to control the
disease.

In sec. 2 a brief introduction to FO calculus is given. In sec. 3 the model is given and
studied. Sec.4 contains our conclusions.

2 Fractional order calculus
Definition 1 The fractional integral of order \(\beta \in R^+ \) of the function \(f(t) \), \(t > 0 \) is defined by

\[
I^\beta f(t) = \int_0^t \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} f(s) \, ds
\]
and the fractional derivative of order \(\alpha \in (n - 1, n) \) of \(f(t) \), \(t > 0 \) is defined by

\[
D^\alpha_\tau f(t) = I^{n-\alpha}D^n f(t), \quad D_\tau = \frac{d}{dt}
\]

(2)

The following properties are some of the main ones of the fractional derivatives and integrals (see [6]-[8], [10], [12], [20], [21]).

Let \(\beta, \gamma \in R^+ \) and \(\alpha \in (0, 1) \). Then

(i) \(I^\alpha_\tau : L^1 \rightarrow L^1 \), and if \(f(y) \in L^1 \), then \(I^\alpha_\tau I^\beta_\tau f(y) = I^{\alpha+\beta}_\tau f(y) \).

(ii) \(\lim_{\alpha \rightarrow 1} I^\alpha_\tau f(y) = \int_0^\tau f(s) \, ds \) uniformly on \([a, b]\), \(n = 1, 2, 3, \cdots \),

where \(I^\alpha_\tau f(y) = \frac{1}{\Gamma(\alpha)} \int_0^\tau (\tau - s)^{\alpha-1} f(s) \, ds \).

(iii) \(\lim_{\alpha \rightarrow 0} I^\alpha_\tau f(y) = f(y) \) weakly.

(iv) If \(f(y) \) is absolutely continuous on \([a, b]\), then \(\lim_{\alpha \rightarrow 1} D^\alpha_\tau f(y) = \frac{d^{g(y)}}{ds} \).

(v) If \(f(y) = k \neq 0 \), \(k \) is a constant, then \(D^\alpha f = 0 \).

The following lemma can be easily proved (see [10]).

Lemma 1 Let \(\beta \in (0, 1) \) if \(f \in C[0, T] \), then \(I^\beta f(t)|_{t=0} = 0 \).

2.1 Equilibrium points and their asymptotic stability

Let \(\alpha \in (0, 1] \) and consider the system ([1]-[3], [11], [13])

\[
\begin{align*}
D^\alpha_\tau y_1(t) &= f_1(y_1, y_2, y_3), \\
D^\alpha_\tau y_2(t) &= f_2(y_1, y_2, y_3), \\
D^\alpha_\tau y_3(t) &= f_3(y_1, y_2, y_3),
\end{align*}
\]

(3)

with the initial values

\(y_1(0) = y_{o1} \) and \(y_2(0) = y_{o2} \) and \(y_3(0) = y_{o3} \).

(4)

To evaluate the equilibrium points, let

\[
D^\alpha_\tau y_i(t) = 0 \Rightarrow f_i(y_1^{eq}, y_2^{eq}, y_3^{eq}) = 0, \quad i = 1, 2, 3
\]

from which we can get the equilibrium points \(y_1^{eq}, y_2^{eq}, y_3^{eq} \).

To evaluate the asymptotic stability, let

\[
y_i(t) = y_i^{eq} + \varepsilon_i(t),
\]

So the the equilibrium point \((y_1^{eq}, y_2^{eq}, y_3^{eq}) \) is locally asymptotically stable if the eigenvalues of the Jacobian matrix \(A \)

\[
\begin{bmatrix}
\frac{\partial f_1}{\partial y_1} & \frac{\partial f_1}{\partial y_2} & \frac{\partial f_1}{\partial y_3} \\
\frac{\partial f_2}{\partial y_1} & \frac{\partial f_2}{\partial y_2} & \frac{\partial f_2}{\partial y_3} \\
\frac{\partial f_3}{\partial y_1} & \frac{\partial f_3}{\partial y_2} & \frac{\partial f_3}{\partial y_3}
\end{bmatrix}
\]

evaluated at the equilibrium point satisfies \(|\arg(\lambda_1)| > \alpha \pi/2, |\arg(\lambda_2)| > \alpha \pi/2, |\arg(\lambda_3)| > \alpha \pi/2 \) ([2], [3], [13], [19]). The stability region of the fractional-order system with order \(\alpha \) is illustrated in Fig. 1 (in which \(\sigma, \omega \) refer to the real and imaginary parts of the eigenvalues, respectively, and \(j = \sqrt{-1} \)). From Fig. 1, it is easy to show that the stability region of the fractional-order case is greater than the stability region of the integer-order case.
The eigenvalues equation of the equilibrium point \((\psi_\epsilon^1, \psi_\epsilon^2, \psi_\epsilon^3)\) is given by the following polynomial:

\[
p(\lambda) = \lambda^3 + a_1 \lambda^2 + a_2 \lambda + a_3 = 0,
\]

and its discriminant \(D(P)\) is given as:

\[
D(P) = 18a_1a_2a_3 + (a_1a_2)^2 - 4a_3(a_1)^3 - 4(a_2)^3 - 27(a_3)^2,
\]

using the results of Ref. [2], we have the following fractional Routh-Hurwitz conditions:

(i) If \(D(P) > 0\), then the necessary and sufficient condition for the equilibrium point \((\psi_\epsilon^q, \psi_\epsilon^2, \psi_\epsilon^3)\), to be locally asymptotically stable, is \(a_1 > 0, a_3 > 0, a_1a_2 - a_3 > 0\).

(ii) If \(D(P) < 0, a_1 \geq 0, a_2 \geq 0, a_3 > 0\), then \((\psi_\epsilon^q, \psi_\epsilon^2, \psi_\epsilon^3)\) is locally asymptotically stable for \(\alpha < 2/3\). However, if \(D(P) < 0, a_1 < 0, a_2 < 0, \alpha > 2/3\), then all roots of Eq. (5) satisfy the condition \(|\arg(\lambda)| < \alpha \pi/2\).

(iii) If \(D(P) < 0, a_1 > 0, a_2 > 0, a_1a_2 - a_3 = 0\), then \((\psi_\epsilon^q, \psi_\epsilon^2, \psi_\epsilon^3)\) is locally asymptotically stable for all \(\alpha \in (0, 1)\).

(iv) The necessary condition for the equilibrium point \((\psi_\epsilon^q, \psi_\epsilon^2, \psi_\epsilon^3)\), to be locally asymptotically stable, is \(a_3 > 0\).

3 Fractional-order SIRS epidemic model on homogenous networks.

Let \(S(t)\) be the number of individuals in the susceptible class at time \(t\), \(I(t)\) be the number of individuals who are infectious at time \(t\) and \(R(t)\) be the recovered or vaccinated individuals at time \(t\) [22].
The fractional-order SIRS epidemic model on homogenous networks is given by:

\[D_{s}^{\alpha_1} S(t) = \lambda - \frac{\beta(k)SI}{S + I + R} + \gamma R - (\nu + \mu)S, \]

\[D_{s}^{\alpha_1} I(t) = \frac{\beta(k)SI}{S + I + R} - (\kappa + \mu + \alpha)I, \]

\[D_{s}^{\alpha_1} R(t) = \kappa I - (\mu + \gamma)R + vS, \]

(7)

where \(0 < \alpha_1 \leq 1\) and the parameters \(\lambda, \mu, \beta, \kappa, \nu, \gamma\) and \(\alpha\) are positive constants, and \(\langle k \rangle\) is the average connectivity in the network neglecting the heterogeneity of the node degrees [22].

Which, together with \(N = S + I + R\), implies

\[D_{s}^{\alpha_1} N = \lambda - \mu N - \alpha I. \]

Thus the total population size \(N\) may vary in time.

To evaluate the equilibrium points, let

\[D_{s}^{\alpha_1} S = 0, \]

\[D_{s}^{\alpha_1} I = 0, \]

\[D_{s}^{\alpha_1} R = 0, \]

then \((S_{eq}, I_{eq}, R_{eq}) = (\frac{\lambda(\gamma + \mu)}{\mu(\gamma + \mu + v)}, 0, \frac{\lambda \nu}{\mu(\gamma + \mu + v)})\), \((S_{*}, I_{*}, R_{*})\), are the equilibrium points where,

\[S_{*} = \frac{\lambda A(\kappa + \gamma + \mu)}{AB[\mu R_0 + \alpha(R_0 - 1)] + \beta(\kappa)\mu k}], \]

\[I_{*} = \frac{\lambda A B(R_0 - 1)}{AB[\mu R_0 + \alpha(R_0 - 1)] + \beta(\kappa)\mu k]}, \]

\[R_{*} = \frac{\kappa I_{*} + vS_{*}}{\mu + \gamma}, \]

\[R_0 = \frac{\beta\langle k \rangle(\mu + \gamma)}{(\kappa + \mu + \alpha)(\mu + \gamma + v)}, \quad A = (\kappa + \mu + \alpha), \quad B = (\mu + \gamma + v). \]

For a disease-free equilibrium point \((S_{eq}, I_{eq}, R_{eq}) = (\frac{\lambda(\gamma + \mu)}{\mu(\gamma + \mu + v)}, 0, \frac{\lambda \nu}{\mu(\gamma + \mu + v)})\) we find that

\[A = \begin{bmatrix} -\nu - \mu & \frac{\beta(k)\mu + \gamma}{\mu + \gamma + v} & \gamma \\ 0 & \frac{\beta(k)\mu + \gamma}{\mu + \gamma + v} - (\kappa + \mu + \alpha) & 0 \\ \nu & \kappa & -(\mu + \gamma) \end{bmatrix}, \]

and its eigenvalues are

\[x_1 = -\mu < 0, \]

\[x_2 = -(\mu + \gamma + v) < 0, \]

\[x_3 = -(\kappa + \mu + \alpha)(1 - R_0) < 0 \quad \text{if} \quad R_0 < 1. \]

Hence a disease-free equilibrium point \((S_{eq}, I_{eq}, R_{eq}) = (\frac{\lambda(\gamma + \mu)}{\mu(\gamma + \mu + v)}, 0, \frac{\lambda \nu}{\mu(\gamma + \mu + v)})\) is locally asymptotically stable if \(R_0 < 1\).

For a unique endemic equilibrium point \((S_{eq}, I_{eq}, R_{eq}) = (S_{*}, I_{*}, R_{*})\) the characteristic polynomial is given by:

\[x^3 + a_1 x^2 + a_2 x + a_3 = 0, \]
where
\[
\begin{align*}
a_1 &= \gamma + 2\mu + v + \mu w, \\
a_2 &= (p - \tau)w^2 + (\gamma p + \kappa + p\mu + \tau\mu)w + \gamma\mu + \mu v + \mu^2, \\
a_3 &= [p(\gamma + \mu) - \tau(\mu + v + \gamma)]w^2 + [\tau(\mu + v + \gamma)(\mu + \kappa) - \gamma\kappa p]w, \\
p &= \frac{I_v}{N_v}, \tau = \frac{I_v}{N_v}, N_v = S_v + I_v + R_v, \\
w &= (\alpha + \mu + \kappa) = \frac{\beta(k)S_v}{N_v}.
\end{align*}
\]

A sufficient condition for the local asymptotic stability of a unique endemic equilibrium point \((S_{eq}, I_{eq}, R_{eq}) = (S_v, I_v, R_v)\) is
\[
|\arg(x_1)| > \alpha_1\pi/2, |\arg(x_2)| > \alpha_1\pi/2, |\arg(x_3)| > \alpha_1\pi/2.
\] (8)

3.1 Numerical methods and results

An Adams-type predictor-corrector method has been introduced and investigated further in ([1]-[3], [4], [5], [9]). In this paper we use an Adams-type predictor-corrector method for the numerical solution of fractional integral equations.

The key to the derivation of the method is to replace the original problem (7) by an equivalent fractional integral equations
\[
\begin{align*}
S(t) &= S(0) + I^{\alpha_1}[\lambda - \frac{\beta(k)SI}{S + I + R} + \gamma R - (v + \mu)S], \\
I(t) &= I(0) + I^{\alpha_1}[\frac{\beta(k)SI}{S + I + R} - (\kappa + \mu + \alpha)I], \\
R(t) &= R(0) + I^{\alpha_1}[\kappa I - (\mu + \gamma)R + vS],
\end{align*}
\] (9)

and then apply the PECE (Predict, Evaluate, Correct, Evaluate) method.

The approximate solutions displayed in Figs. 2-7 for \(\langle k \rangle = 6, \lambda = 1, \beta = 0.2, \mu = 0.001, \gamma = 0.1, \alpha = 0.00087, \kappa = 0.5\) and different \(0 < \alpha_1 \leq 1\). In Figs. 2-4 we take \(v = 0.3, S(0) = 450, I(0) = 550, R(0) = 0\) and found that a disease-free equilibrium point \((\frac{\lambda(\gamma + \mu)}{\mu(\gamma + \mu + v)}, 0, \frac{\lambda v}{\mu(\gamma + \mu + v)}) = (251.87, 0, 748.13)\) is locally asymptotically stable even if for a large fraction of the infected individuals at the initial time, the disease will eventually disappear where \(R_0 = 0.602236 < 1\).

In Figs. 5-7 we take \(v = 0.005, S(0) = 800, I(0) = 200, R(0) = 0\) and found that a disease-free equilibrium point \((\frac{\lambda(\gamma + \mu)}{\mu(\gamma + \mu + v)}, 0, \frac{\lambda v}{\mu(\gamma + \mu + v)}) = (952.83, 0, 47.1698)\) is unstable where \(R_0 = 2.27827 > 1\) and a unique endemic equilibrium point \((S_v, I_v, R_v) = (386.518, 87.1414, 450.528)\) is locally asymptotically stable even if for a small fraction of the infected individuals at the initial time where the condition (8) is satisfied and the eigenvalues are given as:
\[
\begin{align*}
x_1 &= -0.0010814, \\
x_2, x_3 &= -0.109533 \pm 0.236736i, \\
|\arg(x_1)| = \pi > \alpha_1\pi/2, |\arg(x_2, x_3)| = 2.00415 > \alpha_1\pi/2.
\end{align*}
\]
Fig. 4.

![Graph 1](image1)

Fig. 5.

![Graph 2](image2)
Fig. 6.

Fig. 7.
4 Conclusions

i- Zika is a fast spreading epidemic.
 ii- It is dangerous on pregnant women otherwise it is mild or asymptomatic.
 iii- So far it is known to have two transmission routes one via mosquito and the other is via sexual contact.

Therefore we expect that in the future the second route will be more difficult to control. Moreover the fact that Summer Olympics is expected in Brazil in 2016 makes it important to study the epidemic quickly.

Our model will be useful as a conceptual tool for modeling the impact of interventions aiming to control the disease.

References

