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Abstract 

Background 

Fast, accurate and high-throughput detection of bacteria is in great demand. The present work was 

conducted to investigate the possibility of identifying both known and unknown bacterial strains from 

unassembled next-generation sequencing reads using custom-made guide trees. 

Results 

A program named StrainSeeker was developed that constructs a list of specific k-mers for each node 

of any given Newick-format tree and enables rapid identification of bacterial genomes within minutes. 

StrainSeeker has been tested and shown to successfully identify Escherichia coli strains from mixed 

samples in less than 5 minutes. StrainSeeker can also identify bacterial strains from highly diverse 

metagenomics samples. StrainSeeker is available at http://bioinfo.ut.ee/strainseeker. 

Conclusions 

Our novel approach can be useful for both clinical diagnostics and research laboratories because 

novel bacterial strains are constantly emerging and their fast and accurate detection is very important. 

Keywords: k-mer, microbiome, strain identification, species identification, diagnostics 
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Background 

Pathogenic bacteria represent a considerable danger for human health worldwide. Often, it is hard to 

pinpoint the exact strain or species causing the disease in a timely manner using conventional 

methods such as culturing, which can take at least a full day plus analysis [1]. Moreover, it is very 

important to differentiate between bacterial strains because they can have vastly different effects on 

their host. A well-known example is Escherichia coli sp., which contains some strains such as E. coli 

O157:H7 [2] and E. coli EC958 [3] that are considerably more virulent than others. Methods and 

databases based on 16S RNA sequences such as the well-known Ribosomal Database Project [4] 

have been used to characterize diverse bacterial populations, but they do not have the necessary 

resolution to identify bacteria at the strain level [1, 2]. In recent years, matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry has been used to quickly and cheaply identify 

bacterial colonies [5], but for strain-level identification it requires very precise, manually crafted 

databases for each species which, to a large extent, are not available today. One solution is to use 

whole genome sequencing (WGS) directly on clinical samples to obtain the data as quickly as 

possible, thereby avoiding the time spent on cultivating bacterial isolates. WGS can also detect 

pathogens that grow very slowly or demand very specific conditions and therefore are difficult to 

cultivate [1]. However, WGS generates extremely large amounts of data (ranging typically from 500 

million (M) base pairs (bp) to 3000 Mbp [6] per sequenced sample), which makes information 

processing challenging. State-of-the-art bioinformatic tools such as Kraken [7], CLARK [8], CoMeta [9] 

and KmerFinder [1] are based on the detection of short DNA oligomers with length k (k-mers). Kraken 

and CoMeta identify each of the sequence reads separately using the National Center for 

Biotechnology Information (NCBI) taxonomy tree, counting the hits to each of the taxons on the tree 

and finding the branch with the most total hits. CLARK also identifies each of the reads, but instead of 

using a tree, it is based on a flat, user-defined database. KmerFinder counts the k-mer hits to each of 

its database strains and computes the significance of the matches.  

A strain-level tree for all bacteria would also help to avoid controversies such as the case of E. coli and 

Shigella sp., where Shigella strains are phylogenetically similar to E. coli but are different species 

according to NCBI taxonomy [10]. 
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We present StrainSeeker, a program for the strain-level identification of bacteria from raw sequencing 

reads either from an isolate or a metagenomic sample. Unlike other k-mer based classifiers, 

StrainSeeker does not classify each read separately but analyzes all of the k-mers in the sample 

together. The program uses a guide tree to represent relationships between different bacteria down to 

the strain level, not being tied to existing taxonomic systems such as the NCBI taxonomy. 

 

Results and discussion 

 

Overview of the method 

StrainSeeker consists of two main steps: database building (or downloading a pre-built database) and 

detection of strains from the sequenced sample. 

1. Creating the k-mer database. Before StrainSeeker can be used to identify bacteria, the database 

of specific k-mers needs to be built or downloaded. Lists of the k-mer database can be pre-built for all 

known bacterial genomes or created by the end-users for a custom set of strains. For this, the user 

has to provide genomic DNA sequences (in the form of full genomes or assembled contigs) from a set 

of different strains and a guide tree that includes all of the provided strains. The tree can be built using 

any method preferred by the user as long as it is a binary tree in Newick format. Then, specific k-mer 

lists for each node and strain on the tree are calculated using the tree and genome sequences, 

thereby creating a hierarchical structure of k-mer lists (the "database"). 

2. Identification of bacterial strains from the sample. StrainSeeker converts raw sequence reads 

(FASTA or FASTQ) of the sample to k-mers and compares them with the k-mer database to detect 

known and/or new strains. 

 

Advantages and limitations of guide tree-based strain detection. 

Bacteria evolve fast. Therefore, it is necessary to detect emerging strains because they can have very 

different phenotypes compared to their relatives. To solve this problem, we use a guide tree that 

allows us to also detect unknown strains that are close relatives to strains included in the database. 

We decided not to use NCBI taxonomy because it did not contain strain-level relationships, making it 

unsuitable for the detection of closely related strains. Also, in the NCBI tree some taxons are not 

monophyletic e.g. the Shigella/Escherichia branch. In the case of highly similar strains, all of the k-
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mers that are specific to both of them are moved up to their last common ancestor, leaving very few 

strain-specific k-mers. With the help of the guide tree, StrainSeeker is able to detect the last common 

ancestor on the sub-species level. For the present work, we used an alignment-free k-mer-based 

distance method similar to the k-mer natural vector method [11, 12] to construct the tree of 2,758 

bacterial strains. To test the accuracy of our tree, the E. coli sp. and Shigella sp. subtree (Figure 1) 

was compared to two gene-based trees [13, 14] and a k-mer based tree [15], indicating that our 

alignment-free k-mer-based distance method can be used to accurately represent strain-level 

relationships. Higher-level relationships on the tree (genus level and above) are irrelevant for 

StrainSeeker as our database is made of subtrees that mainly consist of a single species. In general, 

the more inaccurate the tree, the less node-specific k-mers the database will contain, resulting in a flat 

strain-level database similar to CLARK [8] in an extreme case. 
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Figure 1. E. coli sp. and Shigella sp. subtree from our guide tree. The tree is a subtree from the 

guide tree of 2,758 strains, based on the fraction of shared k-mers. Organism names contain the NCBI 

RefSeq name and the bioproject identifier. Branches with E. coli strains most closely related to the 

minor strains used in the sensitivity and strain proportion measuring experiments are highlighted in 

red, the major strain in blue. The tree was constructed in MEGA 6 [16] using the UPGMA method. 

 

Building the k-mer database  

To create the specific k-mer database, the user needs to provide a set of bacterial genomic DNA 

sequences and a guide tree. The k-mer database is built according to the guide tree structure (Figure 

2). The building process starts from the leaves and moves towards the root. To reduce the noise in 

samples that is caused by the DNA of other, non-bacterial organisms such as human DNA in clinical 
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samples, the user can also provide a list of potential contaminating sequences (the “blacklist”) that is 

used to eliminate all strain k-mers that are also present in the blacklist. The blacklist itself is not part of 

the database. The final database contains specific k-mers for each internal and external node (strain) 

represented in the guide tree and an index file containing the database structure and k-mer counts. In 

our study, we created the databases with k=32 using the GenomeTester4 software [17]. Longer k-

mers would give only strain-specific k-mers, shorter k-mers would give only node specific k-mers. In 

our experience, k=32 is optimal for the strain-level identification of bacteria as it gives an optimal 

distribution between node-specific k-mers (Figure 2, node1 and node2) and strain-specific k-mers 

(Figure 2, strain 1-3). Also, we restricted the maximum amount of k-mers in a node or strain to 

100,000 as larger amounts did not improve the accuracy (data not shown). The main database was 

constructed from 2,758 bacterial genomes obtained from the NCBI RefSeq database, its size was 

approximately 7.8 GB. The blacklist that we used consisted of k-mers from the human genome 

assembly GRCh38 and all the plasmids of the 2,758 bacteria. The database consisted of many 

subtrees as very different bacteria apparently have very few or no common k-mers if k=32. 
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Figure 2. StrainSeeker database building process. Database construction starts with the selection 

of bacterial strains of interest. The assembled genome of each strain is converted into a k-mer list. 

Next, a guide tree is created for the database. We used the strain k-mer lists and a k-mer-based 

method to construct the guide tree but any tree in Newick format can be used. The building process 

starts from the strain level and moves shared k-mers towards the root. The final step is to eliminate 

non-specific k-mers that occur in the “blacklist” or in any other nodes. The finished database contains 

k-mer lists specific to each node and strain and can be used to quickly identify any strain included on 

the guide tree and the strains related to them. 

 

Strain identification algorithm 

StrainSeeker does not attempt to identify each read separately, but analyzes all the specific k-mers of 

a strain that are found in the sample. All other k-mer based identifiers tested in a recent publication will 

try to identify each read [18]. The main advantage of our approach is that we use a ratio (k-mers found 

in the sample divided by all the queried k-mers; same k-mer is counted only once). Therefore, the 

decision of calling a strain is based on all the k-mers of the strain whereas other programs have to 

make this decision for each read, based on a limited number of k-mers. This makes StrainSeeker less 

vulnerable to errors if there are lots of non-specific k-mers in the sample (due to technical or biological 

reasons) which, according to the database, are specific. 
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The core of the search process is the guide tree structure. The search is recursive, starting at the root 

node of the tree (or subtree) and moving down towards the strains (Figure 3). The percentage of 

observed k-mers is calculated at each step. This helps to constrain the search space because we can 

skip all branches where the percentage is too low. We assume that node-specific k-mers are located 

randomly across a bacterial genome and sequencing covers the genome randomly as well. Therefore, 

we can infer that we should observe the same proportion of k-mers (O) in each of the nodes on the 

path from the root node to the strain. Also, the proportion of k-mers in a node is approximately equal to 

the cumulative proportion of k-mers in the child nodes (E; the exact formula can be found in the 

methods section). O/E > 1 means that one or both of the child nodes contribute less than the expected 

amount of k-mers, indicating the presence of a strain that is most similar to the current node but not to 

any of the sub-nodes or leaves under it (Figure 3, N4). In this case, StrainSeeker will output all of the 

strains under the current node. O/E = 1 indicates that the strain belongs to one of the sub-nodes and 

the search process will continue (Figure 3, N1, N2 and N3). O/E < 1 indicates sequencing errors or 

contamination (Figure 3, N5). 
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Figure 3. Strain identification process. After the sample is sequenced, the reads are converted into 

k-mers. The search starts from root (N1) and recursively moves down to the subnodes according to 

the following criteria. First, the fraction of observed k-mers (O) is calculated. For the identification 

process to continue along the current branch, O has to exceed the cutoff level (5%). Then, an 

observed/expected (O/E) value is calculated for nodes or the strain is shown as the result for the 

leaves. The process continues to the subnodes if O/E = 1, showing that the current node is present in 

the sample and there is no branching to unknown nodes and strains. Significantly higher O/E values 

(N4) indicate the presence of an unknown strain that is most closely related to N4. Single strains are 

provided (S1) in the output in the case of known strains. Conversely, all strains that are under an 

internal node (S3, S4) are provided if the strain(s) most closely related to this internal node (N4) is 

present in the sample. The result above indicates that two strains were found in total: known strain S1 

and a strain that is closely related to the known strains S3 and S4. 

 

StrainSeeker will show all strains located under the node closest to the unknown strain as the result 

(Figure 4). Additionally, relative amounts of all identified strains (relative fractions of each genome in 

the sample) are shown, calculated using the ratio of specific k-mers found to the total amount of 

specific k-mers of a strain. This measure represents the actual abundances better than identified 

reads because organisms with larger genomes generate more reads [19]. 
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StrainSeeker output format - metagenomic sample identification 
# KNOWN 55.89% 

Streptococcus_pneumoniae_TIGR4_uid57857 

--- 

# RELATED TO GROUP 24.11% 

Helicobacter_pylori_26695_uid57787 

Helicobacter_pylori_26695_uid178201 

Helicobacter_pylori_Rif2_uid178203 

Helicobacter_pylori_Rif1_uid178202 

--- 

# KNOWN 15.82% 

Staphylococcus_epidermidis_ATCC_12228_uid57861 

--- 

# RELATED TO GROUP 4.18% 

Rhodobacter_sphaeroides_2_4_1_uid57653 

Rhodobacter_sphaeroides_ATCC_17029_uid58449 

Rhodobacter_sphaeroides_KD131_uid59277 

 

 

Figure 4. StrainSeeker output format. This is an example of the StrainSeeker output for a 

metagenomic sample that consisted of four different strains. StrainSeeker will output all separate 

strains identified in the sample. For known strains, “KNOWN” and the strain name is given (Figure 3, 

S1). In the case of unknown strains that are similar to a group of strains on the guide tree, “RELATED 

TO GROUP” along with a list of related strains is given (Figure 3, N4). StrainSeeker will also calculate 

relative genome frequencies for all of the detected strains. 

 

Testing the sensitivity of StrainSeeker using samples consisting of similar strains 

Biological samples can often contain multiple strains from the same species, which can make it difficult 

to detect the strain with lower abundance (the “minor” strain). In order to test StrainSeeker’s sensitivity 

in such a case, we created six artificial test samples for each of the three minor strains, 18 samples in 

total (Table 1). Every sample consisted of 1 million Illumina 100 bp reads. In each sample, variable 

amounts of the minor strain were mixed with an E. coli ST10 strain (E. coli K12 substrain MG1655), 

which served as the major strain. We used E. coli strains with MLST type ST73, ST131 and ST156 

isolated from clinical samples as the minor strains. The database used in all the experiments was the 

one mentioned above, containing 2,758 strains. 

StrainSeeker successfully detected the minor strain when at least 20,000 reads (50,000 in the case of 

ST156) were present despite the noise caused by the high levels of the major strain. The only 

ambiguous result given by StrainSeeker was the sample with 10,000 ST73 reads in which ST73 was 

identified as “Related to” a group of strains that also contained some ST131 strains. This could be due 

to the low amount of ST73 reads as the results improved with higher read amounts. As StrainSeeker 

does not classify each of the reads separately, we cannot compare the precision and sensitivity of 

read identification as presented in other recent papers [7–9]. 
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Table 1. StrainSeeker predictions for the three minor strain proportions in 18 samples, each 

consisting of 1 million Illumina reads. “+” stands for called, “-” for not called. 

 

 

Testing StrainSeeker’s accuracy in measuring strain proportions 

We wanted to test how accurately StrainSeeker can estimate the ratios of different strains in mixed 

samples. We used the same 18 samples that were also used in the sensitivity testing. StrainSeeker 

accurately measured the proportions of E. coli ST73 strain in the samples (Figure 5) and predicted 

lower proportions for the ST131 and ST156 strains. This result could be because the ST73 strain had 

a more similar strain present in the database than the ST131 and ST156 strains. 

  

Amount of minor strain 

sequencing reads (100 bp)

Detected minor strain 

ST131

Detected minor strain 

ST73

Detected minor strain 

ST156

5 000 - - -

10 000 - - -

20 000 + + -

50 000 + + +

100 000 + + +

250 000 + + +
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Figure 5. StrainSeeker’s accuracy in assessing the proportions of three minor E. coli strains in 

mixed samples. We created 18 artificial samples (Table 1) of 1 million 100 bp Illumina reads. E. coli 

K12 substrain MG1655 constituted the majority of each sample (75% to 99.5%), minor strains used 

were E. coli ST131, ST73 and ST156 (0.1% to 25%). StrainSeeker was able to detect ST131 and 

ST73 with a minimum of 20,000 reads and ST156 with a minimum of 50,000 reads. Assessing the 

proportions of strains in the samples was very accurate for ST73. In case of ST131 and ST156 strains, 

StrainSeeker systematically predicted lower amounts. This might be because the ST73 strain had a 

more similar strain present in the database than the ST131 and ST156 strains. 

 

Testing StrainSeeker’s sensitivity and precision on a metagenomic sample 

We wanted to test how well StrainSeeker will perform if the sample contained a diverse population of 

bacteria instead of just an isolate or a few similar strains. For that, we used a mock community 

metagenomic sample SRR172902 obtained from the Sequence Read Archive (SRA), which contained 

21 bacteria. To make the sample more similar to a real microbiome, which would often contain human 

DNA as well as bacterial, we added human raw sequencing reads (SRA database, ERR1055492). 

Final ratio of bacterial reads to human reads in the 4.92 Gbp sample was 1:10, human DNA 

constituting the majority of the sample. 

The sample was identified with StrainSeeker using the 2,758 strain database (results provided in 

additional data file 2). StrainSeeker correctly identified 20 of the 21 strains, despite the high amount of 

noise caused by the human DNA. The unidentified bacterium, Actinomyces odontolyticus, was not 

present in our database and therefore could not be detected. StrainSeeker’s sensitivity was 100% and 

precision 100%. The presence of human DNA does not hinder StrainSeeker, therefore we assume 
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that it can be used to identify bacterial strains from complex samples containing human DNA 

background. 

 

Comparing StrainSeeker to other metagenomics analysis tools 

To compare StrainSeeker to other popular tools, we selected a dataset that was recently used by a 

study that thoroughly compared 14 tools [18]. As mentioned before, we cannot compare the precision 

and sensitivity of read identification, therefore we decided to analyse the amount of genera found in 

the sample. Genus level was chosen as the other level examined in the study (phylum) was too broad. 

In our case, false positive means that a genus not present in the sample was found and false negative 

indicated a genus present in the sample that was not called by StrainSeeker. We used one replicate 

from each of the two samples (set A1 and set B1), calculated metrics are the averages of both sets. 

StrainSeeker’s run time was 12.3 minutes, with genus-level sensitivity 0.968 and precision 0.995. Most 

of the false negatives were due to these strains missing from our database. StrainSeeker did not call 

any of the “shuffled genomes” deemed to be false positives in the datasets. Compared to other 

programs presented in [18], StrainSeeker’s run time is one of the fastest and it also has the highest 

sensitivity. The results are available at http://bioinfo.ut.ee/strainseeker. 

 

Computational requirements and speed of the method 

Using a UNIX server and 32 CPU cores, we created the database of 2,758 strains in approximately 8 

hours, its size was 7.6 GB. Because StrainSeeker’s database building process creates some large 

temporary list files, the recommended disk space is at least 200 GB. If disk space is a constraint, the 

database can also be downloaded from our web page. To speed up the identification process, a large 

list of all k-mers present in the tree (the “whitelist”) is used to reduce the sample list size and keep only 

the k-mers that could be matched to the database. 

A typical identification of a 140 Mbp E. coli isolate sample using the 2,758 strain database, UNIX 

server and a single CPU core took approximately 50 seconds. The identification of a large, 12.3 Gbp 

mock metagenome (SRA database, SRR2131179) took 26 minutes with StrainSeeker. The k-mer list 

creation step required the most RAM and was dependent on the FASTA/FASTQ file size. Because the 

assembled bacterial genomes are quite small, the minimum RAM required for database building is 

considerably less than 1 GB. However, sequenced samples with large amounts of reads require more 
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RAM. For example, the identification of a 140 Mbp sample takes approximately 150 - 500 MB of RAM. 

StrainSeeker does not load the whole database into memory, which means that StrainSeeker could 

use very large databases and still work well even on personal computers. Similar programs [7, 8] 

require at least 4GB of RAM when using the smallest databases. 

 

Conclusions 

There is a strong need for the fast detection of bacterial strains. StrainSeeker can detect previously 

unseen strains and provide a clear list of database strains closest to the unknown strain. Users can 

provide their own guide trees and build databases that contain their strains of interest. In the current 

study, we showed that StrainSeeker could obtain clear, strain-level identification results for samples 

that contained small amounts of an E. coli strain and large amounts of another E. coli strain. Minimum 

amount of reads required to detect the minor E. coli strain was 20,000 to 50,000. Also, StrainSeeker 

accurately identified strains in a diverse metagenomic sample even when human DNA was present 

(Additional data file 2). Still, due to the statistical framework which StrainSeeker uses, it has some 

limitations. First, it still requires several thousand reads to detect a strain, the exact amount varying 

with the genome size and other strains present in the sample. Second, it is not able to differentiate 

between strains that are distinguished by only a few single nucleotide variations. This requires high-

quality assemblies which can be difficult and expensive to acquire for every sample. Third, only 

assembled genomes can be used as an input for StrainSeeker database building. However, the future 

updates/versions of the software should enable StrainSeeker to use raw, high-coverage reads from 

isolated strains. Initial tests indicated that adding high-coverage reads of a strain isolate to the 

database rather than adding an assembled genome gave better identification results. Moreover, 

assemblers often require fine-tuning of several parameters that can be cumbersome for non-

bioinformaticians. All in all, StrainSeeker is a tool that can identify bacteria on the strain level from 

either isolates or mixed samples and provide clear, human readable output within minutes. There is 

also an online version of StrainSeeker freely available at http://bioinfo.ut.ee/strainseeker. 

 

Methods and materials 

E. coli isolation, DNA sequencing, genome assembly and initial identification. During a 5 month 

period in 2012. E. coli strains were isolated from samples taken from 21 hospitals located in Estonia 
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(n=5), Latvia (n=4), Lithuania (n=3), Norway (n=1) and St. Petersburg (n=8). The strains were isolated 

from different clinical materials: blood, pus, urine and the respiratory tract. Initial bacterial identification 

was performed using MALDI-TOF MS (Maldi Biotyper, BrukerDaltonics GmbH, Germany). The ESBL 

phenotype was confirmed with the ESBL+AmpC identification kit (Rosco Diagnostica, Taastrup, 

Denmark). DNA templates for sequencing were generated by growing cultures of E. coli isolates 

overnight on blood agar (Oxoid Limited, UK). Total DNA from the bacterial strains was extracted using 

the QIAamp DNA Mini Kit (Qiagen, Germany). Bacterial genomic DNA was quantified using the 

Qubit® 2.0 Fluorometer (Invitrogen, Grand Island, NY, USA). A total of 1 ng of sample DNA was 

processed for the sequencing libraries using the Illumina Nextera XT sample preparation kit (Illumina, 

San Diego, CA, USA) according to the manufacturer’s instructions. The DNA normalization step was 

skipped; instead, the final dsDNA libraries were quantified with the Qubit® 2.0 Fluorometer and pooled 

in equimolar concentrations. The library pool was validated with 2200 TapeStation (Agilent 

Technologies, Santa Clara, CA, USA) measurements, and qPCR was performed with the Kapa Library 

Quantification Kit (Kapa Biosystems, Woburn, MA, USA) to optimize cluster generation. A total of 96 

bacterial genomic libraries were sequenced with 2 x 101 bp paired-end reads on the HiSeq2500 rapid 

run flowcell (Illumina, San Diego, CA, USA). Demultiplexing was performed with CASAVA 1.8.2. 

(Illumina, San Diego, CA, USA) allowing 1 mismatch in the index reads. Genomes were assembled 

with the de novo assembly program Velvet [20].Prior to assembling, the reads were trimmed and 

filtered for quality (fastq_quality_trimmer –Q33 –t 30 –l 40, fastq_quality_filter –Q33 –q 25 –p 90) 

(http://hannolab.cshl.edu/fastx_toolkit/index.html). The cyclic assembly process was applied for each 

genome where different Velvet parameter values (-exp_cov, -cov_cutoff (3, 5, 10, 15), -min_pair_count 

(1-5), -ins_length (100-350)) were tested until all MLST genes were found or the best set of MLST 

genes was retrieved. 

Multi-locus sequence typing of E. coli samples. For accurate E. coli strain MLST type identification, 

we used the assembled E. coli genomes (described above) and a MLST tool published by Larsen and 

others [21] that calculates the MLST profile based on a BLAST alignment of the input sequence file 

and the specified allele set. Public E. coli database “#1” version 2014_01 for molecular typing was 

downloaded from PubMLST (http://www.pubmlst.org/). 

Building the guide tree. We used k-mer-based alignment-free methods analogous to [11, 12] to 

calculate the pairwise distance K between all pairs of genomes and to create the guide tree. All 2,758 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 19, 2016. ; https://doi.org/10.1101/040261doi: bioRxiv preprint 

http://hannolab.cshl.edu/fastx_toolkit/index.html
http://www.pubmlst.org/
https://doi.org/10.1101/040261
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

available bacterial genomes from the NCBI RefSeq database (release 65) were used. For every two 

bacteria, the expected amount of shared k-mers (Eshared) was calculated and the observed amount 

(Oshared) was counted using the GenomeTester4 software [17]. The expected value was calculated by 

assuming their genome sequences were random strings. Additionally, we calculated the median M 

from all Eshared/Oshared (E/O) ratios for all pairs. E/O < 1 indicates that the given bacteria have more 

common k-mers than expected from two random sequences of given lengths, suggesting they are 

most likely evolutionally related. We expect the numerical value to be proportional to the similarity of 

given strains, and thus it functions as the basis for pairwise distance in tree-building. To make E/O 

more linear for a wider range of phylogeny levels, we used the following formula to calculate the 

pairwise distance K: K = 2(E/O)/M. For each genome pair, three different K values were calculated with 

different k-mer lengths (16, 20 and 24); the arithmetic average of these lengths was used as the final 

value in the pairwise distance matrix. We constructed the guide tree with MEGA6 [16] using the 

derived distance matrix and UPGMA method. 

StrainSeeker identification algorithm and calculation of the relative genome frequencies. First, 

the algorithm converts sequencing reads to a k-mer list and maps the k-mers to the guide tree (Figure 

4). The identification process starts at the root node and recursively moves down towards the leaves. 

For each step, the percentage of observed k-mers O is calculated for the current node N1: O = 

N1obs/N1tot*100%. N1obs indicates N1-specific k-mers found in the sample and N1tot indicates the total 

amount of k-mers at N1. If O is below a cutoff level (5%), the search will not continue below N1. 

Otherwise, an observed/expected ratio O/E is calculated for N1 with children C1 and C2 as follows: 

O/E = (N1obs/N1tot)/(C1obs/C1tot + C2obs/C2tot - C1obs/C1tot*C2obs/C2tot). C1obs and C2obs indicate the 

number of child-specific k-mers found in the sample and C1tot and C2tot indicate the total amount of 

child-specific k-mers. O/E shows whether less (O/E < 1, indicates mainly sequencing errors), more 

(O/E > 1, indicates that a new strain branches from the current node) or approximately the same 

amount (O/E = 1, indicates that at least one of the sub-nodes are present in the sample) of k-mers 

were found as expected if C1 and/or C2 were present in the sample. We used an asymptotic test with 

a significance level of 0.5*10-3 to test the hypothesis that O/E = 1 (additional data file 1). If we cannot 

reject the hypothesis, the search will continue until the strain level is reached with O and O/E 

calculated and checked at each step. If we reject the hypothesis, the search on the current branch will 

either stop (O/E < 1) or all strains under the current node will be reported in the output (O/E > 1). To 
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calculate the relative genome frequencies, we assumed that the number of times a k-mer is seen 

follows Poisson distribution. To reduce the influence of possible errors (either due to sequencing 

errors or a k-mer not being unique), we ordered the k-mer list by frequency and removed both the top 

10% and lowest 10% of the list. We calculated the mean coverage from the remaining k-mers. Based 

on the mean of truncated observations, the mean of non-truncated Poisson distribution is estimated 

using the maximum-likelihood estimation. 

Creation of artificial test samples. 18 E. coli samples were created by pooling together Illumina 

sequencing reads from each of the minor strains (E. coli ST73, ST131 and ST156 strain isolated from 

clinical samples as described above) and the major strain E. coli ST10 (E. coli K12 substrain MG1655; 

SRA database, run SRR892241). Each sample contained one million 100 bp reads. The major strain 

was used to add background noise in order to make the identification more difficult. The proportions of 

minor strains in the samples were 0.5%, 1%, 2%, 5%, 10% and 25% (Table 1). 

To create the artificial metagenomic sample, we took a mock community metagenome sample from 

SRA database (SRR172902) and added raw human sequencing reads (SRA database, ERR1055492) 

to obtain a 1:10 ratio of bacterial DNA to human DNA. Human sequencing reads were trimmed to the 

same 75 bp length as the bacterial reads. Sample size was 4.92 Gbp. 

 

Software and data availability. StrainSeeker is written in PERL and is available for download or 

online use at [20] along with the sequencing reads of the three E. coli isolates used in the 

experiments. 

 

Additional data files. The following additional data are available with the online version of this paper. 

Additional data file 1 is a thorough description of the statistical test that is part of the StrainSeeker 

identification algorithm. Additional data file 2 contains StrainSeeker identification results of an artificial 

metagenomic sample (SRA database; SRR172902 mixed with ERR1055492).  

 

List of abbreviations. bp: base pair; NCBI: National Center for Biotechnology Information; MLST: 

multi-locus sequence typing; SRA: Sequence Read Archive; WGS: whole-genome sequencing; 

UPGMA: unweighted pair group method with arithmetic mean. 
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