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Abstract: Dimension reduction methods are commonly applied to high-
throughput biological datasets. However, the results can be hindered by con-
founding factors, either biologically or technically originated. In this study,
we extend Principal Component Analysis to propose AC-PCA for simultane-
ous dimension reduction and adjustment for confounding variation. We show
that AC-PCA can adjust for a) variations across individual donors present in
a human brain exon array dataset, and b) variations of different species in a
model organism ENCODE RNA-Seq dataset. Our approach is able to recover
the anatomical structure of neocortical regions, and to capture the shared varia-
tion among species during embryonic development. For gene selection purposes,
we extend AC-PCA with sparsity constraints, and propose and implement an
efficient algorithm. The methods developed in this paper can also be applied to
more general settings.

1 Introduction

Dimension reduction methods, such as Multidimensional Scaling (MDS) and
Principal Component Analysis (PCA), are commonly applied in high-throughput
biological datasets to visualize data in a low dimensional space, identify domi-
nant patterns and extract relevant features [29, 27, 8, 15, 23, 4]. MDS aims to
place each sample in a lower-dimensional space such that the between-sample
distances are preserved as much as possible [16]. PCA seeks the linear combina-
tions of the original variables such that the derived variables capture maximal
variance [12]. One advantage of PCA is that the principal components (PCs)
are more interpretable by checking the loadings of the variables.

Confounding factors, technically or biologically originated, are commonly
observed in high throughput biological experiments. Various methods have
been proposed to remove the unwanted variation through regression models on
known confounding factors [10], factor models and surrogate vector analysis
for unobserved confounding factors [19, 6, 18, 31, 24, 28]. However, directly
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removing the confounding variation using these methods may introduce bias,
as a result of incorrect model assumption, and it can also remove the desired
biological variation. Moreover, limited work has been done in the context of
dimension reduction.

To address the limitations of existing methods, we have developed AC-PCA
for simultaneous dimension reduction and adjustment for confounding varia-
tion. We demonstrate the performance of AC-PCA through its application to a
human brain development exon array dataset [15], a model organism ENCODE
(modENCODE) RNA-Seq dataset [3, 7], and simulated data. In the human
brain dataset, we found that visualization of the neocortical regions is affected
by confounding factors, likely originating from the variations across individual
donors (Fig.1A). As a result, a) there is no clear pattern observed among the
neocortical regions and samples from the same individual donors tend to form
clusters, and b) it is challenging to identify neurodevelopmental genes with inter-
regional variation. In contrast, applying AC-PCA to the human brain dataset,
we are able to recover the anatomical structure of neocortical regions and re-
veal temporal dynamics that existing methods are unable to capture. In the
modENCODE RNA-Seq dataset, the variation across different species makes
the identification of conserved developmental mechanisms challenging (Fig.3C).
Our proposed method is able to capture the shared variation among species and
identify genes with consistent temporal patterns in D. melanogaster (fly) and
C. elegans (worm) embryonic development. We also extended AC-PCA with
sparsity constraints for variable selection and better interpretation of the PCs.

2 Results

2.1 Application to the human brain exon array data

The human brain exon array dataset [15] includes the transcriptomes of 16 brain
regions comprising 11 areas of the neocortex, the cerebellar cortex, mediodor-
sal nucleus of the thalamus, striatum, amygdala and hippocampus. Because
the time period system defined in [15] had varying numbers of donors across
developmental epochs, beginning from period 3, we grouped samples from ev-
ery 6 donors, sorted by age. While the last time window had only 5 donors,
this reorganization more evenly distributed sample sizes and allowed improved
comparisons across time (Table S1).

In the analysis, we used samples from 10 regions in the neocortex. V1C
was excluded from the analysis as the distinct nature of this area relative to
other neocortical regions tended to compress the other 10 regions into a single
cluster. We conducted PCA for windows 1 and 2, as shown in Fig.1A. At first
glance, neither analysis produced any clear patterns among neocortical regions.
However, closer observation of these plots suggested some underlying structure:
we performed PCA on just the right hemisphere of donor HSB113 and found that
the gross morphological structure of the hemisphere was largely recapitulated
(Fig.1B). The gross structure tends to be consistent between hemispheres and
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across donors within time windows when PCA is performed simultaneously, but
the pattern is largely distorted, likely due to the small sample size and noisy
background (Fig.S1).

In contrast, when we applied AC-PCA to see the effectiveness of our ap-
proach in adjusting confounding effects from individual donors, we were able to
recover the anatomical structure of neocortex (Fig.1C and 1D). Next, we ex-
plored the temporal dynamics of the PCs (Fig.1E). The pattern is similar from
windows 1 to 5, with PC1 representing the frontal to temporal gradient, which
follows the contour of developing cortex [23], and PC2 representing the dorsal
to ventral gradient. Starting from window 6, these two components reversed
order. We also calculated the interregional variation explained by the PCs
(Fig.S2). The interregional variation explained by the first two PCs decreases
close to birth (window 4) and then increases in later time windows, similar to
the “hourglass” pattern previously reported based on cross-species comparison
and differential expression [25, 21].

We compared AC-PCA with ComBat [10] and SVA [19, 24], where PCA was
implemented after removing the confounder effects. In windows 1 to 3, AC-PCA
performs slightly better; In windows 4 to 9, AC-PCA outperforms ComBat and
SVA (Fig.S3 and Fig.S4). The results for window 5 are shown in Fig.1F.

We then implemented AC-PCA with sparsity constrains to select genes asso-
ciated with the PCs. The number of genes with non-zero loadings are shown in
Fig.2A, along with the interregional variation explained in the regular PCs. In-
terestingly, the trends tend to be consistent: when the regular PC explains more
variation, more genes are selected in the corresponding sparse PC. To produce
more stringent and comparable gene lists, we chose the sparsity parameter such
that 200 genes are selected in each window. The overlap of gene lists across win-
dows is moderate (Fig.S5) and, as expected, the overlap with the first window
decreases over time. The overlap between adjacent windows tends to be larger
in later time windows, indicating that interregional differences become stable.
In windows 1 and 3, genes with the largest loadings demonstrate interesting
spatial patterns (Fig.2B). For PC1, the top genes follow the frontal to temporal
gradient; while for PC2, they tend to follow the dorsal to ventral gradient. A
brief overview of the functions of these genes is shown in Table S2.

Finally, we demonstrate the functional conservation of the 200 genes selected
in PC1 and PC2. These genes tend to have low dN/dS scores for human vs.
macaque comparison, even lower than the complete list of all essential genes
(Fig.2C). In the human vs. mouse comparison, we observed a similar trend
(Fig.S6). Parallel to the cross-species conservation, we also observed that these
genes tend to have low heterozygosity scores, a measure of functional conserva-
tion in human (Fig.2D).

2.2 Application to the modENCODE RNA-Seq data

The modENCODE project generates the transcriptional landscapes for model
organisms during development[3, 7]. In the analysis, we used the time-course
RNA-Seq data for fly and worm embryonic development.
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We first conducted PCA on fly and worm separately, as shown in Fig.3A.
Although the temporal patterns share some similarity, the projections for fly and
worm are different. The genes with top loadings in fly have different temporal
dynamics in worm, especially for PC2 (Fig.3B).

We also conducted PCA on fly and worm jointly, which reveals the variations
of different species (Fig.3C). We demonstrate the performance of AC-PCA in
capturing the shared variation among fly and worm (Fig.3C). The selected genes
tend to have consistent and smooth temporal patterns in both species (Fig.3D).
PCA on fly and worm jointly cannot capture the direction of PC2 in AC-PCA,
which the gene expression levels peak in middle embryonic stage.

2.3 Simulations

We tested the performance of AC-PCA on simulated datasets with various set-
tings. The number of variables p = 400. More details on the simulation are
provided in the Materials and Methods Section. We first considered simulations
with individual variation:

Setting 1: individual variation is represented by a global trend for all the
variables.

Setting 2: for some variables, the variation is shared among individuals, and
it is not shared for the other variables.

We also considered other confounding structure:
Setting 3: the data is confounded with two experimental “batches”, each

contributing globally to the data.
Setting 4: the data is confounded with a continuous confounding factor (e.g.

age), contributing globally to the data.
The results are presented in Fig.4. In all simulations, AC-PCA is able to

recover the true pattern.
Finally, we tested AC-PCA for variable selection when the true loading is

sparse:
Setting 5: similar to setting 2, except that the true loading is set to be sparse,
and for simplicity, we assumed that the latent factor is of rank 1.

Results for simulation setting 5 are shown in Table 1, where α indicates the
magnitude of confounding variation, and σ indicates the noise level. Larger
noise leads to lower sensitivity, larger standard error for the estimated non-
zeroes, but does not affect the mean much. Smaller confounding variation leads
to overestimate of the non-zeroes, but does not affect the sensitivity much.

3 Discussion

Dimension reduction methods are commonly applied to visualize high-dimensional
data in a lower dimensional space and to identify dominant patterns in the data.
Confounding variation may affect the performance of these methods, and hence
the visualization and interpretation of the results (Fig. 1A and 3C).
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Table 1: Sparsity estimation and sensitivity
Estimated non-zeros Sensitivity‡
σ = 0.2 σ = 0.5 σ = 0.2 σ = 0.5

α = 1.5 113.7(34.2) 120.6(42.5) 0.85(0.06) 0.80(0.07)
100∗ α = 2.0 88.7(20.9)) 91.6(31.1) 0.83(0.08) 0.79(0.08)

α = 2.5 81.4(20.5) 79.4(24.4) 0.83(0.08) 0.80(0.05)

α = 2.0 37.4(14.7) 38.9(15.6) 0.74(0.11) 0.62(0.10)
40∗ α = 2.0† 46.7(16.5) 54.6(19.0) 0.77(0.10) 0.69(0.11)

∗ The true number of non-zeros; † The true variation was scaled
with 2.5 to let its magnitude match with that in the less sparse
setting; ‡ To calculate sensitivity, the sparsity parameter c2 was
chosen such that the estimated non-zero entries equals the true
number.

In this study, we have proposed AC-PCA for simultaneous dimension reduc-
tion and adjustment for confounding variation. One feature of AC-PCA is its
simplicity. Instead of specifying analytical forms for the confounding variation,
we extended the objective function of regular PCA with penalty on the depen-
dence between the PCs and the confounding factors. AC-PCA is designed to
capture the desired biological variation, even when the confounding factors are
unobserved, as long as the labels for the primary variable of interest are known.

The application of AC-PCA is not limited to transcriptome datasets. Dimen-
sion reduction methods have been applied to other types of genomics data for
various purposes, such as feature extraction for methylation prediction [5], clas-
sifying yeast mutants using metabolic footprinting [1], classifying immune cells
using DNA methylome [17], and others. AC-PCA is applicable to these datasets
to capture the desired variation, adjust for potential confounders, and select the
relevant features. AC-PCA can serve as an exploratory tool and be combined
with other methods. For example, the extracted features can be implemented
in regression models. The R package and Matlab source code with user’s guide
and application examples is available on https://github.com/linzx06/AC-PCA.

4 Methods

4.1 AC-PCA adjusting for variations of individual donors

Let Xi represent the b × p matrix for the gene expression levels of individual
i, where b is the number of brain regions and p is the number of genes. By
stacking the rows of X1, · · · , Xn, X represents the (n × b) × p matrix for the
gene expression levels of n individuals. We propose the following objective
function to adjust for individual variation:

maximize
v∈Rp

vTXTXv − 2

n− 1
λ

n−1∑
i=1

n∑
j=i+1

vT (Xj −Xi)
T (Xj −Xi)v

subject to ||v||22 ≤ 1.

(1)

In (1), the term vTXTXv is the objective function for standard PCA, and

the regularization term −
∑n−1

i=1

∑n
j=i+1 v

T (Xj − Xi)
T (Xj − Xi)v encourages
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the coordinates of the brain regions across individuals to be similar. The factor
2

n−1 makes the regularization term in formulation (1) scale linearly with the
number of individuals. The tuning parameter λ > 0 controls the strength of
regularization. When λ = +∞, we are forcing the coordinates of the same brain
region across individuals to be the same after projection. Only the labels for
brain regions (i.e. labels for the primary variables) are required when imple-
menting formulation (1). We can apply it even if the individual labels of donors
(i.e. the confounding variables) are unknown. The connection of formulation
(1) with Canonical Correlation Analysis (CCA) is shown in SI Materials and
Methods.

4.2 AC-PCA capturing shared variations among species

For the fly data, samples were taken in 12 time windows during embryonic
development: 0-2, 2-4, · · · , 22-24 hours; For the worm data, samples were taken
every 30 minutes during embryonic development: 0, 1

2 , · · · , 4, 5, · · · , 12 hours,
where the sample from 41

2 hours is missing, resulting in 24 samples. Let Xf

and Xw represent the data matrices for fly and worm, correspondingly. Let
X represent the data matrix for both species, by stacking the rows in Xf and
Xw. We propose the following objective function to adjust for the variation of
species:

maximize
v∈Rp

vTXTXv − λ
12∑
t=1

vT (Xf
t − f(Xw, t))T (Xf

t − f(Xw, t))v

subject to ||v||22 ≤ 1,

(2)

where

f(Xw, t) =

{
1
2 (Xw

2t−1 +Xw
2t+1), if t = 5

1
3 (Xw

2t−1 +Xw
2t +Xw

2t+1), otherwise

Without prior knowledge on the alignment of fly and worm developmental
stages, it is reasonable to shrink the projection of Xf

t towards the mean of
Xw

2t−1, Xw
2t and Xw

2t+1 after projection. [20] aligned fly and worm development
based on stage-associated genes using the same dataset. We did not implement
AC-PCA with their alignment results, to keep the analysis unsupervised.

4.3 AC-PCA in a general form

Let X be the N × p data matrix and Y be the N × l matrix for l confounding
factors. Denote yi the ith row in Y . We propose the following objective function
to adjust for more general confounding variation:

maximize
v∈Rp

vTXTXv − λvTXTKXv

subject to ||v||22 ≤ 1,
(3)
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where K is the N ×N kernel matrix, and Kij = k(yi, yj). It can be shown
that vTXTKXv is the same as the empirical Hilbert-Schmidt independence
criterion[9, 2] for Xv and Y , where linear kernel is applied on Xv (SI Materials
and Methods). In the objective function, we are penalizing the dependence
between projected data Xv and the confounding factors Y . Formulations (1)
and (2) are special cases of (3). In formulation (1), linear kernel (i.e. Y Y T ) is
applied on Y , and Y has the following structure: in each column of Y , there
are only two non-zero entries,

√
2/(n− 1) and −

√
2/(n− 1)), corresponding to

a pair of samples from the same brain region but different individuals. Denote
Z = XTX − λXTKX. Problem (3) can be rewritten as:

maximize
v∈Rp

vTZv subject to ||v||22 ≤ 1. (4)

Therefore it can be solved directly by implementing eigendecomposition on
Z.

4.4 AC-PCA with sparse loading

In PCA, the loadings for the variables are typically nonzero. In high dimen-
sional settings, sparsity constraints have been proposed in PCA for better in-
terpretation of the PCs [13, 33, 30, 26] and better statistical properties, such as
asymptotic consistency [11, 14, 22].
Denote H = XTKX. It can be shown that solving (3) is equivalent to solving:

maximize
v∈Rp

vTXTXv subject to vTHv ≤ c1, ||v||22 ≤ 1, (5)

where c1 is a constant depending on λ. A sparse solution for v can be achieved
by adding `1 constraint:

maximize
v∈Rp

vTXTXv subject to vTHv ≤ c1, ||v||1 ≤ c2, ||v||22 ≤ 1. (6)

Following [30], this is equivalent to:

minimize
u,v∈Rp

− uTXv subject to vTHv ≤ c1, ||v||1 ≤ c2, ||v||22 ≤ 1,

||u||22 ≤ 1.
(7)

Problem (7) is biconvex in u and v, and it can be solved by iteratively updating

u and v. At the kth iteration, the update for u is simply
Xv(k−1)

||Xv(k−1))||22
. To update

v, we need to solve:

minimize
v∈Rp

− uT(k)Xv subject to vTHv ≤ c1, ||v||1 ≤ c2, ||v||22 ≤ 1. (8)

Because of the quadratic constraint on v, it is hard to solve (8) directly. We
propose to use the bisection method to solve the following feasibility problem
iteratively:
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find v subject to − uTkXv ≤ t, vTHv ≤ c1, ||v||1 ≤ c2, ||v||22 ≤ 1, (9)

where t is an upper-bound for −uTkXv and is updated in each iteration. Prob-
lem (9) can be solved by alternating projection. Details for the algorithm are
included in the SI Materials and Methods.

4.5 Multiple principal components

In (3), obtaining multiple principal components is straightforward, as they are
just the eigenvectors of Z; for the sparse solution, (7) can only obtain the first
sparse principal component. To obtain the other sparse principal components,
we can update X sequentially with X(i+1) = X(i)(I − v̂iv̂Ti ) for i = 1, · · · , and
implement (7) on X(i+1), where X(1) = X and v̂i is the ith principal component.

4.6 Tuning λ

Let X denote the N × p data matrix. l = vTXTKXv can be treated as a loss
function to be minimized. We do 10-fold cross-validation to tune λ:

1. From X, we construct 10 data matrices X1, · · · , X10, each of which is
missing a non-overlapping one-tenth of the rows in X

2. For each Xi, i = 1, · · · , 10, implement (3) and obtain vi

3. Calculate lcv. In Xv, we use vi and the missing rows that are left out in
Xi, for i = 1, · · · , 10

4. When λ increases from 0, lcv usually decreases sharply and then either
increases or becomes flat. In practice, we choose λ to be the “elbow”
point of lcv.

In simulations and real data analysis, the overall patterns recovered by AC-PCA
are robust to the choice of λ. In the human brain dataset, every region tends
to form a smaller cluster, variation of the principal components shrinks, but
the overall pattern remains similar, when λ is larger than the best tuning value
(Fig.S7). For the comparison of interregional variations over the time windows,
we fixed λ to the same value.

4.7 Tuning c1 and c2

Because c1 and c2 capture different aspects of the data, we propose a two-step
approach: first tune c1, and then tune c2 with c1 fixed. This also greatly reduces
the computational cost since tuning c2 can be slow. To tune c1:

1. We follow the previous procedure to tune λ

2. The best λ is used to calculate v, as in (3)
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3. Let c1 = vTXTKXv

To tune c2, we follow Algorithm 5 in [30], which is based on matrix comple-
tion:

1. From X, we construct 10 data matrices X1, · · · , X10, each of which is
missing a non-overlapping one-tenth of the elements of X

2. For X1, · · · , X10, fit (7) and obtain X̂i = duvT , the resulting estimate of
Xi and d = uTXiv

3. Calculate the mean squared errors of X̂i, for i = 1, · · · , 10, using only the
missing entries

4. Choose c2 that minimizes the sum of mean squared errors

4.8 Simulations

Setting 1: we considered n = 5, b = 10 and p = 400. For the ith individual,
the b × p matrix Xi = Wh + αBsi + εi. Wh represents the shared variation
across individuals. αBsi corresponds to individual variation and εi is noise.
W = (w1 w2) is a b× 2 matrix, representing the latent structure of the shared
variation. For visualization purpose, we assumed that it is smooth and has rank
2. Let µ = (1, · · · , b)′ and w1 is the normalized µ, with mean 0 and variance 1.

w2 ∼ N (0, 0.25 ·Σ), where Σij = exp(− (wi1−wj1)2
4 ). h is a 2× p matrix and the

rows in h are generated from N (0, Ip), where Ip is the p × p identity matrix.
B is a b × 1 matrix with all 1s. si is generated from N (0, Ip). α is a scalar
indicating the strength of confounding variation, we set α = 2.5. The rows in
εi are generated from N (0, 0.25 · Ip).
Setting 2: we considered n = 5, b = 10 and p = 400. For the ith individual,

let Xi =

(
X1i

X2i

)
, where X1i represents the data matrix for the first 200

variables and X2i represents that of the other 200 variables. X1i = Wh + ε1i
and X2i = αWihi + ε2i. W , h, hi, ε1i and ε2i are generated similarly as that in
setting 1. α = 2.5. The first column in Wi is generated from N (0, Ib), and the
second column is generated from N (0, 0.25 · Ib), where Ib is the b × b identity
matrix.
Settings 1 and 2 represent data with individual variation and we implemented
formulation 1.
Setting 3: N = 10 and p = 400. The N × p matrix X = Wh + αBs + ε. W
and h are the same as that in setting 1. We set α = 2.5. B = (b1 b2) is a
N × 2 matrix: the entries in b1 have 0.3 probability of being 0, otherwise the
entries are set to 1; b2 equals 1 − b1. s is a 2 × p matrix, where the rows are
generated from N (0, Ip). ε is an N × p matrix, where the rows are generated
from N (0, 0.25 · Ip).
Setting 4: N = 10 and p = 400. The N × p matrix X = Wh + αw̃1s + ε. W ,
h are the same as that in setting 1. We set α = 2.5. w̃1 is a permutation of
w1, representing a continuous confounder. s is generated from N (0, Ip). ε is an
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N × p matrix, where the rows are generated from N (0, 0.25 · Ip).
When implementing formulation (3), Y were set to B and w̃1 in settings 3 and
4, correspondingly.

Setting 5: for the ith individual, let Xi =

(
X1i

X2i

)
, where X1i represents the

data matrix for the first 200 variables and X2i represents that of the other 200
variables. X1i = wh + ε1i and X2i = αWihi + ε2i. w is the same as w1 in
setting 1. Some entries in h are set to 0 to reflect sparsity, the other entries are
generated from N (0, I). Wi and hi are the same as that in setting 2. The rows
in ε1i and ε2i are generated from N (0, σ2 · I), where σ is a scalar indicating the
noise level.

4.9 Data preprocessing

The human brain exon array dataset was downloaded from the Gene Expres-
sion Omnibus (GEO) database under the accession number GSE25219. The
dataset was generated from 1,340 tissue samples collected from 57 developing
and adult post-mortem brain[15]. Details for the quality control (QC) of the
dataset were described as in [15]. After the QC procedures, noise reduction was
accomplished by removing genes that were not expressed [21], leaving 13,720
genes in the dataset. We next selected the top 5,000 genes sorted by coeffi-
cient of variation. The modENCODE RNA-Seq dataset was downloaded from
https://www.encodeproject.org/comparative/transcriptome/. We used samples
from the embryonic stage of worm and fly. The coding genes with orthologs in
both worm and fly were used. For the orthologs in fly that map to multiple
orthologs in worm, we took median to get a one to one match, resulting in 4831
ortholog paris. To gain robustness, we used the rank across samples within the
same species. The rank matrix was then scaled to have unit variance.

4.10 ComBat and SVA

ComBat and SVA were implemented with the sva package from Bioconductor.
For ComBat, the input for batch covariate was the individual label, and the
input for model matrix was the brain region label. For SVA, the input for
model matrix was the brain region label; Functions sva and fsva were used to
remove the confounding variation.
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Figure 1: AC-PCA recovers the anatomical structure of neocortex. (A) PCA for
time windows 1 and 2. Each color represents a donor. Samples from the right
hemisphere are labeled as italic. (B) PCA for the right hemisphere of donor
HSB113. (C ) Representative fetal human brain, lateral surface of hemisphere
[15]. MFC is not visible on the lateral surface. (D) AC-PCA for time windows 1
and 2. (E ) Temporal dynamics of the principal components. Median was taken
across individuals for each brain region. (F ) Comparison between AC-PCA,
ComBat[10] and SVA [19, 24], time window 5.
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Figure 2: Gene selection by AC-PCA with sparse loadings. (A) Number of
genes selected in the sparse PCs and the interregional variation explained by the
regular PCs. Interregional variation is calculated to be the sum over the variance
across regions among the individuals. (B) Expression levels for the genes with
top loadings in windows 1 and 3. The top 3 genes are shown and each point
represents the median over the individuals. (C ) and (D) Conservation (dN/dS)
and heterozygosity scores for the genes in PC1 and PC2. “All” represents the
total 17, 568 genes in the exon array experiment. “All-5000” represents the
5, 000 genes used in the analysis. “Essential” represents a list of 337 genes
that are functionally conserved and essential, obtained from the Database of
Essential Genes (DEG) version 5.0 [32]. “Window” is abbreviated as “W”.
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Figure 3: AC-PCA captures shared variation in fly and worm modENCODE
RNA-Seq data, embryonic stage. (A) PCA on fly and worm separately. Each
data point represents a time window (fly) or a time point (worm), in the unit
of hours. (B) Expression levels of the top 3 genes in fly PCA. (C ) PCA and
AC-PCA on fly and worm jointly. (D) Expression levels of the top 3 genes in
AC-PCA.
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Figure 4: Visualization of simulated data with confounding variation.
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Conservation and heterozygosity scores

The dN/dS score for cross-species conservation was calculated using Ensembl
BioMart [11]. The heterozygosity score was calculated using 1,000 Genomes
phase 1 version 3 [9]. Let f1, · · · fp denote the allele frequencies for the p non-
synonymous coding SNPs in a gene, and let l denote the maximum transcript
length over all isoforms of that gene. The heterozygosity score was calculated
as: 2

∑p
i=1 fi(1 − fi)/l. For a gene with low heterozygosity score, the non-

synonymous variants in that gene tend to be rare, which indicates the functional
importance of that gene.

Connection with Canonical Correlation Analysis (CCA)

Without loss of generality, let n = 2, then the objective function becomes:

vTXTXv − 2λvT (X2 −X1)T (X2 −X1)v

=(1− 2λ)vTXTXv + 4λvTXT
2 X1v

In Canonical Correlation Analysis (CCA), there are two datasets X and Y ,
and the goal is to maximize the correlation between X and Y after projections.
The objective function in CCA is aTXTY b, where a and b are two column
vectors. Note that aTXTY b and vTXT

2 X1v have similar forms: in vTXT
2 X1v,

the projection vectors a and b are the same as v. If we treat the data from the
two individuals as separate datasets, the objective function mimics a balance
between regular PCA and CCA. When λ > 0.5, the weight on PCA is negative.

Hilbert-Schmidt independence criterion

The linear kernel of Xv is L = XvvTXT . Let K be the kernel of Y . Let H =
I −N−1eeT , where e is a column vector with all 1s. Then HTX = HX = X,
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as X is centered. The empirical Hilbert-Schmidt independence criterion for Xv
and Y is:

Tr(HLHK) = Tr(HXvvTXTHK)

= Tr(vTXTHKHXv)

= Tr(vTXTKXv)

= vTXTKXv

Details for the bisection method

The bisection method solves the following feasibility problem iteratively:

find v

subject to −uTkXv ≤ t, vTHv ≤ c1,
||v||1 ≤ c2, ‖v‖22 ≤ 1,

(S1)

where t is an upper-bound for −uTkXv and is updated in each iteration.
Algorithm 1: Bisection method for updating v

1. Initialize tup = 0 and tlow = −||XTuk||2

2. Iterate until convergence:

(a) t∗ = (tup + tlow)/2

(b) tup ← t∗ if (S1) is feasible for t∗

(c) tlow ← t∗ if (S1) is not feasible for t∗

3. Let t = tup and find v by solving (S1)

The feasibility problem (S1) can be solved by alternating projection on the
convex sets:
Projection onto hyperplane

Finding the projection of v0 onto the hyperplane:

minimize
v

‖v − v0‖22 subject to −uTkXv ≤ t

The solution is:

v = v0 −
uTkXv0 + t

‖XTuk‖22
XTuk

Projection onto `2 ball

First do decomposition K = ∆∆T , and let M = ∆TX. We have MTM =
XT ∆∆TX = XTKX. We need to solve the following optimization problem:

minimize
v

‖v − v0‖22 subject to ‖Mv‖22 ≤ c1

It is equivalent to the following Lagrangian problem:

L(λ, v) = ‖v − v0‖22 + λ(‖Mv‖22 − c1), where λ ≥ 0.

2
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For any fixed λ, L(λ, v) is a convex differentiable function of v. By taking
derivative, it can be shown that v∗ ≡ v∗(λ) = (Ip +λMTM)−1v0 minimizes the
Lagrangian. Then we have

g(λ) ≡ inf
v
L(λ, v) = L(λ, v∗)

By singular value decomposition, M = UΣV T , where UTU = UUT = IN and
V TV = V V T = Ip. Then we have

v∗ = (Ip + λV ΣT ΣV T )−1v0 = V (Ip + λΣT Σ)−1V T v0 (S2)

and

g(λ) = ‖V (Ip − (Ip + λΣT Σ)−1)V T v0‖22
+ λ‖UΣ(Ip + λΣT Σ)−1V T v0‖22 − λc1

= ‖(Ip − (Ip + λΣT Σ)−1)V T v0‖22
+ λ‖Σ(Ip + λΣT Σ)−1V T v0‖22 − λc1

=

d∑
i=1

(
λσ2

i

1 + λσ2
i

)2(V T v0)2i + λ

d∑
i=1

(
σi

1 + λσ2
i

)2(V T v0)2i − λc1

=
d∑

i=1

λσ2
i

1 + λσ2
i

(V T v0)2i − λc1,

where d(<= N) is the number of non-zero singular values of M , σi is the ith
non-zero singular value, and (·)i represents the ith element of a vector. When
λ ≥ 0, g(λ) is concave and the optimal value λ∗ can be found by Newton-
Raphson’s Method. With λ = λ∗, the projection v can be calculated with (S2),
where the inversion part is a diagonal matrix. It can be shown that only the
first d columns of V affect the projection and typically we have d� p.
Projection onto `1 ball

minimize
v

‖v − v0‖22 subject to ‖v‖1 ≤ c2

This can be solved efficiently by the algorithm presented in [12].
Projection onto `2 ball-2

minimize
v

‖v − v0‖22 subject to ‖v‖22 ≤ 1

The solution is:
v =

v0
‖v0‖2
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Figure 1: PCA for all the individuals in window 1. “R” represents the right
hemisphere, and “L” represents the left hemisphere.
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Figure 2: Temporal dynamics of the interregional variation. For each individual,
the variance across regions was first calculated; Interregional variation equals
the sum of variance over individuals. (A) Interregional variation explained by
the first two PCs in AC-PCA. (B) Proportion of variation explained by the first
two PCs in AC-PCA.
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Figure 3: Comparison of AC-PCA, ComBat and SVA, windows 1 to 5. For Com-
Bat [18] and SVA [20, 22], PCA was implemented after removing the confounder
effects.
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Figure 4: Comparison of AC-PCA, ComBat and SVA, windows 6 to 9. For Com-
Bat [18] and SVA [20, 22], PCA was implemented after removing the confounder
effects.
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Table 1: Span of the windows in this study.
Window Age

1 12PCW≤Age<16PCW
2 16PCW≤Age<21PCW
3 21PCW≤Age<35PCW
4 35PCW≤Age<10M
5 10M≤Age<8Y
6 8Y≤Age<19Y
7 19Y≤Age<30Y
8 30Y ≤Age<42Y
9 42Y≤Age

M: postnatal months
PCW: post-conception weeks
Y: postnatal years.

Table 2: Top genes in the PCs and their functions.

Window 1, PC1
NECAB1 calcium ion binding [26, 14]
SEMA3E semaphorin, control vascular morphogenesis,

serve as axon guidance ligands [15, 25, 8]
PCDH17 calcium ion binding, establishment and function

of specific cell-cell connections in the brain [31, 16]
Window 1, PC2

NTS dopamine signaling [19]
SLIT2 axonal guidance, midline guidance in the forebrain [5, 4, 23]

ADAMTS3 extracellular matrix proteases,
cleaves the propeptides of type II collagen [28, 13]

Window 3, PC1
POPDC3 important in heart development [6, 3]
GREM1 BMP Antagonist, may play a role in regulating organogenesis,

body patterning, and tissue differentiation [17]
CPNE8 calcium-dependent phospholipid binding [29, 10]

Window 3, PC2
GRP gastrin-releasing peptide, regulates the

gastrointestinal and central nervous systems [21, 7, 27]
MCHR2 receptor for Melanin-concentrating hormone (MCH),

important in feeding behaviors and energy metabolism [2, 30]
IGFBP5 insulin-like growth factor(IGF) binding protein,

essential for growth and development [1, 24]
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