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Abstract 

 

For many traits and common human diseases, causal loci uncovered by 

genetic association studies account for little of the known heritable 

variation. Such ‘missing heritability’ may be due to the effect of non-

additive interactions between multiple loci, but this has been little 

explored and difficult to test using existing parametric approaches. We 

propose a Bayesian non-parametric Gaussian Process Regression model, 

for identifying associated loci in the presence of interactions of arbitrary 

order. We analysed 46 quantitative yeast phenotypes and found that over 

70% of the total known missing heritability could be explained using 

common genetic variants, many without significant marginal effects. 

Additional analysis of an immunological rat phenotype identified a three 

SNP interaction model providing a significantly better fit  (p-value 9.0e-11) 

than the null model incorporating only the single marginally significant 

SNP. This new approach, called GPMM, represents a significant advance in 
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approaches to understanding the missing heritability problem with 

potentially important implications for studies of complex, quantitative 

traits.  

 

The problem of ‘missing’ (or hidden) heritability1 is a central challenge for the 

genetics of complex traits.  In human populations, genome-wide association 

studies (GWAS) have successfully identified over 1,100 genetic loci associated 

with over 165 common traits, but the sum of their independent effects often 

appears to explain only a small proportion of the total heritable variation (broad-

sense heritability)2,3. An important open question is how much additional 

heritability might be explained by the non-additive effects of interactions 

between genetic loci (epistasis). Arguments for the ubiquity and importance of 

epistasis4,5,6 are supported both by evidence from empirical studies in model 

organisms such as mouse7, yeast8,9 and drosophila10 and also by demonstrations 

that a broad class of interaction models are capable of explaining any amount of 

heritability while exhibiting minimal marginal effects for individual loci11,12. 

However, while progress has been made in estimating the phenotypic variation 

that might be explained by genetic variants in a purely additive model13 

(narrow-sense heritability), methods for estimating broad-sense heritability 

directly from common genetic variants are lagging behind. 

 

Detecting non-additive, interaction effects of genetic variants is difficult for two 

principal reasons: possible models are of unknown order and complexity and the 

number of loci considered is typically high. Parametric approaches that test the 

likelihood of a set of specified models face an exponential scaling of 

computational cost with interaction order as well as the problem of correcting 

appropriately for the vastly increased number of hypothesis tests. Current 

approaches14-21 constrain either the space of models (for example by limiting the 

search to test only for pairwise effects) or the set of genetic loci by some 

criterion, such as filtering based on lower order effects. However, in the presence 

of higher order interactions, this strategy results in reduced power to identify 

important loci and, hence, to explain variance arising from non-additive effects 

(non-additive variance).  
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Here we employed Gaussian Process Regression (GPR)22 to address these issues. 

GPR places no constraints on the order of possible interactions and makes 

minimal assumptions about their possible form. It models a probability 

distribution over the unknown regression function mapping genotype markers 

to a quantitative phenotype as a stochastic process. The effect of each marker is 

controlled by a scale hyperparameter of the process: smaller values imply 

greater sensitivity of the phenotype to changes in allele dosage. Other 

hyperparameters determine the partitioning of phenotypic variance between the 

model and unexplained noise. Inference is carried out using an efficient form of 

Markov Chain Monte Carlo (MCMC) sampling algorithm termed Hybrid Monte 

Carlo (HMC)23 Posterior probability distributions over the values of the 

hyperparameters, obtained via HMC simulations, can be used to estimate 

quantities of interest (such as the fraction of variance explained and the strength 

of evidence for association of each marker) and to predict phenotypes for unseen 

genotypes (Methods).  

 

A useful way to think about the approach is by comparing it to methods, such as 

GCTA24, which estimate the narrow-sense heritability under an additive model. 

In GCTA, a single fixed kinship matrix is used to model a random effect term in a 

mixed model. The estimate of the variance component of this random effect is 

used directly to estimate heritability. In contrast, our method learns the kinship 

matrix, where the contribution of each marker to the kinship matrix is controlled 

by a set of parameters and occurs in a non-linear way. We call our method 

Gaussian Process Mixed Model (GPMM). 

 

Accurate estimation of an arbitrary function of even a modest number of 

markers requires, in general, an impractically large number of samples. 

Nevertheless, we show that our approach has power to estimate non-additive 

variance and to identify important loci with no marginal effects even when there 

is insufficient data to estimate such a function for all possible genotypes. This 

power derives from a combination of three factors. Two are inherent properties 

of GPR: averaging over the uncertainty in plausible regression functions, and 
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using a sparsity-inducing prior effectively embodying a prior skepticism about 

the importance of any specific locus (Methods). The third factor is the 

availability of biological replicates. Importantly, we found these significantly 

improved the power of GPR. In contrast, they made little difference to the results 

of linear modeling.  

  

 

RESULTS 

 

Accounting for non-additive variance 

To demonstrate the utility of GPR, we firstly applied the method to published 

data on growth rates of 1,008 closely related strains of yeast under 46 different 

growth conditions8.  REML estimates of broad-sense heritability (  ) using 

replicated segregants (Methods) for a number of these traits were significantly 

greater than those for narrow-sense heritability (  ). Furthermore, very little of 

this missing heritability could be explained by pairwise interactions8.  Highly 

correlated single nucleotide polymorphisms (SNPs) were removed to minimize 

the number of essentially redundant explanations of the data (Methods), and 

GPR estimates of the broad-sense heritability (   
 ) attributable to SNPs were 

calculated from the output of the MCMC sampler (Methods).  

 

For 25 out of 46 phenotypes, where    was high  (    ), there was very 

good agreement with    
 (Fig. 1a); the explanatory models found by GPR using 

SNPs explained all of the missing heritability. Both    and    
  were higher than 

    

 

For the remaining 21 yeast growth conditions,    
  was apparently unable to 

explain missing heritability in its entirety. Nevertheless, even when    
  was 

lower than   , they were never lower than estimates of narrow-sense 

heritability    from the same pruned subset of SNPs (Fig. 1b).   

 

The ability of GPR to explain missing heritability was correlated with    

(Pearson correlation = 0.82). (Supplementary File 2, Fig. 1) This was consistent 
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with the standard errors of    
 , indicating that GPR inference of explained 

variance also becomes more uncertain as REML estimates decrease. As an 

illustration of this effect, there was clear evidence of two modes in the posterior 

distribution of explained variance (Supplementary File 2, Fig. 3) for the two 

conditions with the largest uncertainty (Ethanol and Hydroquinone). In one of 

these regions, GPR estimates were comparable to those of REML estimates of   ; 

in the other they were comparable to those of   .  

 

Comparison of    
  to reported estimates of    obtained from the full set of 

11,623 markers8, gave similar results, but with a small number of exceptions. For 

four of the growth conditions (5-Fluorouracil, Hydrogen Peroxide, Congo Red 

and Cycloheximide) GPR heritability estimates were less than reported estimates 

of    (Supplementary File 2, Fig. 1c & 2b). We consider the interpretation of 

this observation below (Discussion). 

 

Gaussian Process Regression does not overfit 

Given the flexibility of GPR, it is natural to ask whether it infers better models of 

the data or merely adapts to noise. We checked for overfitting in two different 

ways. Firstly, we examined the ability of GPR to predict phenotypes of held-out 

individuals. For each trait, we created random partitions of the data: 90% of the 

samples were used for training and the remaining 10% for testing. We found that 

the performance of GPR as assessed by the standardised mean squared error 

(SMSE) - the mean squared error normalised by the empirical variance of the 

data (Methods) – was never worse than that of linear regression (Fig. 2). This 

confirmed that GPR did not overfit.  

 

As an additional check, we applied both GPR and linear regression to simulated 

datasets consisting of real yeast genotypes combined with phenotypes generated 

from a purely additive model; the coefficients of this model were those obtained 

from the linear regression fit using the real phenotypes and only the additively 

significant subset of SNPs. We set   =   = 0.5. GPR heritability estimates were 

consistent with both the underlying ground truth and those of the best fitting 

linear model while prediction errors for phenotypes of unseen test data were 
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never worse than those of the linear model (Supplementary File 2, Table 1). 

Although able to create more complicated models, apparently explaining more 

heritability than a linear model, GPR does not do so when the true generative 

model is additive.  

 

Identifying new relevant loci 

A key feature of our method is that we can infer the relative contribution of each 

locus to the model, in an analogous way to estimating the additive effect of a 

locus or its p-value of association. Relevance of a locus was determined from the 

marginal posterior distribution of the corresponding scale hyperparameter; a 

smaller scale implied greater relevance (Methods). These distributions were 

used to compute Bayes Factors  (BF) to assess the strength of evidence for 

association of a given locus after averaging over possible models. (Methods). 

Values of 2, 6 and 10 for twice the natural logarithm of the Bayes Factor are 

sometimes taken to indicate positive, strong and very strong evidence 

respectively25. 

 

For many conditions there was clear evidence that the sampler was exploring 

multiple modes of the posterior distribution corresponding to different 

explanations of the data. Different modes did not always incorporate the same 

subset of markers. Therefore, it was important to have confidence that the 

relative probability mass in the different modes had been correctly estimated. 

This was done by checking that different randomly initialized MCMC runs were 

converging to the same distribution using standard criteria (Methods). For only 

one condition (Manganese Sulphate) out of 46 was convergence not indicated in 

the time we allowed. 

 

Illustrations of the power of GPR to detect higher order interactions are provided 

by yeast growth in the presence of Zeocin and Lactose. Missing heritability was 

estimated as ~35% and ~30% respectively, but there was no evidence for 

significant pairwise interactions in either case8. For Zeocin, GPR explained all of 

the missing heritability (Fig.1 and Supplementary File 1), and found positive 

evidence for association (    (  )   ) for the 17 reported additive QTLs and a 
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further 11 loci (Fig. 3a and Supplementary File 1). For two of these additional 

loci – Chr2: 700731 and Chr4: 832287 (loci 7 and 16 respectively in Figs. 3a and 

3b) evidence of explanatory relevance was strong (    (  )   ). For Chr4: 

832287 in particular, the evidence (  (        )      ) was stronger than 

that for many of the additive QTLs even though it ranked 57th out of 59 in terms 

of effect size in a multiple linear regression model. These results cannot be due 

to LD with additive QTLs; no additive QTLs were identified on chromosome 4 

and the pairwise correlation between Chr2: 700731 and the single additive QTL 

on the same chromosome, Chr2: 479195 was low (~0.11).  

 

Similarly, for Lactose, GPR explained all of the missing heritability using a 

combination of additive QTLs and additional loci. For four of these, Chr16: 

669064, Chr2: 36827, Chr4: 1416346 and Chr1: 202945 (loci 53, 5, 16 and 4 

respectively in Figs. 3c and 3d) evidence of association (  (        )       

and     (  )    ) was as strong as that for most of the additive QTLs. None 

were in strong LD with additive QTLs; the strongest pairwise correlation 

between one of these loci and an additive QTL was -0.095.    

 

Maltose was the only growth condition for which a significant pairwise 

interaction accounted for a substantial proportion of missing heritability8. GPR 

accounted for all of the missing heritability for Maltose while confirming the 

importance of these two loci on chromosomes 7 and 11 (Figs. 3e and 3f).  

 

Our results for the other yeast growth conditions (Supplementary File 2, Figs. 

6 – 17) suggest that they often followed a similar pattern to that observed for 

Zeocin and Lactose. This could even be the case when missing heritability was 

modest. This is illustrated by results for growth in conditions incorporating 

Cadmium Chloride, for which        . Although an additive model 

incorporating 6 loci apparently accounted for      of phenotypic variance 

(Supplementary File 1), GPR found positive evidence of association 

(    (  )   ) for an additional 14 loci. For two of these, evidence of association 

(  (        )      ) was very strong. However, once again, at least one, 

Chr4: 696694 (locus 13 in Figs. 3g and 3h), was effectively invisible to additive 
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modeling (nominal univariate p-value = 0.2186 and effect size ranked 43rd out of 

48 in a multiple linear regression model). 

 

Statistical Power - the value of biological replicates 

Although it is common to use averages of phenotype measurements from 

biological replicates, we would expect GPR to gain power by using all such 

measurements. This is because of the strong information they provide 

concerning plausible values for the unexplained variance. To investigate this, for 

selected yeast growth conditions we constructed pairs of new datasets by 

subsampling the existing data. Only one of each pair had replicates, but both 

consisted of the same number of phenotype measurements. Consequently 

differences in inferences based on these datasets must lie in the presence of 

replicates rather than the amount of data. Comparison of heritability estimates 

(Figure 4) indicated that the power to estimate non-additive variance was 

significantly increased when replicates were used. Estimates of additive variance 

were less variable.   

 

To provide further insight into the effect of using phenotype measurements from 

replicates, we constructed a simple, toy model. Each output, yi, was generated 

from a simple non-linear function of a single input variable, xi, with added 

Gaussian noise (Methods and Supplementary File 2 Table 2 & Figure 5). 

Small numbers of samples generated from this model could not capture all 

significant variation in the function. Application of GPR demonstrated that the 

resulting uncertainty in inference of the underlying function induced a 

multimodal posterior distribution:  plausible explanations of the data accounted 

for observed variation in y either as predominantly owing to variations in x or as 

noise. However, measurements of replicate data altered the proportion of 

probability mass in these modes by providing more information about the 

probable level of noise (Supplementary File 2, Table 2 and Figure 5). 

Consequently, they not only improved estimation of explained variance but also 

increased the evidence for the relevance of the input, x. 
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Expression of CD45RC in CD8 cells in Heterogeneous Stock Rats (Rattus 

Norvegicus) 

 

To indicate the wider potential applicability of our GPR method, we applied it to 

an immunological phenotype (expression of CD45RC in CD8 cells) measured in 

heterogeneous stock (HS) rats26.  

 

Unlike the yeast data, the possibility of confounding effects due to relatedness 

and unmeasured environmental covariates could not be ruled out in this case. To 

account for this, we applied an enhanced version of our GPR model including an 

additional term equivalent to a random effect in a linear mixed model (Methods).  

 

As this population of HS rats also exhibits substantial long-range LD, we again 

pruned to remove highly correlated SNPs but retained independent SNPs with 

significant marginal associations (Methods).  This reduced 262,052 high-quality 

genotyped SNPs to 5,736 approximately independent SNPs for 540 individuals. 

 

A standard Linear Mixed Model (LMM) analysis27 (Figure 5a) shows a single 

strong marginal hit on chromosome 13 with lead SNP, Rn34_13050905766 (p 

value 4.5e-17,MAF=0.19). However, GPR (Figure 5b & 5c & Supplementary 

Table 3 ) finds strong evidence for the importance of Rn34_13050905766 and 

an additional SNP on chromosome 3, Rn34_3134037254 (marginal p value 2.2e-2, 

MAF=0.44). There is also weaker evidence at other loci, indicated by bimodal 

posterior distributions for the hyperparameters indicating relevance 

(Supplementary figure 18 ). The strongest of these secondary signals was for 

Rn34_20009896057 (marginal p value 4.1e-3, MAF=0.40). 

 

GPR gains power to identify associated SNPs by averaging over probable models, 

but does not identify the most probable models themselves. Nevertheless, given 

a small set of SNPs identified by GPR, we may probe the implied models. 

Supplementary Figure 19 indicates a dominance model for Chr3: 

Rn34_3134037254 (where at least one copy of the minor allele results in lower 

CD45RC expression), while Supplementary Figure 20 suggests interactions 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 22, 2016. ; https://doi.org/10.1101/040576doi: bioRxiv preprint 

https://doi.org/10.1101/040576


10 
 

between chr3: Rn34_3134037254 and both chr13: Rn34_13050905766 and 

chr20: Rn34_20009896057 where expression increases with allele dosage of 

chr13: Rn34_13050905766 and chr20: Rn34_20009896057, but at levels 

controlled by the presence of at least one minor allele of chr3: 

Rn34_3134037254.  

 

Classical likelihood ratio tests to compare the fit of different models (Methods) 

support these conclusions (Supplementary Table 4). While the maximum 

likelihood estimate (MLE) of the additive effect of Rn34_13050905766 alone 

explains 13.7% of heritability, a model incorporating, additionally, the additive 

effect of Rn34_3134037254 together with the interaction between the two 

provides a better fit (p value 6.2e-05), explaining an additional 4.5%. A more 

complex model involving all three SNPs and incorporating both dominance and 

interaction terms also provided a clearly significantly better fit than a null model 

consisting of only the additive effect of chr13: Rn34_13050905766 (p value 9.0e-

11) and explained 26.8% of heritability. This MLE is consistent with a 

conservative GPR estimate of    
  using a model incorporating only these three 

SNPs (Online methods, Supplementary Figure 27). No independent estimates 

of    were available, but an LMM estimate under the null model gave 

         . GPR apportions 25% of heritability to a model incorporating the 

three SNPS and 21% to the random effect, thus increasing estimates by ~9% for 

a total of 46%.  

 

Chr13:  Rn34_13050905766 (59758577 bp) is in very high LD with a number of 

SNPs at the beginning of the gene (60,094,038 - 60,205,773 bp) coding for the 

Ptprc (CD45) enzyme. It has a Pearson correlation of 0.997336 with 3 SNPs 

within this gene for which it was acting as a tag in the GPR analysis 

(supplementary figure 25). CD45 is a tyrosine phosphatase which undergoes 

alternative splicing of three variable exons to yield multiple isoforms of which 

CD45RC is one.  

 

Chr3: Rn34_3134037254 lies within the Slc24a3 gene (145,760,074 - 

146,259,491 ) and is in high LD with many other SNPs in this gene 
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(supplementary figure 24). Slc24a3 encodes the solute carrier family 24 

member 3 protein (also known as NCKX3) that plays a critical role in the 

exchange of calcium, potassium and sodium ions into and out of the cell.  

 

A link between the expression or activity of Slc24a3 and expression of CD45RC 

might be provided by the regulatory effect of two other molecules: CD86 and 

CD28. CD86 and CD28 are co-stimulatory molecules that interact to affect 

activation of naive T cells and their subsequent differentiation28; inhibition of 

CD86 signaling is one pharmaceutical strategy used to counteract inflammatory 

disease such as rheumatoid arthritis29.  However, increased expression and 

activity of Ca++/Na+ exchangers has also been shown to lead to decreased 

expression of CD8630. This might be expected to have a general 

immunosuppressive effect30. However, it might also have an effect specific to 

expression of particular CD45 isoforms as it has been shown that CD28 affects 

expression of hnRNPLL31, a trans acting factor that regulates exon silencing of 

the variable exons of Ptprc mRNA in CD4 and CD8 cells32. 

 

 DISCUSSION 

 

To demonstrate proof-of-principle, we have analysed an existing dataset of 46 

yeast traits and a rat gene expression phenotype. For the yeast phenotypes, we 

have shown that GPR can explain much of the known missing heritability using 

SNPs. It does so even in the presence of high order interactions possibly 

involving     loci when some SNPs display only weak marginal effects and 

significant pairwise effects are absent. In the rat phenotype, we uncovered 

strong evidence of at least one novel interaction together with indications of a 

model incorporating three SNPs (only one of which had a significant marginal 

association) that explained significant additional heritability. 

 

  The significant loci GPR identifies typically include most independent, additive 

QTLs, but also a number of additional loci not in strong LD with any additive QTL. 

In some cases, such as Chr4: 832287, Chr16: 669064, and Chr4: 696694 for yeast 

growth in the presence of Zeocin, Lactose and Cadmium Chloride respectively, 
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these additional loci were found to be at least as important as the additive QTLs 

in determining the phenotype but exhibited no marginal effects. Combined with 

the reported absence of significant pairwise effects for these growth conditions8 

and the demonstration that GPR is not overfitting (Fig. 2), this provided clear 

evidence that GPR can identify loci that exert strong effects on the phenotype 

only through higher order interactions. Such loci would have been challenging to 

identify using methods that employ a filter based on low order effect sizes.  

 

Our findings are consistent with the suggestion that much additive variance is, in 

fact, an artifact of non-additive interactions6,33. Even, as in the case of Cadmium 

Chloride, when narrow-sense heritability is very high, GPR identifies a number of 

important loci with no marginal significance implying a more complex 

underlying model. High narrow sense heritability does not necessarily imply 

independent effects . 

 

Lower estimates of    were accompanied by an apparent decrease in the ability 

of GPR to explain all missing heritability. At the same time, GPR heritability 

estimates became more uncertain. An interpretation of these results is suggested 

by clear evidence of two modes in the posterior distribution of    
   for some 

conditions (Supplementary File 2, Fig. 3): as the unexplained variance 

increases models of the data which explain more variance as noise become 

increasingly more probable. Posterior modes corresponding to models which 

explain all of the missing heritability may continue to be present, but will contain 

less probability mass. Such modes will become progressively less influential in 

computing explained variance and the importance of SNPs unless evidence for 

the models they represent is strengthened by increasing the sample size. Similar 

issues of weak identifiability of the variance components when heritability is 

lower have previously been noted in Bayesian models for estimation of additive 

and dominance components of genetic variance34. 

 

The strength of the sparsity prior can also affect heritability estimates.  The prior 

should favour models comprising fewer SNPs. We used two different approaches 

to specifying this prior, each with its own advantages (Methods).  The first 
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approach, while conservative, might be too stringent for highly polygenic traits 

resulting in underestimates of   . It is likely that this is why GPR heritability 

estimates for yeast growth rates were lower in four of the growth conditions 

than linear mixed model estimates of narrow-sense heritability based on all 

SNPs (Results). For these traits, a highly polygenic architecture seems likely: 

broad-sense and narrow-sense heritability were almost equal while additive 

QTLs alone explained only a portion of heritability. In general, if such 

information about the likely genetic architecture were available (for example 

from an analysis of independent data) this could be used to guide the choice of 

prior. Otherwise, we would recommend use of a more flexible, hierarchical prior 

as we used for the analysis of the rat data (Methods), which can increase power 

in the case of more polygenic traits.  

 

There have been a number of reports of interactions in human disease and 

quantitative traits20,21,35-37 . However, the overall contribution of these to 

heritability is still difficult to determine. The two key challenges are 

computational tractability and statistical power. Our results have implications 

for both. 

 

The computational cost of exhaustive search grows exponentially with the order 

of interaction considered. Consequently, such approaches are unlikely to be 

tractable for higher-order interactions. For example, a recent exhaustive search 

for pairwise interactions in the WTCCC data20 required a total computing time of 

950 compute years. Thresholding on lower-order effects can reduce the scale of 

the search but may also sacrifice considerable power; we have identified a 

number of important loci without marginal effects that are apparently also not 

even involved in detectable pairwise interactions. In contrast, the computational 

cost of the GPR sampling algorithm does not depend directly on the order of 

interactions. Nevertheless, it is computationally intensive. Our current 

implementation, using a Graphics Processing Unit (GPU), enables application to 

significantly larger datasets than we have reported in this paper (Methods), but 

we anticipate that significant further improvements can be made. One idea we 

are pursuing is to exploit the sparse nature of our model. Currently, most of the 
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computations performed to generate the proposed next state for our MCMC 

sampler make negligible contributions: at any given iteration, the vast majority 

of SNPs are, effectively, not included in the current model.  These calculations 

can be replaced by a single approximate computation, while retaining the 

validity of the overall algorithm.  

 

Even when computationally feasible, approaches that explicitly test specified 

interactions require very large sample sizes to maintain power in the face of the 

additional multiple testing burden. GPR gains power by averaging over possible 

interaction models rather than identifying the specific partners in the interaction. 

In addition, we have observed that power is further substantially improved by 

using phenotype measurements from replicates. This additional power derives 

from the strong information such replicates provide concerning plausible values 

for the unexplained variance. In contrast, with much less freedom to adapt to 

additional data, linear models derive little added value from replicates.   

 

It is important to note that the nature of the replicates does not affect this 

conclusion.  It applies whenever one might reasonably posit a model similar to 

the one used here (Methods, equation (1)); power might be gained from 

replicates in a broad range of settings ranging from phenotypes of genetically 

identical individuals to replicate measurements of cellular traits based on 

averages over many genetically identical cells such as gene expression levels.  

Consequently, even though our study was limited to yeast, our findings have 

important practical implications for study design. Firstly, cohorts consisting of a 

significant number of monozygotic twins, such as the TwinsUK cohort 

(http://www.twinsuk.ac.uk), might offer a way to estimate the contribution of 

non-additive effects to quantitative traits and disease in humans while 

increasing power to identify important interacting SNPs with weak marginal 

effects.  Secondly, generating replicates in cellular phenotypes, such as 

transcriptome studies, combined with analysis by GPR may be useful to delineate 

the role of interactions in gene regulation.  

 

There are a number of natural extensions to this work. A straightforward  
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extension of the GPR model can allow for the possibility of interactions between 

SNPs and measured covariates. We are currently exploring this idea to search for 

evidence of gene-environment interactions in data from the UKBiobank 

(http://www.ukbiobank.ac.uk/). An interesting additional avenue of research 

would involve an extension to analyze multiple traits. Building on other recent 

work38 a multi-output Gaussian Process framework could be employed to search 

for evidence of gene-gene and/or gene-environment interactions with the 

potentially greater power provided by correlated phenotypes. 
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METHODS 

 

Code Availability 

 

An implementation of our GPMM method which can run on CUDA enabled 

Graphics Processing Units will be made freely available for academic use at 

http://www.stats.ox.ac.uk/~sharp/ 

 

Yeast Data Preprocessing 

The yeast genotype data8 comprised 11,623 SNPs for a panel of 1008 

prototrophic, haploid segregants, constructed from a cross between a laboratory 

strain and a wine strain. Phenotypes consisted of replicate measurements of 

growth rates on 46 different media. To minimize the number of essentially 

redundant explanations of the data, we pruned the single nucleotide 

polymorphisms (SNPs) so that no pair had a correlation of > 0.8. However, SNPs 

already identified as quantitative trait loci (QTLs) under an additive model were 

always retained. This procedure reduced the number of candidate loci drastically 

to  ~ 60 so that each chromosome was represented, on average, by just 3-4 SNPs. 

 

Rat Data Preprocessing 

The rat genotype data comprised 262,052 high-quality genotyped SNPs [ref 

amelie] for 540 heterogeneous stock (HS) rats. The phenotype consisted of 

expression levels of CD45RC measured in CD8 cells. We obtained the data from 

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2332/files/. 

 

As this population of HS rats also exhibits substantial long-range LD, we again 

pruned to remove highly correlated SNPs so that no pair had a correlation of > 

0.8. In this case, there was a single eQTL on chromosome 13 for which a number 

of SNPs in high LD showed significant marginal signals of association after 

Bonferroni correction. To ensure that we retained those SNPs with possibly 
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independent signals we used a greedy approach: firstly we pruned all SNPs with 

a pairwise correlation of > 0.8 with the lead SNP. From the SNPs that survived 

the first step we identified the SNP with the second strongest marginal 

association and pruned again based on correlations with this SNP. We repeated 

this process for successively less strongly associated SNPs until all such SNPs 

had been considered. Finally, we performed one further round of pruning to 

obtain a set of 5,736 approximately independent SNPs. 

 

In contrast to the yeast there was a significant possibility of confounding effects 

together with measurements for suspected relevant covariates: sex and batch. To 

account for the latter we simply created a new phenotype from the residuals of 

the multiple regression of the original phenotype on these covariates. To allow 

for unmeasured confounding effects, we incorporated an additional term, 

analogous to a random effect, into our GPR model as described below (Gaussian 

Process Regression) 

 

Gaussian Process Regression 

We assume that, for the     of N, haploid individuals, we have observed a 

quantitative trait value,   , and a genotype vector,    {   }   

 
, of allele dosages 

at P markers where each     *   + is the dosage at the     marker. The 

assumed generative model has the following form: 

 

    (  )                                                                                    ( ) 

   

 

where  (  ) is an unknown, arbitrary function of the allele dosages, ui is 

equivalent to the random effect in a standard mixed effects model and 

    (    
  ) represents additive Gaussian noise of precision   .  

 

The second term is commonly used in association analyses to account for 

potential confounding factors due to unmeasured environmental effects that 

correlate with genotype. The vector of random effects for all individuals has 
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covariance structure determined by the relatedness of the individuals 

   (    
   ). For our analysis of the yeast data we did not incorporate such a 

term as the experimental design precluded the possibility of such effects: all 

strains shared the same environment. However, for the analysis of the rat 

phenotype we did incorporate this term. R was the centred, scaled, realised 

relationship matrix computed from SNPs estimated using  functionality in  

GEMMA27. 

 

No explicit, parametric form is assumed for  (  ), which permits great flexibility 

in modeling interactions of unknown order and effect size. Instead, a Gaussian 

Process prior (  ) is placed over the functions themselves. This prior imposes 

constraints by making assumptions about properties of plausible functions such 

as their smoothness. To achieve this, the    defines a probabilistic relationship 

between the genotypes for the N individuals and the corresponding N-

dimensional vector of regression function values, f. A priori plausible examples 

of f are modeled as draws from a multivariate Gaussian distribution:  

 

   (   )                                                                                                  ( ) 

 

While we may draw many different vectors of values from this distribution, their 

values will be constrained by the      covariance matrix K.  This is the crucial 

element of this prior.  

 

Covariance function 

The elements of K are generated as functions of the regressors,   , in a way that 

reflects prior beliefs about properties of plausible functions. A very general 

assumption underpinning any data-driven estimation method is that similar 

inputs result in similar outputs. In this context, the notion of similarity between 

genotypes is defined by a covariance function,  (     ), which generates the 

elements,     of K. 

 

The covariance function embodies important prior assumptions about the 

regression function. A wide choice is available. For example, it is perfectly 
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possible within this framework to use a kernel that permits only linear functions. 

However, we wish to allow for the possibility of highly non-linear interaction 

effects. A covariance function that permits a very broad class of such functions is 

the squared exponential covariance: 

 

 (     )       ( ∑
(       )

 

   

 

   

)                                                            ( ) 

 

where    and    *       + are hyperparameters of the model. This choice of 

covariance function also implies other assumptions about the properties of the 

unknown regression function. It is possible that other choices might be more 

appropriate in some situations22.  

 

    determines the overall variance in the observed outputs, y, due to the 

regression function, f. The    determine characteristic scales in the respective 

predictor variables. A large value for    relative to the observed range of 

variation of (       ) indicates that variations in the     dimension contribute 

very little to variations in f; a smaller value indicates the reverse. Consequently, 

each scale hyperparameter provides a measure of the relevance of the 

corresponding predictor in explaining variations in the response variable39. 

Therefore, when the     represent allele dosages, we may discover which SNPs 

are most likely to be associated with the quantitative trait by inferring values for 

the corresponding scale hyperparameters,   .  

 

Hyperparameter Priors 

A priori, we expect that only a small number (if any) of the candidate loci are 

likely to be associated with variations in the trait. To reflect this, we place a 

sparsity-inducing prior over the    to ensure a very low prior probability of 

relevance for any individual SNP. A standard choice is a gamma distribution40 

which we parameterise in terms of its mean,   , and shape parameter,   : 
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 (  )  
(    ⁄ )  

 (  )
  

    
   ( 

    

  
)                                                                  ( ) 

 

where  ( ) is the gamma function. A priori, we assume that the    are identically 

and independently distributed; we choose        to ensure that the prior on    

has no mode and    to incorporate a prior belief that only a subset of SNPs will 

have significant effects.  

 

A simple way to achieve this is to fix   , so that, in P draws from the prior, no 

more than a certain small number, S, are expected to have a scale smaller than a 

given low threshold,   . In general, choosing      and         will ensure 

that any given marker has a very low prior probability of being relevant. In all of 

the analysis on yeast data we set     and     .  

 

An alternative is to specify a prior distribution on   . We again use a gamma 

distribution: 

 

 (  )  
(    ⁄ )

  

 (  )
  

    
   ( 

    

  
)                                                                  ( ) 

 

We choose         (again to ensure that this prior has no mode) and      to 

encode a prior belief in a sparser model. 

 

Each approach has advantages and disadvantages. Fixing     avoids one potential 

source of mixing problems in the Markov Chain Monte Carlo (MCMC) algorithm 

that we use to perform inference. However, posterior inferences will have some 

sensitivity to this choice. While the conservative choice described above offers 

protection from false positive associations, it can also reduce power. For the 

analysis of the yeast data set we chose to fix    because the number of SNPs was  

small and strong information was provided by the presence of biological 

replicates (Results and Supplementary File 2 section 1.6). However, for the 

analysis of the rat data, we used the hierarchical prior. We set        which 

implied an initial distribution for each    that was less restrictive than a prior 
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with    fixed as described above. We found this helped with mixing while not 

precluding inference of a much sparser posterior distribution for the    if this 

was supported by the data. For example. for the rat phenotype, the posterior 

distribution of    implied a much sparser distribution for the    than our 

initialization.  

 

The final elements of the model are the remaining covariance hyperparameter, 

  , the scale parameter,   . for the random effect and the noise precision   . We 

place gamma priors over   
  ,    and    with hyperparameters   ,   ,   ,    and 

  ,    respectively. To ensure a diffuse prior with no mode, we set        

      . Finally, we set   ,    and    to the reciprocal of the observed trait 

variance. This choice is reasonable given that all plausible models of the data 

must account for variance on this scale. Note that this prior is uninformative 

with respect to how the total variance is partitioned between genetic factors 

(determined by   ) and non-genetic factors modeled here as Gaussian noise 

(determined by   ). 

 

Relationship to Previous Work 

A previous study41 proposed a similar use of GPR for identifying QTLs in the 

presence of epistasis. There are a number of differences between their approach 

and ours. Two concern the model. Firstly, we incorporate a random effects term. 

Secondly they employed a more complex sparsity-inducing prior over the   : a 

mixture prior involving additional binary auxiliary variables to indicate 

relevance. This appears to provide a direct probability of relevance for each 

locus rather than the more indirect measure provided by the scale 

hyperparameters. However, this scheme still involves prior specification of 

which scales imply relevance. Consequently, we do not believe it offers any 

advantage over our approach. Furthermore, inference for the additional 

indicator variables necessitates the use of an additional (single-site) Gibbs 

sampling step. This is known to result in much less efficient sampling when 

variables are highly correlated42. Such a situation might be quite common in this 

context when there are multiple plausible models of the data not all 

incorporating the same subset of loci. Consequently, we expect our simpler 
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approach to be significantly more efficient.  Additional differences in our 

inference algorithm and implementation include further steps to improve the 

mixing efficiency of our Markov chain, speed per iteration, and hence 

scaleability: we use a number of leapfrog steps to generate each proposal rather 

than a single step; we adapt the step size and we use a modified mass matrix 

(Methods: Inference – Hybrid Monte Carlo).  Finally, we have a CUDA 

implementation of our method that uses a graphics processing unit (GPU) to 

exploit the significant opportunities for parallelisation of the algorithm.  

 

Statistical power - Marginalisation of the latent function 

Finding evidence of higher order interactions poses significant challenges owing 

to the curse of dimensionality. On average, linear modeling indicates     QTL 

per trait for the yeast phenotypes that we consider8. Under the reasonable 

assumption that interaction models might involve additional loci, we are faced 

with the apparently hopeless task of attempting to learn a function over, say,     

combinations of variants with only, perhaps, 1000 samples (N=1000). 

Nevertheless, it is possible to make inferences about not only the heritability but 

also the relative importance of individual loci within the interaction model, 

although it is not possible to identify the nature of the interactions; the method 

can identify that loci are important for explaining the phenotype, possibly through 

high order interactions with each other, but does not identify which loci interact with 

which others. 

 

Two aspects of the model increase power to make inferences in this context. One 

is the sparsity assumption already described. The second is the fact that we do 

not need to learn the latent function at all for this purpose. Within this model we 

can effectively average over plausible functions, by integrating over f, but still 

make useful inferences based on the posterior distribution of the 

hyperparameters. The hyperparameter posterior contains all the information 

necessary to identify relevant loci and estimate heritability.  The fact that 

integration over f can be done analytically leads to significant computational 

advantages as, in general, hyperparameters and function values are highly 

correlated. 
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After marginalising over f, the resulting posterior may be summarised as22: 

 

 ( |     )   ( |      
   ) ( | )                                                          ( ) 

 

where X represents an     matrix of observed genotypes,   represents the set 

of hyperparameters, (,       -      ),  and  ( | ) represents the joint prior 

over these hyperparameters (a product of gamma distributions) parameterised 

by a further set of fixed hyperparameters, (  ,   ,   ,   ,    and   ), collectively 

denoted by  . 

 

Inference – Hybrid Monte Carlo 

The posterior defined by (6) is intractable. Nevertheless, analytical expressions 

for the gradient of the log posterior are readily derived. This permits the 

application of an efficient form of Markov Chain Monte Carlo sampling algorithm 

termed Hybrid Monte Carlo (HMC)23. The application of HMC to Gaussian 

Process regression models has been comprehensively described elsewhere40. 

Briefly, the method can be envisaged as simulation of a physical system. The 

logarithm of the hyperparameters, defines the position, q, of a notional particle, 

(       ).  The logarithm of the posterior over q, –      ( |       ), defines a 

potential energy. A vector of auxiliary momentum variables,  , are introduced, 

one element for each dimension. These may be sampled from some distribution 

independent of  : 

 

   (   )                                                                                                                                ( ) 

 

These define a kinetic energy,    
 

 
      , where M is a ‘mass’ matrix whose 

elements can be tuned to improve mixing as described below.  

The joint distribution for the system is obtained from the Hamiltonian,  (   )  

 

 (   )   –      ( |       )                                                                             ( ) 

 (   |       )     (  (   )) 
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As the joint distribution defined by (7) factorizes between   and p, any valid 

sample immediately yields a sample from the posterior over    ( )   To sample 

from (7), a new state, (     ) is proposed from the current state, (   ), by 

simulating a trajectory for the particle under Hamiltonian dynamics,  a system of 

differential equations. Under such a trajectory,  (   ) is, in principle, conserved. 

However, in practice, discretization of the system of differential equations 

introduces errors. Nevertheless, discretization schemes can be devised which are 

both reversible and volume preserving. Consequently, it can be shown that 

acceptance of the proposal based on a simple Metropolis-Hastings acceptance 

test leaves  (   |       ) invariant. 

 

The effect of the momentum variables is to improve on the slow random walk 

exploration of ordinary MCMC by enabling more distant proposals with a good 

chance of acceptance. Nevertheless, the acceptance probability can be sensitive 

both to the step size,  , used for discretization and, to a lesser extent, the length 

of the trajectory, L. In particular, the optimal   can vary in different regions of the 

state space. To address this, we resampled   for each trajectory: 

 

   (   (     )
 )                                                                                                                    ( ) 

 

where   is initialized as    
 

 √ 
 and then adapted during a burn in period so as 

to maintain an acceptance rate of between 0.6 and 0.7. 

 

Avoidance of random walks and reduction in the autocorrelation of the chain 

also depends on L. However, as the computation of each step is expensive, it is 

wasteful to compute a proposal based on a long trajectory that is subsequently 

rejected. We chose a compromise: we used a short trajectory length (    ) and 

used partial momentum refreshment43; instead of resampling p according to (6), 

we updated it partially: 
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         √(    )                                                                                                   (  ) 

     (   )   

           

 

An additional issue is that optimal step sizes might vary across dimensions 

owing to differences in the natural scales of the different variables and the 

underlying geometry of posterior. In general, this can be addressed through 

tuning of the mass matrix, M, in (7). Sophisticated approaches for estimating a 

full covariance for M scale poorly with dimension44. We take a simpler approach 

which addresses only the diagonal of M: firstly we use a logarithmic 

transformation of the hyperparameters which mitigates the different scales over 

which the different types of hyperparameter naturally vary; secondly, when we 

use the hierarchical prior over    (5), we use constant factors on the diagonal of 

M, proportional to        to reduce the step size in the direction of the variance 

hyperparameters,   ,    and    relative to that in the direction of    and the   . 

 

Diagnosing Convergence 

 

To check that our Markov chains had reached stationarity, for each experiment 

we ran two different chains randomly initialized from the prior and diagnosed 

convergence using the potential scale reduction factor (PRSF)45  as implemented 

in the CODA R package. For the yeast phenotypes, when all 95% upper 

confidence limits on PSRFs for individual hyperparameters were approximately 

1.1 or lower, we were satisfied that further decreases in the variance of the 

approximate posterior of the hyperparameters would not significantly alter 

conclusions. 

 

Convergence for most hyperparameters was often very fast, requiring 

computation of fewer than 5000 simulated trajectories (50,000 time steps of the 

simulated Hamiltonian dynamics). However, for some growth conditions there 

was considerable evidence of multimodality and convergence required 

computation of ~ 35,000 trajectories (350,000 simulation steps). For only one 

condition, Manganese Sulphate, were regions of significant probability mass 
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apparently so isolated that sampler appeared far from convergence even after 

35000 trajectories.  

 

Scaleability  

The computational cost of the GPR sampling algorithm does not depend directly 

on the order of interactions. Nevertheless, it is computationally intensive. For N 

individuals and P markers the computation time of each iteration scales as 

 (      ). For    , the      cost of recalculating the covariance matrix 

and the gradients required for computing the MCMC proposal dominates. 

However, the most expensive steps offer a number of options for parallelization. 

In particular, those operations leading to the apparent linear dependence on the 

number of markers may be performed independently. We have developed a 

CUDA implementation that uses a Graphics Processing Unit (GPU) to exploit 

these features of the algorithm.  

Supplementary Table 5 shows the variation in CPU time, of a single leapfrog 

step for values of P in the range 1000-500000 and N=500 and 1000. As explained 

above (Inference – Hybrid Monte Carlo), each MCMC iteration might require a 

trajectory involving multiple leapfrog steps (we used 10 or 20) although a single 

step would also be valid.  In addition, like any MCMC method, it is difficult to 

predict how many iterations might be required for convergence in any given case. 

As an example, for the rat phenotype (N=540,P=5736), we ran each MCMC chain 

for 30,000 iterations consisting of 20 leapfrog steps each. This took ~35.4 hours. 

Nevertheless, we have often found that far fewer iterations are required to 

achieve approximate convergence. SNPs often fall quite quickly into three 

categories: strongly associated, weakly associated and unassociated. However, 

the evidence for weakly associated SNPs tends to be reflected by secondary 

modes of the posterior, which are visited infrequently by the MCMC sampler, 

Consequently, much longer runs are required to achieve full convergence for 

these SNPS (compare Supplementary Figure 30 to Supplementary Figures 27 

& 28). 

 

Estimating heritability 
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GPR partitions trait variance between the model, noise and, when present, the 

random effect term. For a very highly polygenic trait, some of the variance 

attributed to the random effect term might reflect genetic effects not captured by 

the model,  ( ). However, we make the assumption that all variance explained by 

this term is attributable to confounding and that  ( ) and u are uncorrelated. 

Consequently, in both cases, we can estimate    
  as the fraction of variance in 

the trait,    ( ), explained only by  ( ). 

 

For single, point estimates (, ̂     ̂ -  ̂   ̂   ̂ ) of the hyperparameters, we 

may estimate the variance components as46:  
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where    ( )   returns the sum of all elements of the matrix  .   ̅ is the posterior 

mean function (20), and    is the covariance of   , each element of which is given 

by (21) using the estimated  (, ̂     ̂ -  ̂ ). The expected heritability can then 

be estimated from these variance components as46: 

 

 ,   
 -    ̂(    , ̂     ̂ -  ̂   ̂   ̂ )    

     
  

                                             (  ) 

  

where   is the matrix of genotypes and we assume that all variance due to purely 

genetic factors is captured by   . 
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Given a posterior distribution over the hyperparameters we can, in principle, 

average over the uncertainty in their values to obtain an estimate that is a 

function of only the observed data,   ̂(    ), and is robust to overfitting. We 

approximate this estimate with a Monte Carlo average using the output of our 

MCMC sampler: 

 

  ̂(    )  
 

 
∑  ̂ .    (, ̂     ̂ -  ̂   ̂   ̂ ) 

/                                                    (  )

 

   

 

 

where the sum is over T samples from the posterior. 

 

In practice, for the yeast data (for which we did not employ a random effect 

term), we found that a much simpler computation to estimate    
  as the fraction 

of variance in the trait,    ( ), not accounted for by noise gave very similar 

results: 
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Identifiability of     and    

 

When the samples do not contain a significant proportion of replicates, and 

confounding effects are anticipated, heritability estimation is complicated by 

non-identifiability of    and   : while using    to explain some variance with 

SNPS of strong effect, GPR can, in principle, also simultaneously use   to explain 

some variance using many other SNPs of small effect. This problem can be 

mitigated by using a more stringent prior on the relevance of individual SNPs 

(larger   ), but at the possible expense of reduced power to identify truly 
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associated SNPs. An alternative approach is to use two sets of runs. The first set 

use GPR to identify probable associated SNPs; the second set use the same prior 

but only the subset of probably associated SNPs identified in the first run. We 

took this latter approach in the analysis of the rat CD45RC expression phenotype. 

The second run incorporated only the three SNPs found to be most probably 

associated (Figure 5b & c). Posterior distributions of heritability and variance 

components    and    thus obtained (Supplementary figure 27) were 

consistent with maximum likelihood estimates of mixed models incorporating 

additive, dominance and interaction effects for these SNPs (Supplementary 

figure 27 and Supplementary Table 4). 

 

Independent estimation of broad-sense heritability for yeast phenotypes 

 

Broad-sense heritability was estimated as described in the online methods 

section of the study that generated the data8 using replicated segregant data and 

a random effects analysis of variance. This involves partitioning variance into a 

random effect for segregant and a random effect for non-genetic noise. This was 

implemented using the ‘lmer’ function in the lme4 R package47. 

Estimating narrow-sense heritability for yeast phenotypes 

 

Reported estimates of narrow sense heritability from the full set of 11,623 SNPs 

were computed using a linear mixed model incorporating an estimated 

relatedness matrix for all pairs of segregants as implemented in the rrBLUP R 

package48.  Standard errors were computed using leave-one-out jackknife. Using 

the same code, we found the leave-one-out jackknife procedure to be very 

computationally intensive. Instead, we computed estimates for the pruned 

subset of SNPs by multiple linear regression using the simpler and 

computationally cheaper method of least squares. We also used leave-one-out 

jackknife to estimate standard errors and to correct for bias.  Comparison of 

estimates using rrBLUP on the pruned subset of SNPs (but without computing 

standard errors) indicated that no bias was introduced by this difference in 

approach (correlation of h2 estimates = 0.98).   
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In both cases, we followed the study that generated the yeast data8 and used one 

randomly chosen measurement of the replicate phenotypes for each segregant. 

For the subset of SNPs, we found that using all replicate measurements made no 

difference within the limits of standard error.  

 

 

Out of sample prediction 

The output of GPR can be used to predict the phenotype,   , of a previously 

unseen individual given their genotype,   . For fixed hyperparameters, the 

posterior distribution over the unknown, latent function, f, induces a Gaussian 

predictive distribution22: 

 

 (  |           )   .  |  ̅( )   
      (  ( ))/                                                   (  ) 
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 (    

   )                                                           (  ) 

 

where   ̅( ) and    (  ( )) are, respectively, the predicted mean and variance of 

the latent function,   , corresponding to genotype   ,    is the vector of 

covariances between    and the training instances  , and   (     ) is the prior 

variance of   . 

 

To make predictions we average over the values of the hyperparameters with 

respect to their posterior distribution to obtain a marginal predictive 

distribution which we approximate with a Monte Carlo average using T samples 

from the posterior: 

 (  |        )  
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The right hand side of (22) is a mixture of Gaussians. If we assess the quality of 

predictions using mean squared error, the asymptotically optimal prediction,   
 , 
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for a given    is given by the mean of this distribution. This is obtained simply as 

the Monte Carlo average of the mean predictions of each Gaussian: 
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The expected error in this prediction depends on the variance of    under 

 (  |        ). This can be shown to be: 
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The uncertainty in    expressed by the right hand side of  (24) is comprised of 

three different components: uncertainty in the values of the hyperparameters, 

uncertainty owing to unexplained variance (noise) and uncertainty in    for any 

fixed setting of the hyperparameters. Assuming homoscedastic noise, prediction 

errors will be greatest when uncertainty in the value of    is greatest. This will be 

the case when    is very different from the genotypes of the individuals used for 

training.  

 

The predictive distribution of  (22) comprises the sum of a large number of 

approximately independent terms. Consequently, the Central Limit Theorem 

indicates that the mean squared errors in predictions made using (23) should be 

Gaussian distributed with zero mean and variance given by (24). We verified 

that this was the case (Supplementary File 2, Figure 4) 

 

SMSE 

As a measure of a learned model's predictive performance we used the 

Standardised Mean Squared Error (SMSE) on a held out test set of    individuals: 
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where    
 ̂ represents the predicted phenotype for the     individual and    is the 

vector of     test phenotypes. This is no more than the mean squared error 

normalised by the empirical variance of the data to enable more meaningful 

comparisons across datasets. The trivial method of predicting with the mean of 

the training data will have an SMSE of approximately 1. 

 

 

Judging significance - marginal Bayes factors 

 

The marginal posterior distributions of the scale hyperparameters indicate 

relevance for the corresponding loci, but do not directly provide a measure of the 

significance of association39. Given the coding of alleles as 0 or 1, the form of the 

covariance function (3) indicates that, for a given model, only loci for which 

    ( )will contribute significantly. However, with limited data, there is likely 

to be considerable uncertainty over the underlying model. Therefore, we do not 

expect that the distributions of all of the    corresponding to truly associated loci 

will concentrate sufficiently around such values for summaries such as the mean 

or median to satisfy this criterion. Therefore, we assessed the strength of 

evidence for the relevance of the     locus by computing a Bayes Factor (BF) for 

the hypothesis,           , against the hypothesis,            for a given 

threshold,  . 

 

The Bayes factor was obtained simply as the ratio of posterior and prior odds25: 
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where  ( ) and   ( ) represent the posterior and prior densities respectively. 

Empirical estimates  for ∫  (  |   )
 

 
    were obtained from the samples: 
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where the indicator function,  ( )    if its argument is true and  ( )    

otherwise. 

 

In the case when a hierarchical prior was employed over    we also estimated 

the implied prior from the samples: 
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 .  |     
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Values of 2, 6 and 10 for twice the natural logarithm of the Bayes Factor are 

commonly taken to indicate positive, strong and very strong evidence 

respectively25.  

 

Although many choices of   are reasonable, for the analysis of the yeast data we 

chose   ∫  (  |     )
 

 
        for each condition. For this choice, the 

threshold for positive evidence (    (  )   ) was not reached by 

approximately 5% of the additive QTLs aggregated across all conditions. This 

was consistent with the reported, estimated False Discovery Rate for these 

additive QTLs8. In general, one can calibrate the threshold by repeating the GPR 

analysis on the same data but with the phenotype values permuted so that no 

true signals of association are expected. To be valid, however, the permutation 

must be done while accounting for the trait covariance structure. We used the 

MVNpermute R package to construct permuted datasets with this property. 49 

Based on the output of such runs, a threshold can be chosen to ensure that 

    (  )    for all SNPs. We employed this approach for the analysis of the rat 

data. We found that choosing the threshold based on the scale below which 0.15 
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of the prior mass was located, ∫  (  |     )
 

 
        , gave an appropriate 

threshold (Supplementary Figure 23). In this case, as we employed the 

hierarchical prior, samples of   differed across runs. Therefore we used (28) to 

estimate the appropriate threshold for the actual and permuted data separately 

ensuring that the threshold,  , for the actual data met the same critierion 

  ∫  (  |     )
 

 
         as that of the permuted data.  

 

Model Comparison 

GPMM identifies SNPs that are important for explaining trait variance, possibly 

through interactions, but does not identify specific interaction effects. To 

examine the evidence for specific interactions between SNPS identified by GPMM   

as being associated with the rat phenotype, we computed maximum likelihood 

estimates (MLEs) for different nested models and performed standard likelihood 

ratio tests to generate p values (Supplementary Table 4). MLEs were computed 

using custom R code which implemented a previously described LMM 

algorithm50 which reduces estimation to a 1-dimensional optimization problem.  

 

1-dimensional toy example 

Samples were generated from a simple sine function with added Gaussian noise. 

For the     input,   , we generated pairs of replicate samples,     according to: 

 

                           *   +                                                                               (  ) 

 

where      (   ) and   was chosen so that 80% of the variance was explained 

by the model. Samples were generated uniformly at random over a range 

        and subsets of size 30 were chosen as training data for learning.  
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Figure Captions 

 

 

Figure 1 Comparison of heritability estimates. Each bar represents one of the 46 

yeast growth conditions.. The total height of a bar represents the broad sense 

heritability (H2); the heights of the different coloured subdvisions indicate the 

partioning of variance between three components: red bars correspond to the 

proportion of variance that is additive (h2); blue bars indicate the additional 

proportion of variance explained by GPR, i.e., H2
GP - h2; yellow bars correspond to 

residual variance. a The 25 growth conditions with estimated       . b The 

remaining 21 growth conditions. Estimates of h2 were obtained using only the 

pruned subset of markers used for inference by GPR. Supplementary Figure 2 

shows the equivalent comparison for estimates of h2 obtained from the full set of 

11,623 markers. 
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Figure 2 Comparison of standardised mean squared errors (SMSE) in predicted 

phenotypes made by GPR with those of a linear model obtained from multiple 

linear regression using the same SNPs. Each point corresponds to a held out 

sample on one of the 46 yeast growth conditions.  Error bars correspond to 

      . The errors made by GPR predictions are systematically lower than those 

made by the linear model indicating that GPR is not overfitting. In this sense, GPR 

is finding better explanatory models than a purely additive model.  

 

Figure 3 Comparison of loci associated with growth rate variation found by GPR 

and linear modelling. Left-hand column: box plots summarising the marginal 

posterior distributions of the scale hyperparameters corresponding to the 

different SNPs; dots represent the median, edges of the boxes mark the 25th and 

75th percentiles, and whiskers indicate the full range of samples from the 

posterior. The vertical black line denotes the median under the prior. Right hand 

column: the vertical scale represents the magnitudes of coefficients from an 

ordinary least squares. multiple linear regression of the same trait against the 

same SNPs. Each row corresponds to a different growth condition. From top to 

bottom, these are: Zeocin (Figs. 3a and 3b), Lactose (Figs. 3c and 3d), Maltose 

(Figs. 3e and 3f), and Cadmium Chloride (Figs. 3g and 3h). Colours denote 

evidence of association. Red: additive QTLs for which GPR also found positive 

evidence of association (Methods); dark blue: loci for which only GPR found 

positive evidence of association; light blue: loci for which no evidence of  

association was indicated by either approach.  

 

 

Figure 4  Effect of biological replicates on estimation of non-additive variance. 

Estimates of explained variance were made using pairs of datasets for 7 different 

conditions. One of each pair included replicate measurements for some strains. 

The other incorporated only a single measurement per strain, but included more 

strains so that both datasets consisted of the same number of samples. Vertical 

axis: H2
GP. Horizontal axis: Multiple linear regression estimates of - h2 using the 

same subset of SNPs. Each point corresponds to a different growth condition. 

Circles indicate estimates based on only a single phenotype measurement for 
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each strain. Crosses denote estimates based on using replicate measurements. 

Numbers indicate the condition corresponding to a point: 1 – Cobalt Chloride, 2 – 

Formamide, 3 – Galactose, 4 – Indoleacetic Acid, 5 – Lactate, 6 - YPD:4C, 7 – 

Zeocin. Comparison of heritability estimates indicates that the power to explain 

non-additive variance is greatly increased when replicates are used. In contrast, 

estimates of additive variance are less variable. Vertical error bars denote       

around the mean GPR estimates. Horizontal error bars indicate the standard 

error in the linear regression estimate (Methods). For finite sample size, the 

frequentist and Bayesian estimates of uncertainty, as indicated by the horizontal 

and vertical error bars, cannot be directly compared. However, they exhibit 

similar scaling properties with sample size: asymptotically, Bayesian marginal 

posterior distributions tend to normality with a standard deviation that scales 

inversely with the square root of the sample size.  The solid line is simply a guide 

to the eye indicating where estimates are equal. 

 

Figure 5 Manhattan plots comparing loci associated with expression of CD45RC 

in CD8 cells found by GPR and linear mixed model analysis. Horizontal axis: 

genomic position of pruned set of 5736 SNPs; numbers correspond to 

chromsomes.  a Vertical axis: -log10 p values from standard univariate 

association tests using a Linear Mixed Model (LMM) as implemented in 

GEMMA27; horizontal red line indicates the Bonferroni corrected threshold of 

significance at the 0.05 level based on the unpruned set of 262,052 SNPs. b 

Vertical axis: -log10 posterior mean of the scale hyperparameters used to indicate 

relevance in the GPR model; smaller posterior mean scales (larger values of -

log10 posterior mean scales) imply stronger association. Red filled circles 

indicate marginally significant SNPs (after Bonferroni correction).  c Vertical 

axis: 2log(Bayes Factor). No absolute level of significance can be ascribed to the 

posterior means of the scales, but we also compute approximate marginal Bayes 

Factors (methods). The red horizontal line corresponds to a value of 2. Values of 

2, 6 and 10 for twice the natural logarithm of the Bayes Factor are commonly 

taken to indicate positive, strong and very strong evidence respectively25.  
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