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Abstract
Summary: With the emergence of large-scale Cap Analysis of Gene Expression data sets from 
individual labs and the FANTOM consortium, one can now analyze the cis-regulatory regions 
associated with gene transcription at an unprecedented level of refinement. By coupling 
transcription factor binding site (TFBS) enrichment analysis with CAGE-derived cis-regulatory 
regions, CAGEd-oPOSSUM can identify TFs that act as key regulators of genes involved in 
specific mammalian cell and tissue types. The webtool allows for the analysis of CAGE-derived 
transcription start sites (TSSs) either (i) provided by the user or (ii) selected from ~1,300 
mammalian samples from the FANTOM5 project with pre-computed TFBS predicted with 
JASPAR TF binding profiles. The tool can help power insights into the transcriptional regulation 
of genes through the study of the specific usage of TSSs within specific cell types and/or under 
specific conditions. 

Availability and implementation: The CAGEd-oPOSUM web tool is implemented in Perl, 
MySQL, and Apache and is available at http  ://  cagedop  .  cmmt  .  ubc  .  ca  /  CAGEd  _  oPOSSUM. The 
source code is freely available from GitHub at https://github.com/wassermanlab/CAGEd-
oPOSSUM.

Contact: dave  @  cmmt  .  ubc  .  ca, wyeth  @  cmmt  .  ubc  .  ca, and anthony  .  mathelier  @  gmail  .  com.

Supplementary information: Supplementary Figures are available on the journal website. 
Supplementary Data is available at 
http  ://  cagedop  .  cmmt  .  ubc  .  ca  /  CAGEd  _  oPOSSUM  /  archived  _  results  /.
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Introduction
The Cap Analysis of Gene Expression (CAGE) technology [1] has revolutionized our capacity to 
analyze the cis-regulatory regions that are active in cell types and tissues at specific time-points.
Through the FANTOM5 project [2,3], 889 human and 389 mouse samples (from primary cells, 
tissues, and cancer cell lines) have been subjected to CAGE experiments to highlight active 
transcription start sites (TSSs, derived from CAGE peaks) and their usage in mammals [4]. Over
1x106 human and 6x105 mouse CAGE peaks were identified, providing both the precise location 
of TSSs and a quantitative measure of transcriptional activity in the studied samples. It provides 
the scientific community with an unprecedented opportunity to analyze the cis-regulatory 
regions acting upon the transcription of RNAs from the identified TSSs.

The regulation of gene transcription is driven by the binding of transcription factor (TF) proteins 
to the DNA at cis-regulatory regions. Most of these TFs bind to the DNA in a sequence-specific 
manner at TF binding sites (TFBSs). Classically, TFBSs recognized by a TF are modeled using 
TF binding profiles, which capture the prefered DNA motifs bound by the TF [5]. Tools such as 
oPOSSUM [6–8] and HOMER [9] provide the ability to perform TF binding profile over-
representation analyses on sets of cis-regulatory regions to infer the likely TFs acting upon 
these regions (for instance, gene promoter regions). Specifically, the tools look for the 
enrichment of motifs in a set of foreground sequences compared to a set of background ones.

By combining sample-specific CAGE-derived cis-regulatory regions with TF binding profile 
enrichment analysis, it now becomes possible to predict the TFs that are likely involved in the 
regulation of active genes associated with TSSs. One key advantage of the CAGE technology is
its capacity to capture the specific usage of multiple TSSs (and therefore promoters) associated 
with the same gene in different samples. We hereby introduce the CAGEd-oPOSSUM tool to 
perform TF binding profile enrichment analysis from CAGE data.

This work is part of the FANTOM5 project. Data downloads, genomic tools, and co-published 
manuscripts are summarized here http://fantom.gsc.riken.jp/5/.

Usage and implementation
Through a web interface, CAGEd-oPOSSUM provides functionalities to determine the 
enrichment of TF binding profiles in a given set of user selected CAGE-derived regulatory 
regions by comparing the frequency of predicted TFBSs in the regions versus their frequency in 
background regions.

CAGE derived cis-regulatory region selection
The user can either provide a set of CAGE peak regions as a BED-formatted file, supply a set of
FANTOM5 CAGE peak identifiers [2], or select FANTOM5 samples from which CAGE peaks will
be selected according to expression level characteristics. To facilitate ease of selection in the 
latter case, an expandable tree of FANTOM5 samples, based on the corresponding FANTOM5 
sample ontology [2] derived from cell types [10], anatomical [11], and disease ontologies [12], is 
displayed. Specifically, an ontology tree is provided from which the user may select one or more
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FANTOM5 samples. The user then selects an expression level threshold by specifying either the
relative expression (corresponding to expression specificity) or a combination of the raw tag 
count and the normalized number of tags per million. CAGE peaks which meet or exceed the 
provided expression characteristics in any of the selected set of FANTOM5 samples are 
retrieved from the underlying database to be used for defining the foreground set of cis-
regulatory regions. This selected set of CAGE peaks can be further filtered based on proximity 
to specific genes, overlap with user-supplied regions of interest (such as ChIP-seq peak regions
in a BED-formatted file), or prediction as true TSSs by the TSS classifier in [2].

A similar procedure is used to select a background set of CAGE peaks. As an additional option 
for the background, the user may choose to use a random set of regions that is automatically 
generated to match the %GC composition and length characteristics of the foreground CAGE 
peak regions using the HOMER software [9].

TFBS prediction and enrichment analysis
Once the set of CAGE peaks are determined, CAGEd-oPOSSUM will extract cis-regulatory 
regions around the corresponding TSSs (for instance using 500bp up- and downstream). Note 
that overlapping regions are merged before the prediction of TFBSs using BEDTools [13] to 
avoid counting the same TFBS multiple times. A set of TF binding profiles is then selected from 
the JASPAR database [14] or provided by the user to predict TFBSs in the cis-regulatory 
regions. By default, two statistical tests are employed to determine significance as previously 
described in oPOSSUM3 [8]: (1) a Z-score based on normal approximation to the binomial 
distribution that measures the change in the relative number of TFBSs in the foreground region 
set compared with the background set, and (2) a Fisher score based on a one-tailed Fisher 
exact probability which assesses the number of regions with a TFBS in the foreground set 
versus the background set. CAGEd-oPOSSUM outputs a result table consisting of a ranked list 
of TF binding profiles based on the enrichment scores. As stated above, the enrichment 
analysis is performed using oPOSSUM3 statistical tests by default. CAGEd-oPOSSUM 
additionally allows the user to perform motif enrichment analysis through the HOMER stand-
alone package (specifically using the findMotifsGenome.pl script) [9] as a complementary 
search.

Precomputation of TFBSs for time efficiency
As the prediction of TFBSs can be time-consuming on a large set of cis-regulatory regions, a 
precomputation was performed from all FANTOM5 CAGE peaks using TFBS profiles from the 
2016 release of the JASPAR database [14]. The resulting predicted TFBSs were stored in a 
MySQL database. Briefly, flanking regions of 2,000 bp were applied to each FANTOM5 CAGE 
peak and overlapping regions were merged to create a set of maximal spanning, non-
overlapping CAGE-derived cis-regulatory regions. The genomic sequences corresponding to 
these cis-regulatory regions were extracted from Ensembl [15] and scanned with the TF binding 
profiles. TFBSs were predicted where the corresponding position weight matrix relative score 
was above 80% (as in [8]). All FANTOM5 CAGE peak positions, samples, and expression level 
data along with the computed merged regions and predicted TFBSs were stored in the 
database. This precomputation allows for the fast analyses of FANTOM5 samples using 
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JASPAR TF binding profiles as the predicted TFBSs are fetched directly from the database to 
compute the statistical enrichment scores.

If the user provides CAGE peak coordinates or TF binding profiles, a similar process of 
extracting flanking regions, merging overlapping regions, retrieving the corresponding 
sequences, and scanning these sequences for TFBSs, as described above to build the 
database, is executed in real time.

Examples of application
As case examples, we tested CAGEd-oPOSSUM on three input FANTOM5 data sets from 
human primary cell and tissue samples: liver, adult pool1 (FANTOM5 identifier FF:10018-
101C9); CD19-positive B-cells, donor 1, 2, and 3 (FF:11544-120B5, FF:11624-122B4, and 
FF:11705-123B4); and testis, adult, pool 1 and 2 (FF:10026-101D8 and FF:10096-102C6). 
Default analysis parameters were used to perform TF binding profile enrichment analyses with 
both oPOSSUM and HOMER for each of these data sets. Specifically, a CAGE peak relative 
expression level above 1 was used to select TSSs specific to the samples, flanking regions of 
500 bp upstream and downstream were extracted, background sequences matching the %GC 
composition and length of selected regulatory regions were generated with HOMER, and all 
JASPAR 2016 CORE vertebrate profiles with a minimum information content of 8 bits were used
to predict TFBSs with a relative score of at least 85% for the oPOSSUM analysis.

The most enriched profile predicted by both oPOSSUM (using the Fisher scores accounting for 
the number of cis-regulatory regions containing at least one predicted TFBS) and HOMER is 
associated with the HNF4A TF for the liver sample (Supplementary Figure 1 and Supplementary
Data). The HNF4A TF is a well characterized TF involved in the regulation of several biological 
functions in liver [16]. Using the three samples corresponding to CD19-positive B-cells, the most
enriched profiles (from both oPOSSUM and HOMER) are associated with ETS-related factors 
(Supplementary Figure 2 and Supplementary Data). Several of these ETS-related factors 
profiles are associated with TFs already known to be critical for B-cells development such as 
GABPA [17], ETS1 [18], PU.1/SPI1 [19], and SPIB [19]. In the top scoring TFs, RELA is the only 
non ETS-related factor predicted; it is known to regulate the development of B-cells and has a 
critical role in the regulation of B-cells survival [20]. Finally, from the testis samples, CAGEd-
oPOSSUM predicted RFX-related factors as the most enriched profiles (Supplementary Figure 
3 and Supplementary Data). RFX TFs have already been described to be important in testis 
during spermatogenesis [21–23]. These results highlight the accuracy of CAGEd-oPOSSUM to 
predict key master regulators driving specific expression in biological samples.

Conclusion
Building upon the large-scale availability of CAGE experiments and established tools 
(oPOSSUM3 and HOMER) for motif enrichment analysis, we introduced a new computational 
tool, CAGEd-oPOSSUM, to predict TFs regulating transcriptional events in specific cell types 
and tissues. CAGEd-oPOSSUM will empower the community with the capacity to highlight 
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specific TFs that may act as key transcriptional regulators in their biological samples of interest 
when CAGE experiments are available.

Funding
The Wasserman lab has been funded through the Genome Canada Large Scale Research 
Grant 174CDE. Funding has been provided to AM and WWW by the British Columbia Children’s
Hospital Foundation and the Child and Family Research Institute, Vancouver, Canada. 
FANTOM5 was made possible by a Research Grant for RIKEN Omics Science Center from the 
Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) to YH, Grant 
from MEXT for the RIKEN Preventive Medicine and Diagnosis Innovation Program to YH, Grant 
of the Innovative Cell Biology by Innovative Technology (Cell Innovation Program) from the 
MEXT, Japan to YH and Grant from MEXT to the RIKEN Center for Life Science Technologies.

Acknowledgments
We thank Miroslav Hatas for systems support and Dora Pak for management support, 
Wenqiang Shi and Chih-Yu Chen for comments on the manuscript, Chih-Yu Chen and Andrew 
Kwon for testing the software and providing comments, and all members of the Wasserman lab 
for insightful discussions. We thank Terry Meehan and Chris Mungall for support with the 
FANTOM5 ontology. We would like to thank all members of the FANTOM5 consortium for 
contributing to generation of samples and analysis of the data set and thank GeNAS for data 
production.

Authors' contributions
AM and WWW were responsible for project conception and oversight. DJA implemented the 
CAGEd-oPOSSUM web tool. TL was responsible for tag mapping. HK managed the data 
handling. ARRF was responsible for FANTOM5 management and its concept. DJA, WWW, and 
AM wrote the manuscript.

References
1. Kanamori-Katayama M, Itoh M, Kawaji H, Lassmann T, Katayama S, Kojima M, et al.: 

Unamplified cap analysis of gene expression on a single-molecule sequencer. Genome 
Research 2011 May 19;21:1150–1159. 

2. The FANTOM Consortium and the RIKEN PMI and CLST (dgt): A promoter-level 
mammalian expression atlas. Nature 2014 Mar 27;507:462–470. 

3. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al.: An atlas of 
active enhancers across human cell types and tissues. Nature 2014 Mar 26;507:455–461. 

4. Lizio M, Harshbarger J, Shimoji H, Severin J, Kasukawa T, Sahin S, et al.: Gateways to the 
FANTOM5 promoter level mammalian expression atlas. Genome Biology 2015;16:22. 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040667doi: bioRxiv preprint 

https://doi.org/10.1101/040667
http://creativecommons.org/licenses/by-nd/4.0/


5. Stormo GD: Modeling the specificity of protein-DNA interactions. Quant Biol 2013 
Jun;1:115–130. 

6. Ho Sui SJ, Mortimer JR, Arenillas DJ, Brumm J, Walsh CJ, Kennedy BP, et al.: oPOSSUM: 
identification of over-represented transcription factor binding sites in co-expressed genes. 
Nucleic Acids Research 2005 Jun 2;33:3154–3164. 

7. Ho Sui SJ, Fulton DL, Arenillas DJ, Kwon AT, Wasserman WW: oPOSSUM: integrated tools 
for analysis of regulatory motif over-representation. Nucleic Acids Research 2007 May 
8;35:W245–W252. 

8. Kwon AT, Arenillas DJ, Hunt RW, Wasserman WW: oPOSSUM-3: Advanced Analysis of 
Regulatory Motif Over-Representation Across Genes or ChIP-Seq Datasets. G3&#58; 
Genes|Genomes|Genetics 2012 Sep 1;2:987–1002. 

9. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al.: Simple Combinations of 
Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for 
Macrophage and B Cell Identities. Molecular Cell 2010 May 28;38:576–589. 

10. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al.: Gene ontology: tool
for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000 May;25:25–
29. 

11. Mungall CJ, Torniai C, Gkoutos GV, Lewis SE, Haendel MA: Uberon, an integrative multi-
species anatomy ontology. Genome Biol 2012;13:R5. 

12. Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, et al.: The OBO Foundry: 
coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 
2007 Nov;25:1251–1255. 

13. Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. 
Bioinformatics 2010 Mar 15;26:841–842. 

14. Mathelier A, Fornes O, Arenillas DJ, Chen C, Denay G, Lee J, et al.: JASPAR 2016: a major 
expansion and update of the open-access database of transcription factor binding profiles. 
Nucl Acids Res 2015 Nov 3;gkv1176. 

15. Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S, et al.: Ensembl 2015. Nucl 
Acids Res 2015 Jan 28;43:D662–D669. 

16. Babeu J-P, Boudreau F: Hepatocyte nuclear factor 4-alpha involvement in liver and 
intestinal inflammatory networks. World J Gastroenterol 2014 Jan 7;20:22–30. 

17. Xue H-H, Bollenbacher-Reilley J, Wu Z, Spolski R, Jing X, Zhang Y-C, et al.: The 
transcription factor GABP is a critical regulator of B lymphocyte development. Immunity 
2007 Apr;26:421–431. 

18. Eyquem S, Chemin K, Fasseu M, Chopin M, Sigaux F, Cumano A, et al.: The development 
of early and mature B cells is impaired in mice deficient for the Ets-1 transcription factor. Eur
J Immunol 2004 Nov;34:3187–3196. 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040667doi: bioRxiv preprint 

https://doi.org/10.1101/040667
http://creativecommons.org/licenses/by-nd/4.0/


19. Sokalski KM, Li SKH, Welch I, Cadieux-Pitre H-AT, Gruca MR, DeKoter RP: Deletion of 
genes encoding PU.1 and Spi-B in B cells impairs differentiation and induces pre-B cell 
acute lymphoblastic leukemia. Blood 2011 Sep 8;118:2801–2808. 

20. Prendes M, Zheng Y, Beg AA: Regulation of developing B cell survival by RelA-containing 
NF-kappa B complexes. J Immunol 2003 Oct 15;171:3963–3969. 

21. Wolfe SA, van Wert J, Grimes SR: Transcription factor RFX2 is abundant in rat testis and 
enriched in nuclei of primary spermatocytes where it appears to be required for transcription
of the testis-specific histone H1t gene. J Cell Biochem 2006 Oct 15;99:735–746. 

22. Morotomi-Yano K, Yano K, Saito H, Sun Z, Iwama A, Miki Y: Human regulatory factor X 4 
(RFX4) is a testis-specific dimeric DNA-binding protein that cooperates with other human 
RFX members. J Biol Chem 2002 Jan 4;277:836–842. 

23. Wolfe SA, Vanwert JM, Grimes SR: Transcription factor RFX4 binding to the testis-specific 
histone H1t promoter in spermatocytes may be important for regulation of H1t gene 
transcription during spermatogenesis. J Cell Biochem 2008 Sep 1;105:61–69. 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2016. ; https://doi.org/10.1101/040667doi: bioRxiv preprint 

https://doi.org/10.1101/040667
http://creativecommons.org/licenses/by-nd/4.0/

	Abstract
	Introduction
	Usage and implementation
	CAGE derived cis-regulatory region selection
	TFBS prediction and enrichment analysis
	Precomputation of TFBSs for time efficiency
	Examples of application
	Conclusion
	Funding
	Acknowledgments

