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SUMMARY9

Cortical networks exhibit intrinsic dynamics that drive coordinated, large-scale fluctuations across neuronal10

populations and create noise correlations that impact sensory coding. To investigate the network-level11

mechanisms that underlie these dynamics, we developed novel computational techniques to fit a determin-12

istic spiking network model directly to multi-neuron recordings from different species, sensory modalities,13

and behavioral states. The model accurately reproduced the wide variety of activity patterns in our record-14

ings, and analysis of its parameters suggested that differences in noise correlations across recordings were15

due primarily to differences in the strength of feedback inhibition. Further analysis of our recordings con-16

firmed that putative inhibitory interneurons were indeed more active during desynchronized cortical states17

with weak noise correlations. Our results demonstrate the power of fitting spiking network models directly to18

multi-neuron recordings and suggest that inhibition modulates the interactions between intrinsic dynamics19

and sensory inputs by controlling network stability.20
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INTRODUCTION21

The patterns of cortical activity evoked by sensory stimuli provide the internal representation of the outside22

world that underlies perception. However, these patterns are driven not only by sensory inputs, but also23

by the intrinsic dynamics of the underlying cortical network. These dynamics can create correlations in the24

activity of neuronal populations with important consequences for coding and computation [Shadlen et al.,25

1996, Abbott and Dayan, 1999, Moreno-bote et al., 2014]. The correlations between pairs of neurons26

have been studied extensively [Cohen and Kohn, 2011, Ecker et al., 2010, Averbeck et al., 2006] and27

substantial effort has been directed toward understanding their origin [Renart et al., 2010]. Recent studies28

have demonstrated that correlations are driven by dynamics involving coordinated, large-scale fluctuations29

in the activity of many neurons [Sakata and Harris, 2009, Pachitariu et al., 2015, Okun et al., 2015] and,30

importantly, that the nature of these dynamics and the correlations that they create are dependent on the31

state of the underlying network; it has been shown that various factors modulate the strength of correlations,32

such as anaesthesia [Harris and Thiele, 2011, Schölvinck et al., 2015, Constantinople and Bruno, 2011],33

attention [Cohen and Maunsell, 2009, Mitchell et al., 2009, Buran et al., 2014], locomotion [Schneider et al.,34

2014, Erisken et al., 2014], and alertness [Vinck et al., 2015, McGinley et al., 2015a]. In light of these35

findings, it is critical that we develop a deeper understanding of the origin and consequences of correlations36

at the biophysical network level.37

In this study, we use a large number of multi-neuron recordings and a model-based analysis to investigate38

the mechanisms that control noise correlations, a manifestation of intrinsic dynamics during sensory pro-39

cessing in which the variability in responses to identical stimuli is shared between neurons. For our results to40

provide direct insights into physiological mechanisms, we required a model with several properties: (1) the41

model must be able to internally generate the complex intrinsic dynamics of cortical networks, (2) it must be42

possible to fit the model parameters directly to spiking activity from individual multi-neuron recordings, and43

(3) the model must be biophysically interpretable and enable predictions that can be tested experimentally.44
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Thus far, the only network models that have been fit directly to multi-neuron recordings have relied on either45

abstract dynamical systems[Curto et al., 2009] or probabilistic frameworks in which variability is modelled46

as stochastic and shared variability arises through abstract latent variables whose origin is assumed to lie47

either in unspecified circuit processes [Ecker et al., 2014, Macke et al., 2011, Pachitariu et al., 2013] or else-48

where in the brain [Goris et al., 2014, de la Rocha et al., 2007]. While these models are able to accurately49

reproduce many features of cortical activity and provide valuable summaries of the phenomenological and50

computational properties of cortical networks, their parameters are difficult to interpret at a biophysical level.51

One alternative to these abstract stochastic models is a biophysical spiking network, which can generate52

variable neural activity through chaotic amplification of different initial conditions [van Vreeswijk and Som-53

polinsky, 1996, Amit and Brunel, 1997, Renart et al., 2010, Litwin-Kumar and Doiron, 2012, Wolf et al.,54

2014]. These networks can be designed to have interpretable parameters, but have not yet been fit directly55

to multi-neuron recordings and, thus, their use has been limited to attempts to explain qualitative features of56

cortical dynamics through manual tuning of network parameters. This approach has revealed a number of57

different network features that are capable of controlling dynamics, such as clustered connectivity [Litwin-58

Kumar and Doiron, 2012] or adaptation currents [Latham et al., 2000, Destexhe, 2009], but the inability to fit59

the networks directly to recordings has made it difficult to identify which of these features play an important60

role in vivo. To overcome this limitation, we developed a novel computational approach that allowed us to61

fit a spiking network directly to individual multi-neuron recordings. By taking advantage of the computa-62

tional power of graphics processing units (GPUs), we were able to sample from the network with millions of63

different parameter values to find those that best reproduced the activity in a given recording.64

We verified that a network with intrinsic variability and a small number of parameters was able to capture the65

apparently doubly chaotic structure of cortical activity [Churchland and Abbott, 2012] and accurately repro-66

duce the range of different spiking patterns observed in vivo. Like classical excitatory-inhibitory networks,67

the model generates deterministic microscopic trial-to-trial variability in the spike times of individual neu-68

rons [van Vreeswijk and Sompolinsky, 1996], as well as macroscopic variability in the form of coordinated,69
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large-scale fluctuations that are shared across neurons. Because these fluctuations are of variable duration,70

arise at random times, and do not necessarily phase-lock to external input, they create noise correlations in71

evoked responses that match those observed in vivo.72

To gain insight into the mechanisms that control noise correlations in vivo, we fit the network model to73

recordings from different species, sensory modalities, and behavioral states. After verifying that the model74

accurately captured the diversity of intrinsic dynamics in our recordings, we analyzed the parameters of the75

model fit to each recording and found that differences in the strength of noise correlations across recordings76

were reflected primarily in differences in the strength of feedback inhibition in the model. The importance of77

inhibition was further supported by simulations demonstrating that strong inhibition is sufficient to stabilize78

network dynamics and suppress noise correlations, as well as additional analysis of our recordings showing79

that the activity of inhibitory interneurons is increased during desynchronized cortical states with weak noise80

correlations in both awake and anesthetized animals.81

RESULTS82

Cortical networks exhibit a wide variety of intrinsic dynamics83

To obtain a representative sample of cortical activity patterns, we made multi-neuron recordings from differ-84

ent species (mouse, gerbil, or rat), sensory modalities (A1 or V1), and behavioral states (awake or under85

one of several anesthesic agents). We compiled recordings from a total of 59 multi-neuron populations86

across 6 unique recording types (i.e. species/modality/state combinations). The spontaneous activity in87

different recordings exhibited striking differences not only in overall activity level, but also in the spatial and88

temporal structure of activity patterns; while concerted, large-scale fluctuations were prominent in some89

recordings, they were nearly absent in others (Figure 1A). In general, large-scale fluctuations were weak in90

awake animals and strong under anesthesia, but this was not always the case (see summary statistics for91

each recording in Figure S1 and further examples in Figure 3).92
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The magnitude and frequency of the large-scale fluctuations in each recording were reflected in the auto-93

correlation function of the multi-unit activity (MUA, the summed spiking of all neurons in the population in94

15 ms time bins). The autocorrelation function of the MUA decayed quickly to zero for recordings with weak95

large-scale fluctuations, but had oscillations that decayed slowly for recordings with stronger fluctuations96

(Figure 1B). The activity patterns in recordings with strong large-scale fluctuations were characterized by97

clear transitions between up states, where most of the population was active, and down states, where the98

entire population was silent. These up and down state dynamics were reflected in the distribution of the99

MUA across time bins; recordings with strong large-scale fluctuations had a large percentage of time bins100

with zero spikes (Figure 1C).101

To summarize the statistical structure of the activity patterns in each recording, we measured four quantities.102

We used mean spike rate to describe the overall level of activity, mean pairwise correlations to describe the103

spatial structure of the activity patterns, and two different measures to describe the temporal structure of104

the activity patterns - the decay time of the autocorrelation function of the MUA, and the percentage of MUA105

time bins with zero spikes. While there were some dependencies in the values of these quantities across106

different recordings (Figure 1D), there was also considerable scatter both within and across recording types.107

This scatter suggests that there is no single dimension in the space of cortical dynamics along which the108

overall level of activity and the spatial and temporal structure of the activity patterns all covary, but rather109

that cortical dynamics span a multi-dimensional continuum [Harris and Thiele, 2011]. This was confirmed110

by principal component analysis; even in the already reduced space described by our summary statistics,111

three principal components were required to account for the differences in spike patterns across recordings112

(Figure 1E).113

A deterministic spiking network model of cortical activity114

To investigate the network-level mechanisms that control cortical dynamics, we developed a biophysically-115

interpretable model that was capable of reproducing the wide range of activity patterns observed in vivo.116
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We constructed a minimal deterministic network of excitatory spiking integrate-and-fire neurons with non-117

selective feedback inhibition and single-neuron adaptation currents (Figure 2A). Each neuron receives con-118

stant tonic input, and the neurons are connected randomly and sparsely with 5% probability. The neurons119

are also coupled indirectly through global, supralinear inhibitory feedback driven by the spiking of the en-120

tire network [Rubin et al., 2015], reflecting the near-complete interconnectivity between pyramidal cells and121

interneurons in local populations [Hofer et al., 2011, Fino and Yuste, 2011, Packer and Yuste, 2011]. The122

supralinearity of the inhibitory feedback is a critical feature of the network, as it shifts the balance of excitation123

and inhibition in favor of inhibition when the network is strongly driven [Haider et al., 2013].124

The model has five free parameters: three controlling the average strength of excitatory connectivity, the125

strength of inhibitory feedback, and the strength of adaptation, respectively, and two controlling the strength126

of the tonic input to each neuron, which is chosen from an exponential distribution. The timescales that127

control the decay of the excitatory, inhibitory and adaptation currents are fixed at 5 ms, 3.75 ms and 375128

ms, respectively. Note that no external noise input is required to generate variable activity; population-wide129

fluctuations over hundreds of milliseconds are generated when the slow adaptation currents synchronize130

across neurons to maintain a similar state of adaptation throughout the entire network, which, in turn, results131

in coordinated spiking [Latham et al., 2000, Destexhe, 2009].132

The variability in the model arises through chaotic amplification of small changes in initial conditions or small133

perturbations to the network that cause independent simulations to differ dramatically. In some parameter134

regimes, the instability of the network is such that the structure of the spike patterns generated by the model135

is sensitive to changes in the spike times of individual neurons. In fact, a single spike added randomly to136

a single neuron during simulated activity is capable of changing the time course of large-scale fluctuations,137

in some cases triggering immediate population-wide spiking (Figure 2B, top rows). Variability of this nature138

has been observed in vivo previously [London et al., 2010] and was also evident in our recordings when139

comparing different extracts of cortical activity; spike patterns that were similar for several seconds often140

began to differ almost immediately (Figure 2B, bottom rows).141
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Multiple features of the network model can control its dynamics142

The dynamical regime of the network model is determined by the interactions between its different features.143

To determine the degree to which each feature of the network was capable of influencing the structure of its144

activity patterns, we analyzed the effects of varying the value of each model parameter. We started from a145

fixed set of parameter values and simulated activity while independently sweeping each parameter between146

the values that led to network silence and divergence. The results of these parameter sweeps clearly147

demonstrate that each of the five parameters can exert strong control over the dynamics of the network, as148

both the overall level of activity and the spatial and temporal structure of the patterns in simulated activity149

varied widely with changes in each parameter (Figure 2C-D).150

With the set of fixed parameter values used for the perturbation analysis, the network is in an unstable151

regime with slow, ongoing fluctuations between up and down states. In this regime, the amplification of a152

small perturbation results in a sustained, prolonged burst of activity (up state), which, in turn, drives a build-153

up of adaptation currents that ultimately silences the network for hundreds of milliseconds (down state) until154

the cycle repeats. These fluctuations can be suppressed when the network is stabilized by an increase in155

the strength of feedback inhibition, which eliminates slow fluctuations and shifts the network into a regime156

with weak, tonic spiking and weak correlations (Figure 2C-D, first column); in this regime, small perturbations157

are immediately offset by the strong inhibition and activity is returned to baseline [Renart et al., 2010]. The158

fluctuations between up and down states can also be suppressed by decreasing adaptation (Figure 2C-D,159

second column); without adaptation currents to create slow, synchronous fluctuations across the network,160

neurons exhibit strong, tonic spiking.161

The stability of the network can also be influenced by changes in excitation or tonic input. Increasing162

the strength of excitation results in increased activity and stronger fluctuations, as inhibition is unable to163

compensate for the increased amplification of small perturbations by recurrent excitation (Figure 2C-D, third164

column); in regimes with strong excitation, it is only the build-up of adaptation currents that prevents the165
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network from diverging. Increasing the spread or baseline level of tonic input also results in increased166

activity, but with suppression, rather than enhancement, of slow fluctuations (Figure 2C-D, fourth and fifth167

column). As either the spread or baseline level of tonic input is increased, more neurons begin to receive168

tonic input that is sufficient to overcome their adaptation current and, thus, begin to quickly reinitiate up169

states after only brief down states and, eventually, transition to tonic spiking.170

The network model reproduces the dynamics observed in vivo171

The network simulations demonstrate that each of its features is capable of controlling its dynamics and172

shaping the structure of its activity patterns. To gain insight into the mechanisms that may be responsible173

for creating the differences in dynamics observed in vivo, we fit the model to each of our recordings. We174

optimized the model parameters so that the patterns of activity generated by the network matched those175

observed in spontaneous activity (Figure 3A). We measured the agreement between the simulated and176

recorded activity by a cost function which was the sum of discrepancies in the autocorrelation function of the177

MUA, the distribution of MUA values across time bins, and the mean pairwise correlations. Together, these178

statistics describe the overall level of activity in each recording, as well as the spatial and temporal structure179

of its activity patterns. We ensured that the optimal model parameters were uniquely identified by using a180

cost function that captures many different properties of the recorded activity while fitting only a very small181

number of model parameters [Marder et al., 2015].182

Fitting the model to the recordings required us to develop new computational techniques. The network183

parametrization is fundamentally nonlinear, and the statistics used in the cost function are themselves non-184

linear functions of a dynamical system with discontinuous integrate-and-fire mechanisms. Thus, as no185

gradient information was available to guide the optimization, we used Monte Carlo simulations to generate186

activity and measure the relevant statistics with different parameter values. By using GPU computing re-187

sources, we were able to design and implement network simulations that ran 10000x faster than real time,188

making it feasible to sample the cost function with high resolution and identify the parameter configuration189
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that resulted in activity patterns that best matched those of each recorded population.190

The model was flexible enough to capture the wide variety of activity patterns observed across our record-191

ings, producing both decorrelated, tonic spiking and coordinated, large-scale fluctuations between up and192

down states as needed (see examples in Figure 3B, statistics for all recordings and models in Figure S1,193

and parameter values and goodness-of-fit measures for all recordings in Figure S2). To our knowledge, this194

is the first time that the parameters of a spiking neural network have been fit directly to the spiking activity in195

multi-neuron recordings.196

Strong inhibition suppresses noise correlations197

Our main interest was in understanding how the different network-level mechanisms that are capable of198

controlling intrinsic dynamics contribute to the shared variability in responses evoked by sensory stimuli.199

The wide variety of intrinsic dynamics in our recordings was reflected in the differences in evoked responses200

across recording types; while some populations responded to the onset of a stimulus with strong, reliable201

spiking events, the responses of other populations were highly variable across trials (Figure 4A). There202

were also large differences in the extent to which the variability in evoked responses was shared across the203

neurons in a population; pairwise noise correlations were large in some recordings and extremely weak in204

others, even when firing rates were similar (Figure 4B).205

Because evoked spike patterns can depend strongly on the specifics of the sensory stimulus, we could not206

make direct comparisons between experimental responses across different species and modalities; our goal207

was to identify the internal mechanisms that are responsible for the differences in noise correlations across208

recordings and, thus, any differences in spike patterns due to differences in external input would confound209

our analysis. To overcome this confound and compare evoked responses across recording types, we sim-210

ulated the response of the network to the same external input for all recording types. We constructed the211

external input using recordings of responses from more than 500 neurons in the inferior colliculus (IC), the212
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primary relay nucleus of the auditory midbrain that provides the main input to the thalamocortical circuit. We213

have shown previously that the Fano factors of the responses of IC neurons to speech are close to 1 and the214

noise correlations between neurons are extremely weak [Belliveau et al., 2014], suggesting that the spiking215

activity of a population of IC neurons can be well described by series of independent, inhomogeneous Pois-216

son processes. To generate the responses of each model network to the external input, we grouped the IC217

neurons by their preferred frequency and selected a randomly chosen subset of 10 neurons from the same218

frequency group to drive each cortical neuron (Figure 4C-D). Using the subset of our cortical recordings in219

which we presented speech sounds that were also presented during the IC recordings, we verified that the220

noise correlations in the simulated cortical responses were similar to those in the recordings (Figures 4E).221

The parameter sweeps described in figure 2 demonstrated that there are multiple features of the model222

network that can control its intrinsic dynamics, and a similar analysis of the noise correlations in simulated223

responses to the IC input produced similar results (Figure S3).To gain insight into which of these features224

could account for the differences in noise correlations across our recordings, we examined the dependence225

of the strength of the noise correlations in each recording on each of the model parameters. While several226

parameters were able to explain a significant amount of the variance in noise correlations across popula-227

tions, the amount of variance explained by the strength of inhibitory feedback was by far the largest (Figure228

5A). We also performed parameter sweeps to confirm that varying only the strength of inhibition was suf-229

ficient to result in large changes in noise correlations in the dynamical regime of each recording (Figure230

5B).231

Strong inhibition sharpens tuning and enables accurate decoding232

We also examined how different features of the network controlled other aspects of evoked responses. We233

began by examining the extent to which differences in the value of each model parameter could explain234

differences in receptive field size across recordings. To estimate receptive field size, we drove the model235

network that was fit to each cortical recording with external inputs constructed from IC responses to tones,236
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and used the simulated responses to measure the width of the frequency tuning curves of each model237

neuron. Although each model network received the same external inputs, the selectivity of the neurons in238

the different networks varied widely. The average tuning width of the neurons in each network varied most239

strongly with the strength of the inhibitory feedback in the network (Figure 5C), and varying the strength of240

inhibition alone was sufficient to drive large changes in tuning width (Figure 5D). These results are consistent241

with experiments demonstrating that inhibition can control the selectivity of cortical neurons [Lee et al.,242

2012], but suggest that this control does not require structured lateral inhibition.243

We also investigated the degree to which the activity patterns generated by the model fit to each cortical244

recording could be used to discriminate different external inputs. We trained a decoder to infer which of245

seven possible speech tokens evoked a given single-trial activity pattern and examined the extent to which246

differences in the value of each model parameter could account for the differences in decoder performance247

across populations. Again, the amount of variance explained by the strength of inhibitory feedback was by far248

the largest (Figure 5E); decoding was most accurate for activity patterns generated by networks with strong249

inhibition, consistent with the weak noise correlations and high selectivity of these networks. Parameter250

sweeps confirmed that varying only the strength of inhibition was sufficient to result in large changes in251

decoder performance (Figure 5F).252

Activity of fast-spiking (FS) neurons is increased during periods of cortical desynchronization with253

weak noise correlations254

Our model-based analyses suggest an important role for feedback inhibition in controlling the way in which255

responses to sensory inputs are shaped by intrinsic dynamics. In particular, our results predict that in-256

hibition should be strong in dynamical regimes with weak noise correlations. To test this prediction, we257

performed further analysis of our recordings to estimate the strength of inhibition in each population. We258

classified the neurons in each recording based on the width of their spike waveforms (Figure S4); the wave-259

forms fell into two distinct clusters, allowing us to separate fast-spiking (FS) neurons, which are mostly260
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parvalbumin-positive (PV+) inhibitory interneurons, from regular-spiking (RS) neurons, which are mostly ex-261

citatory pyramidal neurons [Barthó et al., 2004, Madisen et al., 2012, Roux and Buzsáki, 2015, Cardin et al.,262

2009].263

Given the results of our model-based analyses, we hypothesized that the overall level of activity of FS264

neurons should vary inversely with the strength of noise correlations. To identify sets of trials in each265

recording that were likely to have either strong or weak noise correlations, we measured the level of cortical266

synchronization. Previous studies have shown that noise correlations are strong when the cortex is in267

a synchronized state, where activity is dominated by concerted, large-scale fluctuations, and weak when268

the cortex is in a desynchronized state, where these fluctuations are suppressed [Pachitariu et al., 2015,269

Schölvinck et al., 2015].270

We began by analyzing our recordings from V1 of awake mice. We classified the cortical state during each271

stimulus presentation based on the ratio of low-frequency LFP power to high-frequency LFP power [Sakata272

and Harris, 2012] and compared evoked responses across the most synchronized and desynchronized273

subsets of trials (Figure 6A). As expected, noise correlations were generally stronger during synchronized274

trials than during desynchronized trials, and this variation in noise correlations with cortical synchrony was275

evident both within individual recordings and across animals (Figure 6B-C). As predicted by our model-276

based analyses, the change in noise correlations with cortical synchrony was accompanied by a change in277

FS activity; there was a four-fold increase in the mean spike rate of FS neurons from the most synchronized278

trials to the most desynchronized trials, while RS activity remained constant (Figure 6D-F).279

We next examined our recordings from gerbil A1 under urethane in which the cortex exhibited transitions280

between distinct, sustained synchronized and desynchronized states (Figure 6G). As in our awake record-281

ings, cortical desynchronization under urethane was accompanied by a decrease in noise correlations and282

an increase in FS activity (Figures 6I-K). In fact, both FS and RS activity increased with cortical desynchro-283

nization under urethane, but the increase in FS activity was much larger.284
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Finally, we examined our remaining recordings from gerbil A1 under either ketamine/xylazine (KX) or fen-285

tanyl/medetomidine/midazolam (FMM) anesthesia. In these recordings, the cortex did not transition between286

different dynamical regimes, so we could not track changes in noise correlations and FS activity within indi-287

vidual populations. However, recordings under KX and FMM exhibited stable states with high and low noise288

correlations respectively [Pachitariu et al., 2015] (Figure 7A), so we were able to make comparisons across289

recordings. Noise correlations under FMM were extremely weak, while those under KX were the largest290

in any of our recordings, so we expected FS activity under FMM to be much higher than that under KX.291

Surprisingly, our initial analysis suggested the opposite; the average spike rate of FS neurons under KX was292

larger than that under FMM (Figure 7B). Further analysis revealed, however, that there were many fewer293

FS neurons in our KX populations than in our FMM populations (Figure 7C; all recordings were made in294

the same region of gerbil A1 with the same multi-tetrode arrays, so a similar number of FS neurons should295

be expected). The lack of FS neurons in our KX recordings suggests that inhibition under KX is so weak296

that many FS cells become completely silent. When we measured FS activity as the sum of all spiking in297

each population rather than the average spike rate of each neuron, the amount of FS activity was indeed298

much larger under FMM than under KX, consistent with our observations in other recording types and the299

predictions of our model-based analyses (Figure 7D-E).300

DISCUSSION301

We have shown that a deterministic spiking network model is capable of reproducing the wide variety of302

multi-neuron cortical activity patterns observed in vivo. Through chaotic amplification of small perturbations,303

the model generates activity with both trial-to-trial variability in the spike times of individual neurons and304

coordinated, large-scale fluctuations of the entire network. Although several features of the model network305

are capable of controlling its intrinsic dynamics, our analysis suggests that the differences in the shared306

variability in evoked responses across our in vivo recordings can be accounted for by differences in feedback307

inhibition. When we fit the model to each of our individual recordings, we found that noise correlations, as308
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well as stimulus selectivity and decoding accuracy, varied strongly with the strength of inhibition in the309

network. We also found that the activity of fast-spiking neurons in our recordings was increased during310

periods of cortical desynchronization with weak noise correlations. Taken together, these results suggest311

that the control of network stability by inhibition plays a critical role in modulating the impact of intrinsic312

cortical dynamics on sensory responses.313

Inhibition controls the strength of the large-scale fluctuations that drive noise correlations314

Our results are consistent with experiments showing that one global dimension of variability largely explains315

both the pairwise correlations between neurons [Okun et al., 2015] and the time course of population ac-316

tivity [Ecker et al., 2014]. In our network model, the coordinated, large-scale fluctuations that underlie this317

global dimension of variability are generated primarily by the interaction between recurrent excitation and318

adaptation. When inhibition is weak, small deviations from the mean spike rate can be amplified by strong,319

non-specific, recurrent excitation into population-wide events (up states). These events produce strong320

adaptation currents in each activated neuron, which, in turn, result in periods of reduced spiking (down321

states) [Latham et al., 2000, Destexhe, 2009, Curto et al., 2009, Mochol et al., 2015]. The alternations322

between up states and down states have an intrinsic periodicity given by the timescale of the adaptation323

currents, but the chaotic nature of the network adds an apparent randomness to the timing of individual324

events, thus creating intrinsic temporal variability.325

The intrinsic temporal variability in the network imposes a history dependence on evoked responses; be-326

cause of the build-up of adaptation currents during each spiking event, external inputs arriving shortly after327

an up state will generally result in many fewer spikes than those arriving during a down state [Curto et al.,328

2009]. This history dependence creates a trial-to-trial variability in the total number of stimulus-evoked329

spikes that is propagated and reinforced across consecutive stimulus presentations to create noise corre-330

lations. However, when the strength of the inhibition in the network is increased, the inhibitory feedback is331

able to suppress some of the amplification by the recurrent excitation, and the transitions between clear up332
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and down states are replaced by weaker fluctuations of spike rate that vary more smoothly over time. If the333

strength of the inhibition is increased even further, such that it becomes sufficient to counteract the effects334

of the recurrent excitation entirely, then the large-scale fluctuations in the network disappear, weakening the335

history dependence of evoked responses and eliminating noise correlations.336

Global inhibition sharpens tuning curves and enables accurate decoding by stabilizing network dy-337

namics338

Numerous experiments have demonstrated that inhibition can shape the tuning curves of cortical neurons,339

with stronger inhibition generally resulting in sharper tuning [Isaacson and Scanziani, 2011]. The mecha-340

nisms involved are still a subject of debate, but this sharpening is often thought to result from structured341

connectivity that produces differences in the tuning of the excitatory and inhibitory synaptic inputs to individ-342

ual neurons; lateral inhibition, for example, can sharpen tuning when neurons with similar, but not identical,343

tuning properties inhibit each other. Our results, however, demonstrate that strong inhibition can sharpen344

tuning in a network without any structured connectivity simply by controlling its dynamics.345

In our model, broad tuning curves result from the over-excitability of the network. When inhibition is weak,346

every external input will eventually excite every neuron in the network because those neurons that receive347

the input directly will relay indirect excitation to the rest of the network. When inhibition is strong, however,348

the indirect excitation is largely suppressed, allowing each neuron to respond selectively to only those349

external inputs that it receives either directly or from one of the few other neurons to which it is strongly350

coupled. Thus, when inhibition is weak and the network is unstable, different external inputs will trigger351

similar population-wide events [Bathellier et al., 2012], so the selectivity of the network in this regime is352

weak and its ability to encode differences between sensory stimuli is poor. In contrast, when inhibition is353

strong and the network is stable, different external inputs will reliably drive different subsets of neurons, and354

the activity patterns in the network will encode different stimuli with high selectivity and enable accurate355

decoding.356
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Experimental evidence for inhibitory stabilization of cortical dynamics357

The results of several previous experimental studies also support the idea that strong inhibition can sta-358

bilize cortical networks and enhance sensory coding. In vitro studies have shown that pharmacologically359

reducing inhibition in S1 increases the strength of the correlations between excitatory cells in a graded man-360

ner [Sippy and Yuste, 2013]. In vivo whole-cell recordings in V1 of awake animals have demonstrated that361

the stimulus-evoked inhibitory conductance is much larger than the corresponding excitatory conductance362

[Haider et al., 2013]. This strong inhibition in awake animals quickly shunts the excitatory drive and results in363

sharper tuning and sparser firing than the balanced excitatory and inhibitory conductances observed under364

anesthesia. While some of the increased inhibition in awake animals may be due to inputs from other brain365

areas [Yu et al., 2015], the increased activity of local inhibitory interneurons appears to play an important366

role [Schneider et al., 2014, Kato et al., 2013]. However, not all studies have observed increased inhibition367

in behaving animals [Zhou et al., 2014], and the effects of behavioral state on different inhibitory interneuron368

types are still being investigated [Gentet et al., 2010, Gentet et al., 2012, Polack et al., 2013].369

The effects of local inhibition on sensory coding have been tested directly using optogenetics. While the370

exact roles played by different inhibitory neuron types are still under debate [Lee et al., 2014], the activation371

of inhibitory interneurons generally results in sharper tuning and enhanced behavioral performance [Wilson372

et al., 2012, Lee et al., 2012], while suppression of inhibitory interneurons has the opposite effect, decreas-373

ing the signal-to-noise ratio and reliability of evoked responses across trials [Zhu et al., 2015]. These results374

demonstrate that increased inhibition enhances sensory processing and are consistent with the overall sup-375

pression of cortical activity that is often observed during active behaviors [Otazu et al., 2009, Schneider376

et al., 2014, Kuchibhotla et al., 2016, Buran et al., 2014]. In fact, one recent study found that the best377

performance in a detection task was observed on trials in which the pre-stimulus membrane voltage was378

hyperpolarized and low-frequency fluctuations were absent [McGinley et al., 2015a], consistent with a sup-379

pressed, inhibition-stabilized network state.380
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Two different dynamical regimes with weak noise correlations381

A number of studies have observed that the noise correlations in cortical networks can be extremely weak382

under certain conditions [Ecker et al., 2010, Renart et al., 2010, Hansen et al., 2012, Pachitariu et al., 2015].383

It was originally suggested that noise correlations were weak because the network was in an asynchronous384

state in which neurons are continuously depolarized with a resting potential close to the spiking thresh-385

old [Renart et al., 2010, van Vreeswijk and Sompolinsky, 1996]. Experimental support for this classical386

asynchronous state has been provided by intracellular recordings showing that the membrane potential of387

cortical neurons is increased during locomotion [McGinley et al., 2015a] and hyper-arousal [Constantinople388

and Bruno, 2011], resulting in tonic spiking. However, other experiments have shown that the membrane389

potential of cortical neurons in behaving animals can also be strongly hyperpolarized with clear fluctuations390

between up and down states [Sachidhanandam et al., 2013, Tan et al., 2014, McGinley et al., 2015a, Polack391

et al., 2013].392

These apparently conflicting results suggest that there may be multiple dynamical regimes in behaving an-393

imals that are capable of producing weak noise correlations. There is mounting evidence suggesting that394

different forms of arousal may have distinct effects on neural activity [McGinley et al., 2015b]. While most395

forms of arousal tend to reduce the power of low-frequency fluctuations in membrane potential [Bennett396

et al., 2013, Polack et al., 2013, McGinley et al., 2015a], locomotion tends to cause a persistent depolar-397

ization of cortical neurons and drive tonic spiking, while task-engagement in stationary animals is generally398

associated with hyperpolarization and weak activity [Vinck et al., 2015, Polack et al., 2013, McGinley et al.,399

2015a, Otazu et al., 2009, Buran et al., 2014]. The existence of two different dynamical regimes with weak400

noise correlations was also apparent in our recordings; while some recordings with weak noise correlations401

resembled the classical asynchronous state with spontaneous activity consisting of strong, tonic spiking402

(e.g. desynchronized urethane recordings and some awake recordings), other recordings with weak noise403

correlations had relatively low spontaneous activity with clear, albeit weak, up and down states (e.g. FMM404

recordings and other awake recordings). Our model was able to accurately reproduce spontaneous activity405
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patterns and generate evoked responses with weak noise correlations in both of these distinct regimes.406

In addition to strong inhibition, the classical asynchronous state with strong, tonic spiking appears to require407

a combination of weak adaptation and an increase in the number of neurons receiving strong tonic input (see408

parameter sweeps in Figures 2C-D and parameter values for awake mouse V1 recordings in Figure S2).409

Since large-scale fluctuations arise from the synchronization of adaptation currents across the population,410

reducing the strength of adaptation diminishes the fluctuations [Destexhe, 2009, Curto et al., 2009, Mochol411

et al., 2015]. Increasing tonic input also diminishes large-scale fluctuations, but in a different way [Latham412

et al., 2000]; when a subset of neurons receive increased tonic input, their adaptation currents may no413

longer be sufficient to silence them for prolonged periods, and the activity of these cells during what would414

otherwise be a down state prevents the entire population from synchronizing. When the network in the415

asynchronous state is driven by an external input, it responds reliably and selectively to different inputs.416

Because the fluctuations in the network are suppressed and its overall level of activity remains relatively417

constant, every input arrives with the network in the same moderately-adapted state, so there is no history418

dependence to create noise correlations in evoked responses.419

Unlike in the classical asynchronous state, networks in the hyperpolarized state have slow fluctuations in420

their spontaneous activity, and the suppression of noise correlations in their evoked responses is dependent421

on different mechanisms (see parameter values for gerbil A1 FMM recordings in Figure S2). The fluctuations422

in the hyperpolarized network are only suppressed when the network is driven by external input. In our423

model, this suppression of the shared variability in evoked responses is caused by the supralinearity of424

the feedback inhibition [Rubin et al., 2015]. The level of spontaneous activity driven by the tonic input to425

each neuron results in feedback inhibition with a relatively low gain, which is insufficient to overcome the426

instability created by recurrent excitation. However, when the network is strongly driven by external input,427

the increased activity results in feedback inhibition with a much higher gain, which stabilizes the network428

and allows it to respond reliably and selectively to different inputs. This increase in the inhibitory gain of429

the driven network provides a possible mechanistic explanation for the recent observation that the onset of430
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a stimulus quenches variability [Churchland et al., 2010] and switches the cortex from a synchronized to a431

desynchronized state [Tan et al., 2014].432

Neuromodulators and inhibitory control of cortical dynamics433

Neuromodulators can exert a strong influence on cortical dynamics by regulating the balance of excita-434

tion and inhibition in the network. While the exact mechanisms by which neuromodulators control cortical435

dynamics are not clear, several lines of evidence suggest that neuromodulator release serves to enhance436

sensory processing by increasing inhibition. Increases in acetylcholine (ACh) and norepinephrine (NE) have437

been observed during wakefulness and arousal [Berridge and Waterhouse, 2003, Jones, 2008], and dur-438

ing periods of cortical desynchronization in which slow fluctuations in the LFP are suppressed [Goard and439

Dan, 2009, Chen et al., 2015, Castro-Alamancos and Gulati, 2014]. Stimulation of the basal forebrain has440

been shown to produce ACh-mediated increases in the activity of fast-spiking neurons and decrease the441

variability of evoked responses in cortex [Sakata, 2016, Castro-Alamancos and Gulati, 2014, Goard and442

Dan, 2009]. In addition, optogenetic activation of cholinergic projections to cortex resulted in increased443

firing of SOM+ inhibitory neurons and reduced slow fluctuations [Chen et al., 2015]. The release of NE in444

cortex through microdialysis had similar effects, increasing fast-spiking activity and reducing spontaneous445

spike rates [Castro-Alamancos and Gulati, 2014], while blocking NE receptors strengthened slow fluctua-446

tions in membrane potential [Constantinople and Bruno, 2011]. More studies are needed to tease apart447

the effects of different neurotransmitters on pyramidal cells and interneurons [Castro-Alamancos and Gulati,448

2014, Chen et al., 2015, Sakata, 2016], but most of the existing evidence is consistent with our results in449

suggesting that neuromodulators serve to suppress intrinsic fluctuations and enhance sensory processing450

in cortical networks by increasing inhibition.451
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FIGURE CAPTIONS638

Figure 1. Cortical networks exhibit a wide variety of intrinsic dynamics639

(A) Multi-neuron raster plots showing examples of a short segment of spontaneous activity from each of our640

recording types. Each row in each plot represents the spiking of one single unit. Note that recordings made641

under urethane were separated into two different recording types, synchronized (sync) and desynchronized642

(desync), as described in the Methods.643

(B) The autocorrelation function of the multi-unit activity (MUA, the summed spiking of all neurons in the644

population in 15 ms time bins) for each example recording. The timescale of the autocorrelation function645

(the autocorr decay) was measured by fitting an exponential function to its envelope as indicated.646

(C) The values of the MUA across time bins sorted in ascending order. The percentage of time bins with647

zero spikes (the % silence) is indicated.648

(D) Scatter plots showing all possible pairwise combinations of the summary statistics for each recording.649

Each point represents the values for one recording. Colors correspond to recording types as in A. The650

recordings shown in A are denoted by open circles. The best fit line and the fraction of the variance that it651

explained are indicated on each plot.652

(E) The percent of the variance in the summary statistics across recordings that is explained by each prin-653

cipal component of the values.654

Figure 2. A deterministic spiking network model of cortical activity655

(A) A schematic diagram of our deterministic spiking network model. An example of a short segment of the656

intracellular voltage of a model neuron is also shown, along with the corresponding excitatory, inhibitory and657

adaptation currents.658
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(B) An example of macroscopic variability in cortical recordings and network simulations. The top two multi-659

neuron raster plots show spontaneous activity generated by the model. By adding a very small perturbation,660

in this case one spike added to a single neuron, the subsequent activity patterns of the network can change661

dramatically. The middle traces show the intracellular voltage of the model neuron to which the spike was662

added. The bottom two raster plots show a similar phenomenon observed in vivo. Two segments of ac-663

tivity extracted from different periods during the same recording were similar for three seconds, but then664

immediately diverged.665

(C) The autocorrelation function of the MUA measured from network simulations with different model pa-666

rameter values. Each column shows the changes in the autocorrelation function as the value of one model667

parameter is changed while all others are held fixed. The fixed values used were wI = 0.22, wA = 0.80,668

wE = 4.50, b1 = 0.03, b0 = 0.013.669

(D) The summary statistics measured from network simulations with different model parameter values. Each670

line shows the changes in the indicated summary statistic as one model parameter is changed while all671

others are held fixed. Fixed values were as in C.672

Figure 3. Deterministic spiking networks reproduce the dynamics observed in vivo673

(A) A schematic diagram illustrating how the parameters of the network model were fit to individual multi-674

neuron recordings.675

(B) Examples of spontaneous activity from different recordings, along with spontaneous activity generated676

by the model fit to each recording.677

(C) The left column shows the autocorrelation function of the MUA for each recording, plotted as in Figure678

1. The black lines show the autocorrelation function measured from spontaneous activity generated by the679

model fit to each recording. The middle column shows the sorted MUA for each recording along with the680

corresponding model fit. The right column shows the mean pairwise correlations between the spiking activity681
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of all pairs of neurons in each recording (after binning activity in 15 ms bins). The colored circles show the682

correlations measured from the recordings and the black open circles show the correlations measured from683

from spontaneous activity generated by the model fit to each recording.684

Figure 4. Deterministic spiking networks reproduce the noise correlations observed in vivo685

(A) Multi-neuron raster plots and PSTHs showing examples of evoked responses from each of our recording686

types. Each row in each raster plot represents the spiking of one single unit. Each raster plot for each record-687

ing type shows the response on a single trial. The PSTH shows the MUA averaged across all presentations688

of the stimulus. Different stimuli were used for different recording types (see Methods).689

(B) A scatter plot showing the mean spike rates and mean pairwise noise correlations (after binning the690

evoked responses in 15 ms bins) for each recording. Each point represents the values for one recording.691

Colors correspond to recording types as in A. The recordings shown in A are denoted by open circles.692

Values are only shown for the 38 of 59 recordings that contained both spontaneous activity and evoked693

responses.694

(C) A schematic diagram illustrating the modelling of evoked responses.695

(D) The top left plot shows the speech waveform presented in the IC recordings used as input to the model696

cortical network. The top right plot shows PSTHs formed by averaging IC responses across all presentations697

of speech and across all IC neurons in each preferred frequency group. The raster plots show the recorded698

responses of two cortical populations to repeated presentations of speech, along with the activity generated699

by the network model fit to each recording when driven by IC responses to the same speech.700

(E) A scatter plot showing the noise correlations of speech responses measured from the actual recordings701

and from simulations of the network model fit to each recording when driven by IC responses to speech.702
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Figure 5. Strong inhibition suppresses noise correlations, enhances selectivity, and enables accu-703

rate decoding704

(A) Scatter plots showing the mean pairwise noise correlations measured from simulations of the network705

model fit to each recording when driven by IC responses to speech versus the value of the different model706

parameters. Colors correspond to recording types as in Figure 4. The recordings shown in Figure 4D are707

denoted by open circles.708

(B) The mean pairwise noise correlations measured from network simulations with different values of the709

inhibition parameter wI . The values of all other parameters were held fixed at those fit to each recording.710

Each line corresponds to one recording. Colors correspond to recording types as in Figure 4.711

(C,E) Scatter plots showing tuning width and decoding error, plotted as in A.712

(D,F) The tuning width and decoding error measured from network simulations with different values of the713

inhibition parameter wI , plotted as in B.714

Figure 6. Fast-spiking neurons are more active during periods of cortical desynchronization with715

weak noise correlations716

(A) The cortical synchrony at different points during two recordings from V1 of awake mice, measured as717

the log of the ratio of low-frequency (3 -10 Hz) LFP power to high-frequency (11 - 96 Hz). The distribution of718

synchrony values across each recording is also shown. The lines indicate the median of each distribution.719

(B) A scatter plot showing the noise correlations measured during trials in which the cortex was in either a720

relatively synchronized (sync) or desynchronized (desync) state for each recording. Each point indicates the721

mean pairwise correlations between the spiking activity of all pairs of neurons in one recording (after binning722

the activity in 15 ms bins). Trials with the highest 50% of synchrony values were classified as sync and trials723

with the lowest 50% of synchrony values were classified as desync. Values for 13 different recordings are724
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shown.725

(C) A scatter plot showing noise correlations versus the mean synchrony for trials with the highest and lowest726

50% of synchrony values for each recording. Colors indicate different recordings.727

(D) Spectrograms showing the average LFP power during trials with the highest (sync) and lowest (desync)728

20% of synchrony values across all recordings. The values shown are the deviation from the average729

spectrogram computed over all trials.730

(E) The average PSTHs of FS and RS neurons measured from evoked responses during trials with the731

highest (sync) and lowest (desync) 20% of synchrony values across all recordings. The lines show the732

mean across all cells, and the error bars indicate +/-1 SEM.733

(F) The average spike rate of FS and RS neurons during the period from 0 to 500 ms following stimulus734

onset, averaged across trials in each synchrony quintile. The lines show the mean across all cells, and the735

error bars indicate +/-1 SEM.736

(G) The cortical synchrony at different points during a urethane recording, plotted as in A. The line indicates737

the value used to classify trials as synchronized (sync) or desynchronized (desync).738

(H) A scatter plot showing the noise correlations measured during trials in which the cortex was in either a739

synchronized (sync) or desynchronized (desync) state. Values for two different recordings are shown. Each740

point for each recording shows the noise correlations measured from responses to a different speech token.741

(I) Spectrograms showing the average LFP power during synchronized and desynchronized trials, plotted742

as in D.743

(J) The average PSTHs of FS and RS neurons during synchronized and desynchronized trials, plotted as in744

E.745

(K) The average spike rate of FS and regular-spiking RS neurons during the period from 0 to 500 ms746

32

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 24, 2016. ; https://doi.org/10.1101/041103doi: bioRxiv preprint 

https://doi.org/10.1101/041103


following stimulus onset during synchronized and desynchronized trials. The bars show the mean across all747

cells, and the error bars indicate +/-1 SEM.748

Figure 7. Many fast-spiking neurons are silent under ketamine/xylazine anesthesia749

(A) The noise correlations measured from recordings of responses to speech in gerbil A1 under ketamine/xylazine750

(KX) and fentanyl/medetomidine/midazolam (FMM). Each point indicates the mean pairwise correlations be-751

tween the spiking activity of all pairs of neurons in one recording (after binning the activity in 15 ms bins).752

(B) The average PSTHs of FS and RS neurons under FMM or KX, plotted as in Figure 6.753

(C) The average number of FS and regular-spiking RS neurons in recordings under FMM and KX. The bars754

show the mean across all recordings, and the error bars indicate +/-1 SEM.755

(D) The summed PSTHs of FS and RS neurons under FMM or KX, plotted as in Figure 6.756

(E) The ratio of the total number of spikes from FS and RS neurons during the period from 0 to 500 ms757

following stimulus onset. Each point shows the value for one recording.758

METHODS759

All of the recordings analyzed in this study have been described previously. Only a brief summary of the760

relevant experimental details are provided here.761

Mouse V1762

The experimental details for the mouse V1 recordings have been previously described [Okun et al., 2015].763

Briefly, mice were implanted with head plates under anaesthesia, and after a few days of recovery were764

accustomed to having their head fixed while sitting or standing in a custom built tube. On the day of the765

recording, the mice were briefly anaesthetised with isoflurane, and a small craniectomy above V1 was made.766
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Recordings were performed at least 1.5h after the animals recovered from the anaesthesia. Buzsaki32 or767

A4x8 silicon probes were used to record the spiking activity of populations of neurons in the infragranular768

layers of V1.769

Visual stimuli were presented on two of the three available LCD monitors, positioned 25 cm from the animal770

and covering a field of view of 120 60, extending in front and to the right of the animal. Visual stimuli771

consisted of multiple presentations of natural movie video clips. For recordings of spontaneous activity, the772

monitors showed a uniform grey background.773

Rat A1774

The experimental procedures for the rat A1 recordings have been previously described [Luczak et al., 2009].775

Briefly, head posts were implanted on the skull of Sprague Dawley rats (300500 g) under ketaminexylazine776

anesthesia, and a hole was drilled above the auditory cortex and covered with wax and dental acrylic. After777

recovery, each animal was trained for 68 d to remain motionless in the restraining apparatus for increasing778

periods (target, 12 h). On the day of the recording, each animal was briefly anesthetized with isoflurane779

and the dura resected; after a 1 h recovery period, recording began. The recordings were made from780

infragranular layers of auditory cortex with 32-channel silicon multi-tetrode arrays.781

Sounds were delivered through a free-field speaker. As stimuli we used pure tones (3, 7, 12, 20, or 30 kHz782

at 60 dB). Each stimulus had duration of 1s followed by 1s of silence.783

Gerbil A1784

The gerbil A1 recordings have been described in detail previously [Pachitariu et al., 2015]. Briefly, adult male785

gerbils (70-90 g, P60-120) were anesthetized with one of three different anesthetics: ketamine/xylazine (KX),786

fentanyl/medetomidine/midazolam (FMM), or urethane. A small metal rod was mounted on the skull and787

used to secure the head of the animal in a stereotaxic device in a sound-attenuated chamber. A craniotomy788

was made over the primary auditory cortex, an incision was made in the dura mater, and a 32-channel789

silicon multi-tetrode array was inserted into the brain. Only recordings from A1 were analyzed. Recordings790
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were made between 1 and 1.5 mm from the cortical surface (most likely in layer V).791

Sounds were delivered to speakers coupled to tubes inserted into both ear canals for diotic sound presen-792

tation along with microphones for calibration. Repeated presentations of a 2.5 s segment of human speech793

were presented at a peak intensity of 75 dB SPL. For analyses of responses to different speech tokens,794

seven 0.25 s segments were extracted from the responses to each 2.5 s segment.795

Gerbil IC796

The gerbil IC recordings have been described in detail previously [Garcia-Lazaro et al., 2013]. Recordings797

were made under ketamine/xylazine anesthesia using a multi-tetrode array placed in the low-frequency798

laminae of the central nucleus of the IC. Experimental details were otherwise identical to those for gerbil A1.799

In addition to the human speech presented during the A1 recordings, tones with a duration of 75 ms and800

frequencies between 256 Hz and 8192 Hz were presented at intensities between 55 and 85 dB SPL with a801

75 ms pause between each presentation.802

Simulations803

We developed a network model using conductance-based quadratic integrate and fire neurons. There are

three currents in the model: an excitatory, an inhibitory and an adaptation current. The subthreshold mem-

brane potential for a single neuron i obeys the equation

τm
dVi
dt

= −(Vi − EL) ∗ (Vi − Vth)− gEi(Vi − EE)− gIi(Vi − EI) +−gDi(Vi − ED).

When V > Vth, a spike is recorded in the neuron and the neuron’s voltage is reset to Vreset = 0.9Vth. For

simplicity, we set Vth = 1 and the leak voltage EL = 0. The excitatory voltage EE = 2Vth and EI = ED =

−0.5Vth. Each of the conductances has a representative differential equation which is dependent on the
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spiking of the neurons in the network at the previous time step, st−1. The excitatory conductance obeys

τE
dgE
dt

= −gE +Ast−1 + b.

where A is the matrix of excitatory connectivity and b is the vector of tonic inputs to the neurons. The matrix

of connectivity is random with a probability of 5% for the network of 512 neurons and their connectivities

are randomly chosen from a uniform distribution between 0 and wE . The tonic inputs b have a minimum

value b0, which we call the tonic input baseline added to a random draw from an exponential distribution with

mean b1, which we call the tonic input spread, such that for neuron i b(i) = b0 + exprnd(b1). The inhibitory

conductance obeys

τI
dgI
dt

= −gI + wI ∗ (exp(
∑

st−1 ∗ c)− 1).

where c controls the gain of the inhibitory conductance.804

The adaptation conductance obeys

τA
dgA
dt

= −gA + wAst−1.

The simulations are numerically computed using Eulers method with a time-step of 0.75 ms (this was the805

lock-out window used for spike-sorting the in vivo recordings). Each parameter set was simulated for 900806

seconds. The timescales are set to τm = 20 ms, τE = 5.10 ms, τI = 3.75 ms, τA = 375 ms, and the inhibitory807

non-linearity controlled by c = 0.25. The remaining five parameters (wI , wA, wE , b1, and b0) were fit to the808

spontaneous activity from multi-neuron recordings using the techniques described below. Their ranges were809

(0.01-0.4), (0.4-1.45), (2.50-5.00), (0.005-0.10), and (0.0001-0.05) respectively.810

To illustrate the ability of the network to generate activity patterns with macroscopic variability, we simulated811
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spontaneous activity with a parameter set that produces up and down state dynamics. Figure 2A shows the812

membrane potential of a single neuron in this simulation and its conductances at each time step. Figure813

2B shows the model run twice with the same set of initial conditions and parameters, but with an additional814

single spike inserted into the network on the second run (circled in green).815

Parameter sweep analysis816

Figure 2C and D summarize the effects of changing each parameter on the structure of the spontaneous817

activity patterns generated by the model. We held the values for all but one parameter fixed and swept818

the other parameters values over the range in which network responses were not diverging and the network819

was not completely silent. The fixed parameter values were set to approximately the median values obtained820

from fits to all in vivo recordings. A similar parameter sweep analysis was performed in Figure 5 B, D, and821

F. For this analysis, only inhibition was varied and the other parameter values were fixed as those fit to each822

individual recording.823

GPU implementation824

We accelerated the network simulations by programming them on graphics processing units (GPUs) such825

that we were able to run them at 650x real time with 15 networks running concurrently on the same GPU.826

We were thus able to simulate ≈10000 seconds of simulation time in 1 second of real time. To achieve this827

acceleration, we took advantage of the large memory bandwidth of the GPUs. For networks of 512 neurons,828

the state of the network (spikes, conductances and membrane potentials) can be stored in the very fast829

shared memory available on each multiprocessor inside a GPU. A separate network was simulated on each830

of the 8 or 15 multiprocesssors available (video cards were GTX 690 or Titan Black). Low-level CUDA code831

was interfaced with Matlab via mex routines.832

Summary statistics833

Several statistics of spikes were used to summarize the activity patterns observed in the in vivo recordings834

and in the network simulations. Because there were on the order of 50 neurons in each recording, all of835
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the statistics below were influenced by small sample effects. To replicate this bias in the analysis of network836

simulations, we subsampled 50 neurons from the network randomly and computed the same statistics we837

computed from the in vivo recordings.838

The noise correlations between each pair of cells in each population were measured from responses to839

speech. The response of each cell to each trial was represented as a binary vector with 15 ms time bins.840

The total correlation for each pair of cells was obtained by computing the correlation coefficient between the841

actual responses. The signal correlation was computed after shuffling the order of repeated trials for each842

time bin. The noise correlation was obtained by subtracting the signal correlation from the total correlation.843

The multi-unit activity (MUA) was computed as the sum of spikes in all neurons in bins of 15 ms.844

The autocorrelation function of the MUA at time-lag τ was computed from the formula

ACF(τ) =
1

Nsamples

∑
MUA(t) ∗MUA(t+ τ)

To measure the autocorrelation timescale, we fit one side of the ACF with a parametric function

ACF(τ) ∼ A exp(−τ/T ) · cos(τ/(2πtperiod))

where A is an overall amplitude, T is a decay timescale and tperiod is the oscillation period of the autocor-845

relation function. There was not always a significant oscillatory component in the ACF, but the timescale of846

decay accurately captured the duration over which the MUA was significantly correlated.847

Parameter searches848

To find the best fit parameters for each individual recording, we tried to find the set of model parameters for849

which the in vivo activity and the network simulations had the same statistics. We measured goodness of fit850

for each of the three statistics: pairwise correlations, the MUA distribution, the MUA ACF. Each statistic was851
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normalized appropriately to order 1, and the three numbers obtained were averaged to obtain an overall852

goodness of fit.853

The distance measure Dc between the mean correlations cθ obtained from a set of parameters θ and the

mean correlations cn in dataset n was simply the squared error Dc(cn, cθ) = (cn−cθ)2. This was normalized

by the variance of the mean correlations across datasets to obtain the normalized correlation cost Costc,

where 〈xn〉n is used to denote the average of a variable x over datasets indexed by n.

Costc =
Dc(cn, cθ)

〈Dc(cn, 〈cn〉)〉

The distance measure Dm for the MUA distribution was the squared difference summed over the order

rank bins k of the distribution Dm(MUAn,MUAθ) =
∑
k

(MUAn(k)−MUAθ(k))2. This was normalized by the

distance between the data MUA and the mean data MUA. In other words, the cost measures how much

closer the simulation is to the data distribution than the average of all data distributions.

Costm =
Dm(MUAn,MUAθ)
Dm(MUAn, 〈MUAn〉)

Finally, the distance measure Da for the autocorrelation function of the MUA was the squared difference

summed over time lag bins t of the distribution Da(ACFn,ACFθ) =
∑
t

(ACFn(t) − ACFθ(t))2. This was

normalized by the distance between the data ACF and the mean data ACF.

Costa =
Da(ACFn,ACFθ)
Da(ACFn, 〈ACFn〉)

The total cost of parameters θ on dataset n is therefore Cost(n, θ) = Costc +Costm +Costa. Approximately854

two million networks were simulated on a grid of parameters for 600 seconds each of spontaneous activity,855

and their summary statistics (cθ,MUAθ and ACFθ) were retained. The Cost was smoothed for each dataset856

by averaging with the nearest 10 other simulations on the grid. This ensured that some of the sampling noise857
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was removed and parameters were estimated more robustly. The best fit set of parameters was chosen as858

the minimizer of this smoothed cost function, on a dataset by dataset basis.859

Stimulus-driven activity860

Once the simulated networks were fit to the spontaneous neuronal activity, we drove them with an external861

input to study their evoked responses. The stimulus was either human speech (as presented during our862

gerbil A1 recordings) or pure tones. The external input to the network was constructed using recordings863

from 563 neurons from the inferior colliculus (IC). For all recordings in the IC the mean pairwise noise864

correlations were near-zero and the Fano Factors of individual neurons were close to 1 [Belliveau et al.,865

2014], suggesting that responses of IC neurons on a trial-by-trial basis are fully determined by the stimulus866

alone, up to Poisson-like variability. Hence, we averaged the responses of IC neurons over trials and drove867

the cortical network with this trial-averaged IC activity. We binned IC neurons by their preferred frequency in868

response to pure tones, and drove each model cortical neuron with a randomly chosen subset of 10 neurons869

from the same preferred-frequency bin. We rescaled the IC activity so that the input to the network had a870

mean value of 0.06 and a maximum value of 0.32, which was three times greater than the average tonic871

input.872

We kept the model parameters fixed at the values fit to spontaneous activity and drove the network with 330

repeated presentations of the stimulus. We then calculated the statistics of the evoked activity. Noise cor-

relations were measured in 15-ms bins as the residual correlations left after subtracting the mean response

of each neuron to the stimulus across trials:

cij =
1

Nsamples

∑
t

(si(t)− < si(t) >)(sj(t)− < sj(t) >)

where si(t) is the summed spikes of neuron i in a 15-ms bin and < si(t) > is the mean response of neuron873

i to the stimulus. The noise correlation value given for each recording is the mean of cij .874
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Tuning width875

To determine tuning width to sound frequency, we used responses of IC neurons to single tones as inputs to876

the model network. The connections from IC to the network were the same as described in the previous sec-877

tion. Because the connectivity was tonotopic and IC responses are strongly frequency tuned, the neurons878

in the model network inherited the frequency tuning. We did not model the degree of tonotopic fan-out of879

connections from IC to cortex and, as a result, the tuning curves of the model neurons were narrow relative880

to those observed in cortical recordings ??. We chose the full width of the tuning curve at half-max as a881

standard measure of tuning width.882

Decoding tasks883

We computed decoding error for a classification task in which the single-trial activity of all model neurons884

was used to infer which of seven different speech tokens was presented. The classifier was built on training885

data using a linear discriminant formulation in which the Gaussian noise term was replaced by Poisson886

likelihoods. Specifically, the activity of a neuron for each 15-ms bin during the response to each token was887

fit as a Poisson distribution with the empirically-observed mean. To decode the response to a test trial, the888

likelihood of each candidate token was computed and the token with the highest likelihood was assigned as889

the decoded class. This classifier was chosen because it is very fast and can be used to model Poisson-like890

variables, but we also verified that it produced decoding performance as good as or better than classical891

high-performance classifiers like support vector machines.892

Classifying FS and RS cells893

We classified fast-spiking and regular-spiking cells based on their spike shape [Okun et al., 2015]. We894

determined the trough-to-peak time of the mean spike waveform after smoothing with a gaussian kernel of895

σ = 0.5 samples. The distribution of the trough-to-peak time τ was clearly bimodal in all types of recordings.896

Following [Okun et al., 2015] we classified FS neurons in the awake data with τ < 0.6ms and RS neurons897

with τ > 0.8ms. The distributions of τ in the anesthetized data, although bimodal, did not have a clear898
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separation point, so we conservatively required τ < 0.4ms to classify an FS cell in these datasets and899

τ > 0.65ms to classify RS cells (see Figure S4). The rest of the cells were not considered for the plots in900

Figures 7 and 8 and are shown in gray on the histogram in Figure S4.901

Local field potential902

The low-frequency potential (LFP) was computed by low-pass filtering the raw signal with a cutoff of 300 Hz.903

Spectrograms with adaptive time-frequency resolution were obtained by filtering the LFP with Hamming-904

windowed sine and cosine waves and the spectral power was estimated as the sum of their squared ampli-905

tudes. The length of the Hamming-window was designed to include two full periods of the sine and cosine906

function at the respective frequency, except for frequencies of 1 Hz and above 30 Hz, where the window907

length was clipped to a single period of the sine function at 1 Hz and two periods of the sine function at 30908

Hz respectively. The synchrony level was measured as the log of the ratio of the low to high frequency power909

(respective bands: 3-10 Hz and 11-96 Hz, excluding 45-55 Hz to avoid the line noise). We did not observe910

significant gamma power peaks except for the line noise, in either the awake or anesthetized recordings.911

Dividing trials by synchrony912

We computed a synchrony value for each trial in the 500-ms window following stimulus onset. For Urethane913

recordings, the values had a clear bimodal distribution and we separated the top and bottom of these914

distributions into synchronized and desynchronized trials respectively. For awake recordings, the synchrony915

index was not clearly bimodal, but varied across a continuum of relatively synchronized and desynchronized916

states. To examine the effect of synchrony on noise correlations, we sorted all trials by their synchrony value,917

classified the 50% of trials with the lowest values as desynchronized and the 50% of trials with the highest918

values as synchronized, and computed the noise correlations for each set of trials for each recording. To919

examine the effect of synchrony on FS and RS activity, we pooled all trials from all recordings, divided them920

into quintiles by their synchrony value, and computed the average spike rates of FS and RS neurons for921

each set of trials.For figures 7 and 8, noise correlations were computed aligned to the stimulus onsets in922
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windows of 500ms, to match the window used for measuring FS and RS activity as well as LFP power.923
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Figure 5
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Figure 6
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