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Abstract:  

Early visual cortical neurons receive highly selective feedforward input, which is amplified or 

disamplified by contextual feedback and lateral connections. A significant challenge for systems neuroscience 

is to measure the feature space that drives these feedback channels. We occluded visual scenes and 

measured non-feedforward stimulated subregions of V1 and V2 using fMRI and multi-voxel pattern analyses. 

We found that response patterns in these subregions contain two high-level scene features, category and 

depth information. Responses in non-feedforward stimulated V1 and V2 differed from each other, suggesting 

that feedback to these two areas has unique information content. Further, we reveal that computational models 

of visual processing inadequately describe early visual cortex because they do not account for the brain’s 

internal modeling of the world. 

 

Introduction:  

Cortical neurons receive two sources of input. The first, feedforward input, is sensitive to small portions 

of stimulus space as defined by classical receptive fields. The second consists of non-feedforward input from 

feedback and lateral interactions, which amplify and disamplify responses to the feedforward signals based on 

context1,2. The abundance of feedback connections in cortical circuits3,4 and the diversity of responses to 

identical stimuli in different contexts5 points out a challenge central to the understanding of neural 

computations. Improving our knowledge of feedback will provide insight to fundamental neuroscientific 

questions such as cognition, attention, perception, memory, action and mental disorders.  

To study feedback, one must disentangle feedforward and non-feedforward sources of input. This 

involves independent stimulation or inactivation of feedback and feedforward pathways, which is achieved via 

single- or multiunit recordings paired with electrical stimulation, pharmacological intervention, cooling or 

optogenetics4,6. These methodologies provide detailed characterizations of neural activity, but are generally too 

invasive for studying the healthy human brain. Since the coordination of feedforward signals likely occurs 

through widely distributed feedback processes of contextual modulation1, non-invasive modalities with large 

spatial coverage such as functional magnetic resonance imaging (fMRI) are advantageous for studying 
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feedback properties. Furthermore, fMRI is sensitive to energy-use rather than directly to spiking, and while 

feedback modulates feedforward responses, it does not necessarily generate spikes1.  

A non-invasive strategy to measure feedback is to homogenize feedforward input using visual 

occlusion.  Functional brain imaging studies have measured feedback-specific effects in retinotopic visual 

cortex (V1) by occluding feedforward input across experimental conditions and observing that feedback signals 

are heterogeneous4,7-9. Smith and Muckli8 blocked feedforward input to subsections of V1 using a uniform 

occluder and demonstrated that scenes can be decoded using pattern classification methods from responses 

in the occluded cortical area. Petro et al.5 showed that decoding of faces in regions of V1 that process facial 

features is dependent on task. Vetter et al.10 were able to decode different sounds from V1 activity in 

blindfolded subjects. These results provide evidence for feedback affecting V1 responses in a contextually 

relevant way, yet we can say little about the content of feedback signals. These signals may process specific 

feature predictions, and therefore produce response patterns similar to those observed when early visual 

cortex is stimulated by feedforward inputs11. Conversely, feedback may provide early visual cortex with general 

templates for expected scene structure based on high-level characteristics. In the current study, we aimed to 

investigate the specificity of feedback signals to human primary and secondary visual cortices (V1 and V2) 

during scene processing. 

 

Results: 

Investigating higher-level structure of cortical feedback to early visual cortex 

We blocked feedforward input to subsections of retinotopic visual cortex with a uniform visual occluder 

covering one quarter of the visual field8 while participants viewed 24 real-world scenes. To probe information 

characteristics of feedback, we identified two abstract features that modulate V1 responses: scene category 

and depth12,13. Scenes were balanced across six categories and two spatial depths. We localized subsections 

of left hemisphere V1 and V2 responding either to the occluded portion of the visual field (lower right image 

quadrant), or non-occluded visual field (upper right image quadrant; Figure 1). This process yielded four 

regions of interest (ROIs), hereafter referred to as Occluded and Non-Occluded V1 and V2. We also mapped 
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population receptive field (pRF) locations of individual voxels 14 to ensure that their response profiles were 

within regions of interest in the visual field. 

  

 

Figure 1. Experimental procedures. Participants viewed 24 scenes with lower right quadrants occluded. Scenes spanned 6 categories 

(Beaches, Buildings, Forests, Highways, Industry, and Mountains) and 2 depths (Near and Far). Occluded and Non-Occluded 

subsections of early visual cortex were localized using mapping contrasts. Retinotopic mapping data were used to separate V1 and V2 

and for mapping population receptive fields (pRFs). Voxel pRFs not completely contained by the quadrant of interest (2σ from pRF 

center) were excluded from further analyses. Remaining voxels were included in multi-voxel pattern analyses. 

 

Contextual Information in Occluded Early Visual Cortex 

Using single-trial linear Support Vector Machine (SVM) classification we could decode individual scene, 

category, and depth information in occluded and non-occluded regions of V1 and V2 (Figure 2A, Table S1A; 

permutation tested against chance-level using 1000 samples, all p-values < 0.001). Consistent with previous 

results8, we observed statistically higher classification performance in Occluded V1 than in Occluded V2, and 

this result held true for scene, category, and depth classification (bootstrap comparisons using 10000 samples, 

p-values = 0.0004, 0.0112, and 0.0024, respectively).  Scene, category and depth decoding was also higher in 

Non-Occluded V1 than Non-Occluded V2, although differences were not statistically significant (all p-values ≥ 

0.17). Our decoding results were reliable at the individual-subject level. Scene, category, and depth decoding 

were above chance-level in 11 of 12 subjects in nearly all regions tested. Only decoding of Depth in Occluded 

V2 had lower individual-subject classifier performances, which were above chance-level in 6 of 12 subjects. In 
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individual subjects, significance was determined by comparison to a null distribution of 1000 permutations, p < 

0.05 considered significant. 

 

Figure 2. Classification and cross-classification performance. (A) Average classifier performances (12 subjects) are shown for each 

visual area with 95% confidence intervals (calculated via 1000 bootstrap samples of individual subject performances). Occluded 

analyses are shown in green; Non-Occluded analyses are shown in blue. Asterisks indicate greater than chance-level decoding 

accuracy, p < 0.05. Chance level is 4.17% for individual scenes, 16.67% for categories, and 50% for depth. (B) Cross-classification 

performance. Training occurred on 18 and 22 [of 24] randomly chosen scenes in category and depth analyses, respectively, and testing 

occurred on scenes not used for classifier training. This was repeated 100 times per subject, and 95% confidence intervals were 

calculated via 1000 bootstrap samples of individual subject performances. See also Table S1 and Figure S2. 
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To further test whether non-stimulated V1 and V2 represent higher-level properties of scenes, we 

performed cross-classification analyses for category and depth information (Figure 2B, Table S1B). We trained 

SVM models using responses to a subset of our scenes, leaving out a test-set for later cross-classification. For 

analysis of category, 18 (of 24) scenes were selected, leaving out one scene per category. For depth, we 

selected 22 (of 24) scenes, leaving out one scene per depth. We tested the classifier on the remaining scenes 

in a cross-classification approach. Due to the large number of possible image permutations in these analyses, 

we randomly assigned scenes to training and testing sets 100 times in each subject. Cross-classification of 

category was successful in Occluded and Non-Occluded areas (permutation tested against chance-level using 

1000 samples, p-values = 0.012, 0.003 for Occluded V1 and V2; p-values < 0.001 for Non-Occluded V1 and 

V2). Cross-classification of depth was only successful in Non-Occluded areas (p-values ≥ 0.12 for Occluded 

V1 and V2; p-values ≤ 0.004 for Non-Occluded V1 and V2). Occluded and Non-Occluded V1 and V2 displayed 

comparable performance levels.  Overall, these results demonstrate that category information in Occluded 

responses is generalizable across scenes, while depth information is not. 

 

Visualizing Retintopic Response Patterns 

Our decoding results show differences in response patterns to individual images in Occluded V1 and 

V2. The SVM algorithm detects these differences, but cannot indicate which scene features elicit them. To 

compare with scene features, we projected response patterns to each scene into visual space15. pRF 

estimates (2D isotropic Gaussian functions) were weighted by each voxel’s response with the mean response 

to all 24 scenes removed. We plotted the sum of these functions as a heat map, with warm and cool colors 

indicating activations above and below the mean response in each voxel, respectively (Figure 3). In Non-

Occluded portions of scenes, clutter and texture elicited above-average responses, while homogenous visual 

features such as sky evoked lower levels of activation. This observation is in line with previous studies that 

have shown stimulus contrast energy drives early visual cortical responses16,17. We observed continuations of 

textured objects into Occluded areas; examples include the beach debris in the fourth Beach and the tower in 

the second Industry scene. These projections highlight response differences between V1 and V2 when 
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receiving only feedback input (Figure 3A versus 3B). In Non-Occluded portions of scenes, V1 and V2 respond 

similarly, matching previous reports of responses to natural stimuli18. However, Occluded V1 and V2 do not 

display similar response patterns. 

 

 

Figure 3. Projections of (A) V1 and (B) V2 response patterns into visual space. Projections of voxel responses versus baseline were 

averaged over subjects and scaled per scene. Projections were obtained by calculating a weighted average of all voxels’ pRFs, where 

weights were each voxel’s response amplitude with the mean response to all scenes removed. Warm colors above mean responses, 

and cool colors are below. 

 

Relating Scene Representations in V1 and V2 

Our visual field projections suggest that Non-Occluded V1 and V2 represent scenes similarly, while 

Occluded areas do not. To quantify these differences, we conducted Representational Similarity Analyses 

(RSA). By applying an iterative split-half cross-correlation procedure13, we compiled matrices representing 

correlations between individual scene response pairs in each region (Figure 4). To assure reliability between 
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analysis methods, we first conducted individual scene classification using RSA. Diagonal points of similarity 

matrices indicate consistency in response patterns to individual scenes between the two halves of the data, 

and off-diagonal points are correlations between pairs of responses to different scenes. As such, higher 

correlations in the diagonal indicate the ability to distinguish individual scenes within a region of interest. Here, 

comparison of values along the diagonal against those off the diagonal showed significant differences in both 

occluded (V1: t(25.93) = 5.29, p < 0.001; V2: t(25.55) = 6.32, p < 0.001) and non-occluded regions (V1: 

t(36.10) = 18.25, p < 0.001; V2: t(34.03) = 16.23, p < 0.001), tested against null distributions of 5000 

permutations. These results reaffirm that responses in Occluded subregions of V1 and V2 contain information 

about individual scenes. 

 

Figure 4. Representational Similarity Analyses for cortical regions. Similarity matrices comprise of correlations in the patterns of 

response between pairs of scenes, averaged amongst subjects. Diagonals are correlations of scene responses in each half of the data; 

a measure of signal reliability. For ease of interpretation, the lower triangle of each matrix displays average category correlations of off-

diagonal points. Second-order correlations between matrices were calculated using Spearman’s rho for each possible concatenation of 

the data to determine 95% confidence intervals (in brackets). 
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Having shown above-chance decoding, we then compared how each region represents the set of 

scenes by correlating the off-diagonal points of their similarity matrices (see Supplemental Methods). We used 

multidimensional scaling to visualize these comparisons in two dimensions19,20. In this scaled space, regions 

representing scenes similarly appear close together while those representing them differently appear far apart. 

We also compared representational structures of cortical responses to those of computational models. Since 

we know which image features models respond to, these comparisons provide insight to the information 

content of cortical responses. Figure 5 displays the representational space with confidence areas for the four 

cortical regions, idealized Category and Depth models, and three popular biologically-inspired computational 

models: the Weibull contrast model, inspired by lateral geniculate processing17,21,22; the Gist algorithm, similar 

to Gabor filters in V123; and the H-MAX model (Layer C2), matched to tuning properties of intermediate ventral 

stream areas such as V4 or posterior IT24.  

Non-Occluded V1 and V2 occupy the same portion of the representational space and therefore 

represent scenes similarly, consistent with visual field projections. Likewise, Occluded V1 and V2 are 

separated, showing that they respond to scenes differently from one another. Interestingly, the Depth model is 

closer to Non-Occluded cortical regions than Occluded ones, while the Category model is more similar to 

Occluded V2. Further, no computational model overlaps with the representational space of cortical responses, 

consistent with previous findings19. These results suggest that models might be improved by incorporating 

feedback.   
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Figure 5. Multidimensional scaling configurations of cortical regions and model representations. 95% confidence areas are shown for 

cortical regions, idealized Category and Depth models, and three computational models: Weibull, Gist, and H-MAX C2 (run separately 

on Non-Occluded and Occluded portions of scenes). Multidimensional scaling was performed on 10,000 bootstrap samples of the data 

and aligned using Procrustes transformations without scaling. Kernel density estimation (KDE) determined the distribution of each 

cortical area or model in the representational space, and confidence areas were defined as a contour that contained 95% of the KDE 

mass. See also Figure S1. 

 

Discussion: 

Our data challenge models of visual processing in early visual cortex; V1 and V2 response patterns to 

visual stimulation are different than would be predicted by common computational models. This discrepancy is 

even more pronounced in Occluded regions, where models would predict identical responses to the white 

occluder because they do not account for contributions from contextual feedback. However, in Occluded 

regions, we observed activation patterns that were informative for determining individual scene, category, and 

depth information about the surrounding images, thus indicating that contextual feedback to early visual cortex 

is scene-specific, yet exhibits high-level structure. Moreover, we found that responses in Occluded V1 and V2 

differed from each other, suggesting that feedback to these two areas has unique information content.  
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Our findings are consistent with descriptions of the visual system as a hierarchical inference network, 

with V1 acting as a high-resolution geometric buffer or blackboard25,26. In other words, V1 preserves scene 

information for reference in calculations where high-resolution image details or spatial precision are required. 

At first glance, this description seems incongruent with the idea that V1 can depict visual information that is 

missing or hidden from view, such as that masked by the occluder in our study. Importantly though, feedback 

to V1 depicts detailed internal models that share characteristics with expected or predictable feedforward 

input27. Our visual field projections illustrate this by revealing a number of response patterns that match 

predictable occluded features. The current results and a number of other studies lend support to inferential 

filling-in of expected information in early visual cortex (i.e. during perception of absent visual input8,9,25,26,28-30.  

These data go beyond the inferential filling-in of expected information in early visual cortex. Our cross-

classification results suggest that internal models are constrained by feedforward inputs but are based on 

generalized scene templates. The visual system first attends to coarse-scale scene information in order to 

quickly estimate input and activate scene templates in memory31,32. Feedback loops connecting higher areas to 

early visual cortex may incorporate scene-specific information into the initial template structure. Since fMRI is 

associated with late components of neural response time courses18, Occluded responses may display 

characteristics of initial templates as well as additional scene-specific details. This could explain our ability to 

classify individual scenes and cross-classify category information; Non-Occluded portions of scenes activate 

global scene templates that also cover Occluded portions of scenes. Scene-specific additions to these 

templates would allow for individual scene classification, even between scenes of the same category.  

Sensory processing outside of the visual domain can also transmit contextual information to early visual 

cortex. A recent study found categorical responses in early visual cortices of blindfolded participants presented 

with complex natural sounds, yet these responses did not represent individual exemplars10. Together with the 

current study these results support the idea that sensory processing occurs via a hierarchical inference 

framework. Feedback predicts potential feedforward input based on available sensory input from any modality. 

For sounds, generalized category templates may be fed back to V1, but not the scene-specific additions that 
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allowed us to decode individual images. Since contextual sensory input in our study comes from surrounding 

visual information, visual features are predicted with greater spatial acuity.  

In cross-classification analyses, generalization of depth information was weaker than that of category. 

We could not train on one set of images and use depth information to generalize to a new set of scenes, which 

was possible with category. While Occluded V1 and V2 responses may not actually contain depth information, 

an alternative explanation is that depth is not sufficiently defined in our stimulus set. We included scenes that 

were Near or Far within scene categories, as in13. We found generalizable depth information in Non-Occluded 

regions, but not in Occluded regions. Scene depth is highly correlated with category33, and it is possible that 

our stimuli did not effectively span depth ranges in order to detect such depth-category interactions. 

Occluded V1 and V2 responses differ, thus suggesting that feedback to these two areas has unique 

information content. Both V1 and V2 receive feedback from many brain areas34,35. Feedback to each area 

therefore likely plays a specialized role in predicting aspects of visual scenes. Despite V2’s interconnectedness 

with extrastriate cortex, it is highly dependent on input from V1 due to its role in summarizing natural 

patterns18,24,36. In the current study, input to V2 from V1 could be a disparate reconciliation of non-meaningful 

feedforward input and contextual expectations from feedback25. 

To determine the specific aspects of scene processing which feedback signals to V1 and V2 specialize 

in, feedforward and feedback signals need to be effectively separated – a significant challenge to systems 

neuroscience. Feedforward and feedback signals opportunely input to different layers of visual cortex, with 

feedforward connections terminating in middle layers and feedback in superficial and deep layers37. Ultra-high-

field fMRI (7T) provides a high-resolution tool to examine activity in different layers of human cortex. Indeed, 

Muckli et al.28 recently found that three occluded scenes (similar to those in the current study) could be 

decoded using the response patterns of superficial layers (but not middle layers) of V1 and V2. However, the 

number of scenes used in the current study allowed for direct comparison of how different areas represent 

scenes through RSA19. This was not possible in Muckli et al. because they used a smaller stimulus set. High-

resolution fMRI along with experiments utilizing larger stimulus sets will enable researchers to fully investigate 

the information content of feedback to these areas and the relationships between different cortical areas. 
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The computational models that we compared to cortical representations are inspired by biological visual 

systems, but they process scene statistics in a strictly feedforward manner. These models differ from any of 

our early visual cortical regions, strikingly even from Non-Occluded regions (Figure 5). These results indicate 

that models that neglect the role of feedback oversimplify early visual cortical processing.  

Compared models also used relatively low-level image features. High-level feature detection has 

enabled deep learning networks to achieve incredibly high performance on a number of natural signal 

processing tasks including visual object and speech recognition38. Still, such networks predominately use 

feedforward architectures, and would therefore perform sub-optimally when presented with partially occluded 

visual scenes because they are unable to recognize occluded portions of the visual field as missing 

information. Occluded areas would be integrated identically to the rest of the scene, but without contributing 

any useful information. Reichert and Serre39 show that networks utilizing synchronization (a form of feedback) 

by allowing complex weights between network nodes can disentangle occluded shapes. Further development 

of such networks will explain aspects of cortical responses not yet captured by current computational models, 

and may provide insight to mechanisms of feedback processing in early visual cortex. 

Our results are in line with theoretical views explaining the visual system as a hierarchical inference 

network. Moreover, feedback to Occluded V1 & V2 has unique information content. We found that early visual 

cortex represents scenes differently from three popular biologically inspired computational models. Together 

these results highlight that a true understanding of the neural computations of early visual cortex will involve 

understanding how and what information is conveyed by feedback. 
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Methods: 

Participants 

Twelve healthy individuals (8 female, age 26.42 ± 5.76, mean ± SD) with normal or corrected-to-normal 

vision gave written informed consent to participate in this study, in accordance with the institutional guidelines 

of the local ethics committee of the College of Science & Engineering at the University of Glasgow 

(#CSE01127). 

Stimuli 

Twenty-four real-world scenes from six categories were chosen from a dataset compiled by Walther et 

al.12. Images were displayed in gray-scale (matched for global luminance) on a rear-projection screen using a 

projector system (1024 x 768 resolution, 60 Hz refresh rate). Stimuli spanned 19.5 x 14.7˚ of visual angle, and 

were presented with the lower-right quadrant occluded by a white box (occluded region spanned ≈ 9 x 7˚). A 

centralized fixation checkerboard (9 x 9 pixels) marked the center of the scene images. 

Experimental Design 

Each of the eight runs consisted of six blocks of eight sequences of stimulation with intervening fixation 

periods, plus two mapping blocks (total scanning time per run was 804s). Each stimulation sequence lasted 

120s, with 12s fixation at the beginning and the end of each series. Stimuli were flashed at a rate of 5Hz in 

order to maximize the signal-to-noise ratio of the BOLD response40. Each sequence was presented in a 

pseudo-randomized order where individual images were not shown repeatedly. Over the course of the 

experiment, each scene was presented 16 times (two times per run). To ensure fixation, we instructed 

participants to keep fixation on the central checkerboard and respond via a button press to randomized color 

changes of the fixation (from black/white to red/green) according to the category of the scene during the color 

change. 

We used mapping blocks to localize the cortical representation of the occluded region9. In a block 

design, subjects viewed contrast-reversing checkerboard stimuli (5Hz) at three visual locations: Target (lower-

right quadrant), Surround (of the target), and Control (remaining three quadrants). Each condition was 
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displayed for 12s with a 12s fixation period following, and mapping blocks were randomly inserted between 

experimental blocks, once per run. We conducted retinotopic mapping (polar-angle and eccentricity) runs 

separately from the main experiment. 

fMRI Acquisition 

MRI data were collected at the Centre for Cognitive Neuroimaging, University of Glasgow. T1-weighted 

anatomical and echo-planar (EPI) images were acquired using a research-dedicated 3T Tim Trio MRI system 

(Siemens, Erlangen, Germany) with a 32-channel head coil and integrated parallel imaging techniques (IPAT 

factor: 2). Functional scanning used EPI sequences to acquire partial brain volumes aligned to maximize 

coverage of early visual areas (18 slices; voxel size: 3mm, isotropic; 0.3mm interslice gap; TR = 1000ms; TE = 

30ms; matrix size = 70x64; FOV = 210x192mm). Four runs of the experimental task (804 vol.), one run of 

retinotopic mapping [session 1: polar angle (808 vol.); session 2: eccentricity (648 vol.)], and a high-resolution 

anatomical scan (3D MPRAGE, voxel size: 1mm, isotropic) were performed during each of two scanning 

sessions.  

fMRI Data Preprocessing 

Functional data for each run were corrected for slice time and 3D motion, temporally filtered (high-pass 

filter with Fourier basis set [6 cycles], linearly detrended), and spatially normalized to Talairach space using 

Brain Voyager QX 2.8 (Brain Innovation, Maastricht, Netherlands). No spatial smoothing was performed. 

These functional data were then overlaid onto their respective anatomical data in the form of an inflated 

surface. Retinotopic mapping runs were used to define early visual areas V1 and V2 using linear cross-

correlation of eight polar angle conditions.  

A general linear model (GLM) with one predictor for each condition (Target > Surround; mapping 

conditions from experimental runs) was used to define regions of interest (ROI) that responded to the visual 

target region (lower-right quadrant) and the control region (upper-right quadrant), within V1 and V2. We then 

performed pRF analyses14 on all ROI voxels, and excluded those voxels whose response profiles were not fully 

contained (within 2σ of their pRF center) by the respective visual ROI. Lastly, a conjunction of two GLM 

contrasts (Target > Surround & Target > Control for Occluded ROIs, and Control > Surround & Control > Target 
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for Non-Occluded ROIs) was used to exclude any voxels responding to stimuli presentation outside their 

respective visual ROI (see Figure 1). Time courses from each selected vertex were then extracted 

independently per run and a GLM was applied to estimate response amplitudes on a single-block basis. The 

resulting beta weights estimated peak activation for each single block assuming a standard 2γ hemodynamic 

response function.  

Multivariate Pattern Analyses 

For SVM classification analyses, a separate regressor modeled each experimental trial. This procedure 

yielded a pattern of voxel activations for each single trial, and parameter estimates (β values) were obtained for 

each voxel and then z-scored. A Linear SVM classifier was trained to learn the mapping between a set of all 

available multivariate observations of brain activity and the particular scene presented, and the classifier was 

tested on an independent set of test data. Classification analyses were performed using a pairwise multiclass 

method. Classifier performance was assessed using an n-fold leave-one-run-out cross-validation procedure 

where models were built on n – 1 runs and were tested on the independent nth run (repeated for the eight runs 

of the experiment). In analyses of category and depth-based classification, individual scene presentation labels 

were combined based on these distinctions before training and testing of the SVM classifiers. 

Cross-classification analyses were performed similarly to those of our cross-validated classification, but 

our scene set was split up prior to model training. Training set sizes were 18 and 22 scenes for category and 

depth analyses, respectively, and testing sets consisted of the remaining scenes. Due to the large number of 

possible scene permutations, we conducted 100 iterations of our analyses in each subject. For these analyses, 

training and testing sets were defined in a pseudo-random manner where each category or depth was evenly 

represented within both sets. As in our cross-validated classification, training and testing of models occurred 

on independent data sets using a leave-one-run-out procedure. 

For RSA, an iterative split-half correlation method13,19 was applied to each subject’s data where runs 

were split into two halves (four runs in each) and concatenated. GLM analyses were then conducted to 

estimate condition-based responses to each scene in the respective half of the data and repeated for the 35 

possible combinations of data splits. Cross-correlation was then used to establish the similarity between the 
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reponse patterns of each pair of scenes. A Fisher transformation was applied to each correlation value before 

combining correlations into group analyses, and the transformation was reversed for results presentation. To 

calculate second-order correlations of similarity matrices, subjects’ data were concatenated by quarters (two 

runs in each) and analyzed similarly to first-order correlations with each half producing a similarity matrix. Off-

diagonal points were then correlated using Spearman rank correlation in 210 different combinations of runs to 

create a distribution of correlation values. Here, we used Spearman correlations instead of Kendall’s Tau-a 

because we were not comparing response patterns to models that predict rank-ties between scenes20. 

Multidimensional scaling was conducted on Occluded and Non-Occluded V1 and V2, idealized 

Category and Depth models, and three computational models: Weibull17,22, Gist23, and H-MAX C224 were 

included. Each computational model was run on the non-occluded portion of scenes and separately on the 

occluded portion of scenes, and dissimilarity of model outputs was calculated using normalized Euclidean 

distance (see details on the dimensionality of outputs below). Next, 10,000 bootstrap samples were drawn from 

previously calculated data-splits for each pair-wise image comparison. Here, multidimensional scaling was 

performed on second-order dissimilarity matrices (Figure S1; 1- Kendall’s Tau-a was used because Category 

and Depth models predicted rank-ties) with non-metric scaling to two dimensions (Stress normalized by inter-

point sum of squares). Each configuration was aligned using a Procrustes transformation without scaling, and 

we used kernel density estimation (KDE) for each cortical area or model to determine its distribution in the 

representational space. Confidence areas were defined as contours that contained 95% of the KDE mass. 

Weibull Model 

The Weibull image contrast model measures the distribution of contrast values for an image and seeks 

to emulate the X and Y cells in the Lateral Geniculate. It has a two-dimensional output. We used the Weibull 

image contrast model outlined in Groen et al., (2012; 2013) with the field of view for estimation of the beta and 

gamma parameters set to 1.5 and 5 degrees, respectively. 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2016. ; https://doi.org/10.1101/041186doi: bioRxiv preprint 

https://doi.org/10.1101/041186
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

Gist Model 

The Gist algorithm23 measures the distribution of oriented bandpass Gabor filter responses in localized 

portions of images. Our model consisted of 16 locations (4 x 4 grid), 8 orientations, and 4 spatial frequencies. 

This model had a 512 dimensional output. 

H-MAX Model 

The H-MAX model is a hierarchical model which gradually combines visual features of higher 

complexity. Here, we used the output of its fourth sequential stage, C2. The first two stages (S1 and C1) 

correspond to the simple and complex cells or early visual cortex. Stages S2 and C2 use the same pooling 

mechanisms as S1 and C1, but pool from the C1 stage and respond most strongly to a particular prototype 

input pattern. Prototypes were learned from a database of natural images outside of this study24. The output of 

this model had 2000 dimensions. 

Retinotopic projections 

Using each voxel’s two-dimensional Gaussian response, as estimated in our pRF analysis, we 

projected activity patterns into visual space. The projected stimuli consisted of the sum of the 2D-Gaussians of 

all voxels in a given visual ROI, weighted by each voxel’s response, as calculated in our GLM analyses. The 

stimuli were plotted as heat maps, with red and blue colors indicating activations above and below the mean 

response in each voxel, respectively. Each subject’s data were calculated individually, and then averaged to 

obtain a group projection. 
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Supplemental Information:  

Table S1: 

 

 Individual Scenes Category Depth 

Occluded V1 12.70 [9.64 16.65] 12.91 [10.09 15.58] 8.33 [6.27 11.13] 

Occluded V2 5.36 [4.10 6.68] 7.44 [5.92 8.81] 3.19 [1.93 4.38] 

Non-Occluded V1 47.13 [38.02 57.27] 37.93 [31.86 43.66] 37.93 [31.86 43.66] 

Non-Occluded V2 35.98 [28.19 43.95] 32.01 [27.41 36.85] 32.01 [27.41 36.85] 
 

Table S1A. Related to Figure 2. Classification results, reported as percent above chance-level (chance-level = 

4.17%, 16.67%, and 50% for individual scenes, category and depth, respectively). 1000 bootstrap samples of 

mean performance were drawn from individual subject results, and 95% confidence intervals are shown in 

brackets. 

 

 Category Depth 

Occluded V1 1.99 [0.49 3.36] 1.04 [-0.42 2.66] 

Occluded V2 2.11 [0.93 3.14] -1.13 [-2.21 0.11] 

Non-Occluded V1 12.72 [10.45 14.91] 3.33 [1.08 5.39] 

Non-Occluded V2 10.66 [8.62 12.84] 4.67 [2.17 7.10] 
 

Table S1B. Related to Figure 2. Cross-classification results, reported as percent above chance-level (chance-

level = 16.67% for category and 50% for depth). For analysis of category, 18 (of 24) scenes were selected, 

leaving out one scene per category. For depth, 22 (of 24) were selected, leaving out one scene per depth. The 

classifier was tested on the remaining scenes in a cross-classification approach. Due to the large number of 

possible image permutations in these analyses, we randomly assigned scenes to training and testing sets 100 

times in each subject. 1000 bootstrap samples of mean performance were drawn from individual subject 

results, and 95% confidence intervals are shown in brackets.  
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Fig. S1. Related to Fig. 5. Second-order relationships of cortical data, computational models, and idealized 

models. (A) One example of the matrix form of cortical area and model comparisons (distance is measured as 
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1- Kendall’s Tau A). Individual points in (B) are cortical area or model representational structures, whose 

distances from each other are determined by multidimensional scaling of 10,000 bootstrap resamples. The 

black outlines in (B) correspond directly to Figure 5, representing 95% of the data for each condition. (C) First-

order representational dissimilarity matrices (standardized Euclidean distance) for computational and idealized 

models.  
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Figure S2. Related to Figure 2. Classification confusion for (A) individual scenes (B) category- and (C) depth-

based analyses. (A) Classification confusion matrices for individual scene analyses. Actual scenes are 
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presented on the y-axis (within each category, the first two scenes are ‘Far’ and the last two are ‘Near’); 

predicted scenes are presented on the x-axis. Correct predictions are displayed as the diagonal. Note that an 

ideal confusion matrix would have 1 everywhere on the diagonal (correct predictions) and 0 in all off-diagonal 

points (errors). (B) Actual categories (ground truth) are presented along the x-axes, while the proportion of total 

classifier predictions are displayed on the y-axes. Perfect classification would have a ground truth proportion of 

1, and 0 for all other categories or distances. Chance-levels are displayed as grey lines. For each proportion, 

95% confidence intervals are presented via 1000 bootstrapped samples. Asterisks indicate classifier 

predictions of true conditions being significantly greater than other conditions, p < 0.05. (C) Identical to (B), but 

corresponding to depth-based classification. 

 

Discussion of Figure S2. 

To better understand feedback properties, we examined classification errors from our initial 

classification analysis. In individual scene classification, correct scene predictions were significantly more 

common than misclassifications in Occluded V1, as indicated by the strong diagonal in its confusion matrix 

(Figure S2a). This was not the case with many scenes in Occluded V2. Also, relatively few misclassifications 

occurred in non-occluded areas, indicated by the strong diagonals in these matrices. We hypothesized that 

individual scene representations within category or depth groups should be more difficult to differentiate than 

those between categories or depths. Accordingly, we expected misclassifications to occur more frequently 

within categories or depths. To test for this bias, we calculated differences between individual scene 

misclassifications based on being within or between category or depth groups. We found that misclassifications 

were not biased by either grouping in non-stimulated areas, and were only biased for category in some Forest 

scenes in stimulated areas (Forest scenes 1, 2 and 4 in Non-occluded V1, and Forests 2, 3 and 4 in Non-

occluded V2, p < 0.05). These results suggest that scene-specific properties, which are prominent in 

representations of individual images in early visual cortex during natural vision, are an important component of 

representations under visual occlusion as well.  
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Figure S2b shows the classifier predictions for each condition in category-based analyses. Predictions 

in all six categories significantly outnumber misclassifications in three of our examined regions, while in 

Occluded V2, Forest and Mountain categories suffer from greater numbers of classification errors. In addition, 

distinct misclassification patterns appear in each region. In Occluded V1, misclassification of Forest scenes as 

Industry scenes is significantly more common than other classification errors, while the opposite is not true. 

This situation is reversed in Non-Occluded V1, with Industry scenes being mistaken for Forest scenes, but not 

vice versa. In Non-Occluded V2, both of these confusions are more common than other errors, but neither 

error is present in Occluded V2 analyses. When examining depth-based classification (Figure S2c), 

proportions of correct predictions to errors do not differ between depths in V1 analyses. In both V2 regions, 

classifiers misclassify scenes of greater depth more often than those of lesser depth, and in Occluded V2, Far 

scenes do not classify above chance-level. 
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