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ABSTRACT 

Adaptation of bacteria occurs predominantly via horizontal gene transfer. While it is widely 

recognized that horizontal gene acquisitions frequently encompass multiple genes, it is 

currently unclear what the size distribution of successfully transferred DNA segments looks 

like and what evolutionary forces shape this distribution. Here, we identified 7,538 gene pairs 

that were consistently co-gained on the same branches across a phylogeny of 53 E. coli 

strains. These pairs are significantly enriched in genes that share the same GO annotation. 

We estimated the genomic distances of these co-gained pairs at the time they were 

transferred to their host genomes, which shows a sharp upper bound at 30kb. This upper 

bound is significantly lower than the size limit on gene co-transfers imposed by the carrying 

capacity of the transfer agents. The observed distance distribution also appears inconsistent 

with a model based on the co-transfer of genes within operons; instead, we found that the 

distance distribution of co-transferred genes closely matches the distribution expected from 

the transfer of uber-operons, i.e., genomic clusters of co-functioning genes beyond operons.  

INTRODUCTION 

Bacterial adaptation to changes in the environment often occurs through horizontal gene 

transfer (HGT) (Pál et al. 2005; Soucy et al. 2015), i.e., the uptake of genes from genomes 

of other strains or even other species. Bacteria can exchange DNA through diverse 

mechanisms including transformation, transduction, conjugation, gene transfer agents, and 

nanotubes (Davison 1999; Dubey and Ben-Yehuda 2011). If the incoming DNA sequence is 

highly similar to sequences of the recipient bacterium, then it can be integrated via 

homologous recombination (Dixit et al. 2015). Otherwise, the foreign DNA segments may be 

added to the genome through non-homologous recombination after entering the host, 

resulting in HGT. If transferred genes confer phenotypic changes that provide fitness 

advantages, then they are likely to become fixed in the bacterial population.  
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 Bacterial genomes are highly dynamic (Soucy et al. 2015). In addition to gene 

acquisitions via HGT, gene losses via mutational deletions are also frequent among bacteria, 

a process accelerated by a mutational bias towards gene deletions (Batut et al. 2014); genes 

no longer needed in the current environment(s) will thus eventually get lost from bacterial 

genomes. The local pan-genome, the union of all genes in the environment, can be viewed 

as a toolbox of genes, and HGT often allows bacteria to acquire the genes needed for 

adaptation from this toolbox (Pál et al. 2005; Maslov et al. 2009; Pang and Maslov 2011). 

Many phenotypes require the cooperation of two or more genes; accordingly, the joint 

presence or absence of two genes across many genomes can be used to identify functional 

associations between them, a method termed phylogenetic profiling (Pellegrini et al. 1999). 

Functionally related genes are often co-expressed from the same operon. While HGT 

may not be the driving force behind operon formation (Price et al. 2005), the operon 

structure of bacterial genomes facilitates HGT, as it allows the co-transfer of a group of co-

functional genes by concentrating them on a relatively small continuous stretch of DNA 

(Lawrence and Roth 1996). There is also anecdotal evidence for the existence of uber-

operons, clusters of functionally related genes in prokaryotic genomes that extend and 

persist beyond co-transcribed operons (Lathe et al. 2000), and we hypothesized that such 

larger units may also contribute to the co-transfer of interacting genes. 

Previous work has established functional and genomic clustering of co-transferred 

gene pairs. A systematic analysis of horizontally transferred metabolic genes in 

proteobacteria confirmed that co-transferred gene pairs are indeed five times more likely to 

function in the same pathway compared to separately transferred genes (Dilthey and 

Lercher 2015). The same study also found that co-transferred gene pairs are more than 

twice as likely as random pairs to be genomic neighbours (defined as genes separated by at 

most two intervening genes) (Dilthey and Lercher 2015).  

To test if operons or uber-operons are the basic units of HGT, we reconstructed the 

phylogenetic tree of 53 E. coli and Shigella strains, and identified gene pairs that were 

consistently co-gained (or co-lost). While we found that E. coli operons are too small to 
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explain the observed distance distribution of co-transferred genes, expectations from uber-

operons closely match the empirical distribution. These findings show that HGT in E. coli is 

not constrained by the carrying capacities of transfer agents, but by the size distribution of 

functional gene clusters beyond operons. 

RESULTS 

We identified orthologous gene families across 53 E. coli and Shigella strains (along with 17 

strains of other species that served as the outgroup; Supplemental Table S1). Shigella 

strains are generally considered to belong to the species E. coli (Chaudhuri and Henderson 

2012); thus, we will subsume all 53 strains under the species name E. coli in the remainder 

of this paper. We reconstructed a maximum-likelihood phylogeny based on the concatenated 

alignment of  1,334 1-to-1 orthologs universally present in all 70 genomes. The resulting 

rooted E. coli phylogeny, which represents vertical inheritance among the 53 strains, is well 

supported: each internal branch was retrieved in at least 60% of bootstrap samples (see 

Supplemental Figure S1 for the E. coli tree, and Supplemental Figure S2 for the tree 

including outgroup strains). Based on the assumption that gains and losses are rare events 

(Pál et al. 2005), we used a maximum-parsimony algorithm on gene presence/absence 

(Kunin and Ouzounis 2003) to identify gene losses and gains (HGT) along the phylogenetic 

branches (Methods). 

Statistical association of gene pairs across transfer events 

For each pair of orthologous gene families (each “gene pair”) in our dataset, we calculated 

scores for associations between gains and losses of the two genes across the 104 branches 

of the E. coli tree (Methods). There are three types of pairwise associations: (i) repeated co-

gains of two genes via HGT; (ii) repeated co-losses of two genes; and (iii) repeated 

associations between the gain of one gene and the loss of the other. Co-gained and co-lost 

pairs may indicate a functional co-operation of the genes. Conversely, the consistent 

association of the gain of one gene with the loss of another gene (non-homologous 
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replacement) may indicate functional redundancy of the two genes. While many co-gained 

pairs likely occur through the simultaneous acquisition of both genes on one DNA segment, 

some co-gained pairs could also stem from distinct HGT events. 

We compared the distribution of association scores (aggregated over co-gained, 

gained-lost, and co-lost pairs) for all gene pairs in the empirical data with that of a null model 

based on randomizations (Figure 1). The score distributions for the empirical data and the 

random null model are significantly different, indicating that some gene pairs show much 

more co-gains, co-losses, or non-homologous replacements than expected by chance. 

The false discovery rate (FDR) is the fraction of pairs at a given association score t 

for which this score is likely due to chance alone. It can be calculated as the number of pairs 

showing an equal or stronger association than t in the empirical data, divided by the 

corresponding number for the null model. Here, we examined associated gene pairs at FDR 

0.05, corresponding to an association score of t=-5, and at FDR 0.005, corresponding to a 

score of t=-6.8 (see the two vertical dotted lines in Figure 1). 

To test whether or not the associated gene pairs identified are indeed functionally 

connected, we examined the 8664 significantly associated pairs (at FDR 0.05; Supplemental 

Table S4) for which both genes have GO annotations (Gene Ontology Consortium 2015). 

We performed binomial tests to see if both share at least one identical GO term more often 

than expected by chance. Co-gained and co-lost pairs are significantly more likely to share 

the same GO term than random pairs (p<10-6 in each case, Table 1); however, this is not the 

case for gained-lost pairs (p=0.98, Table 1), suggesting that these pairs tend to be false 

positives. 

Distance distribution between co-gained gene pairs 

We estimated the distance of co-gained gene pairs at the time that they were added to their 

ancestral host. In many cases, parts of horizontally transferred DNA segments will be lost 

subsequently, thereby reducing the distance between two co-transferred genes. Conversely, 

later genomic rearrangements may increase the original genomic distances. To estimate the 
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genomic distance during the HGT event, we thus took the minimum distance between 

orthologs of the two co-gained genes in any of the examined genomes.  

Figure 2 shows the cumulative distribution of the genomic distance for co-gained 

gene pairs selected at FDR 0.05 (solid lines) and 0.005 (dashed lines; see Supplemental 

Figure S4 for the corresponding probability density functions). Both curves show a 

pronounced kink at 30kb, indicating the existence of two stacked distributions. The dominant 

distribution at low genomic distances to the left of the kink likely represents the pairwise 

distances of genes that were co-gained in one HGT event; thus, 30kb appears to be an 

upper bound on the size of successfully transferred DNA segments. We also examined 

alternative definitions for the genomic distance of co-gained pairs, including the mean, 

median, and maximum of the distances between their two orthologs in any of the 53 extant 

genomes (Supplemental Figure S5). These alternative definitions, except for the one using 

maximal genomic distances, also show a corresponding kink at around 30kb. We conclude 

that the kink in Figure 2 is not an artifact of our definition of genomic distance for co-gained 

gene pairs, but that the length distribution of co-gained pairs is indeed bimodal. 

Pairs in the long-range mode of the distribution often display much larger distances. 

These pairs may in part correspond to the expected 5% of false positive co-gained pairs. 

However, these more distant pairs may also stem from independent gains of co-functioning 

genes in separate HGT events or from overestimates of the gene pairs’ ancestral genomic 

distances. Consistent with the latter two hypotheses, we found statistically significant support 

for functional relatedness of co-gained pairs not only at distances smaller than 30kb, but also 

at larger distances (Table 1).  

The cumulative distance distribution for co-lost pairs is qualitatively very similar to 

that of the co-gained pairs, with a short-range component that ends at a kink at around 30kb 

(Supplemental Figure S6, green curve). However, the long-range component of the pairwise 

distance distribution of co-lost pairs is shifted downwards relative to the co-gained pairs 

(Supplemental Figure S6). This might be due to fewer overestimates of gene distances. 

HOwever, it would also be consistent with fewer independent gene losses of co-functioning 
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genes; indeed, we found no enrichment of functionally related co-lost pairs at distances 

larger than 30kb. Thus, at least at the temporal resolution of the phylogeny in Supplemental 

Figure S1, co-losses of genes may be a largely mechanistic rather than a predominantly 

functional phenomenon.  

In contrast to the pairwise distance distribution of co-gained and co-lost genes, the 

distribution for gained-lost associations (non-homologous replacements) appears to consist 

of only a single long-range component, showing no sign of a kink (Supplemental Figure S6, 

red curve). This observation is consistent with the rareness of significant pairwise gene 

associations: at FDR 0.05, there are 7,538 co-gained pairs and 1,055 co-lost pairs, but only 

71 gained-lost pairs. In addition, the gained-lost pairs are not functionally related (Table 1). 

These findings suggest that the identified gained-lost associations predominantly represent 

noise and are not genuine non-homologous replacements. 

The distance distribution of co-gained genes cannot be explained by operon sizes 

The short-range mode of the pairwise distance distribution of co-gained genes likely 

represents pairs that were acquired together in a single HGT event. Two evolutionary 

processes can shape this distance distribution. First, DNA from another organism must be 

taken up by the recipient. Thus, the maximal genomic distance of two co-transferred genes 

is limited by the carrying capacity of the transfer agent. Second, the vast majority of the 

analyzed gene gains are ancient. As bacteria tend to lose DNA that does not contribute to 

fitness (Batut et al. 2014), any co-gained gene pairs that persisted for such times are likely 

co-functional. Thus, provided that the carrying capacity of the transfer agent is sufficiently 

large, it is possible that the distance distribution of co-gained genes is dominated by the 

genomic organization of functional relationships. 

It has even been suggested that natural selection favours the organization of 

functionally related genes into “selfish” operons to facility HGT (Lawrence and Roth 1996). If 

operons are indeed the basic unit of HGT, then the pairwise distance distribution of co-

gained gene pairs ought to reflect the distribution of pairwise gene distances in operons. To 
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test this prediction, we compared the short-range mode of the observed distance distribution 

with a pairwise distance distribution of genes generated from the known operons of E. coli K-

12 MG1655 (Mao et al. 2009). Specifically, we modelled a superposition of a short-range 

distribution and a long-range distribution, where we set the short-range distribution to be the 

pairwise distribution of distances in operons, and the long-range distribution to be that of 

randomly chosen genes in the E. coli K-12 MG1655 genome. The model has one free 

parameter, 0 � � � 1, which defines the relative weight between the short and long-range 

distributions, but does not affect the shape of the two modes or the position of the boundary 

between them (Methods). We found that the model distribution (Figure 3, best fit at � � 0.65, 

dashed line) is unable to fit the empirical distribution (Figure 3, solid line). We conclude that 

the distances between gene pairs within E. coli operons are too short to explain the distance 

distribution of the observed pairs of co-gained genes. 

Uber-operons can explain the distances of co-gained genes 

Thus, to explain the distances between transferred gene pairs, we have to look at structures 

of functionally coupled genes that extend beyond operons. Such larger functional clustering 

units have been reported anecdotally and have been named uber-operons (Lathe et al. 

2000); however, such structures are not well defined and were not investigated 

systematically.  

We approximated the gene distance distribution in uber-operons through the  

functional autocovariance within a genome, defined as the probability for two nucleotides at 

a given genomic distance to be located in two different genes that have overlapping GO 

annotations (Gene Ontology Consortium 2015). We rescaled the autocovariance such that 

curves derived from different annotations (e.g., GO (Gene Ontology Consortium 2015) and 

InterPro (Hunter et al. 2009)) become comparable, and then normalized this rescaled 

autocovariance to obtain an approximation of the pairwise distance distribution of genes in 

uber-operon (Methods). 
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The rescaled functional autocovariance of all genes in E. coli K-12 MG1655 (Figure 

4, solid line) drops to zero at around 25kb. This distribution is very similar to the 

autocovariance calculated only for regions harboring co-gained gene pairs (Figure 4, dashed 

line), indicating that co-gained gene pairs do not belong to unusual uber-operon structures.  

To validate our estimation strategy for the distance distribution of functionally related 

genes, we also calculated the rescaled functional autocovariance restricted to positions 

within the same E. coli K-12 MG1655 operon (Mao et al. 2009) (dotted line); as expected, 

the normalized autocovariance curve results in a distribution that is very similar to the 

pairwise distance distribution of genes within operons (Supplemental Figure S3), confirming 

the validity of our approach. The operon-specific normalized autocovariance decays 

significantly faster than the overall autocovariance, with a cut-off at around 10kb that reflects 

the limited size of operons. This observed difference between the autocovariance within and 

beyond operons confirms that functional genomic clusters in E. coli indeed often extend well 

beyond individual operons. 

To see if the genomic distance distribution of functionally related genes beyond 

operons can explain the observed distance distribution of co-gained genes, we again 

constructed a model as a superposition of a short-range distribution (reflecting physical co-

transfers) and a long-range distribution (reflecting independent transfers and false positives). 

This time, we used the estimated genomic distance distribution within uber-operons (the 

normalized autocovariance) to approximate the short-range mode of the empirical 

distribution. As shown in Figure 3 (best fit at � � 0.67, dotted curve), the predicted and 

empirical distance distributions of co-gained gene pairs are indeed highly consistent when 

basing the prediction on uber-operons instead of operons. 

DISCUSSION 

We applied a simple statistical method to identify gene pairs repeatedly co-gained among 53 

strains of E. coli; as expected, a comparison of the GO annotations (Gene Ontology 

Consortium 2015) shows that consistently co-gained gene pairs tend to be functionally 
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related. Assuming that the majority of these gene pairs were transferred in the same HGT 

event, we estimated the distances of such pairs at the time they were co-transferred. Their 

distance distribution is bimodal, with a short-range mode that extends up to 30kb and a long-

range mode that corresponds to the distance distribution of random gene pairs. The short-

range mode likely represents true physical co-transfers.  

There are three competing explanations for gene pairs in the long-range mode: (i) the 

genes in those pairs were transferred in independent HGT events; or (ii) they were 

transferred together but separated through subsequent genome rearrangements, such that 

we overestimated their ancestral distance. A detailed analysis of genome organization 

across E. coli strains could potentially distinguish these scenarios, but we leave this to future 

work. 

The sharp 30kb upper bound for the short-range distribution of transferred gene pairs 

is intriguing: what constrains the size of transferred segments? An upper limit on the size of 

transferred DNA segments may be caused by the limited carrying capacity of transfer 

agents. The main mechanisms of HGT in E. coli are transduction and conjugation (Ippen-

Ihler and Minkley 1986; Golomidova et al. 2007). Moreover, most phage genomes in the 

EMBL database have a sequence length well above 30kb (Kanz et al. 2005). Thus, the 

observed 30kb limit on successful co-transfers is too short to be explained by a limited 

carrying capacity of E. coli’s main HGT agents.  

HGT consists of two stages: a mutational event that integrates a DNA segment into 

the host genome, followed by natural selection on the retention or removal of the segment or 

parts of it. Above, we argued that the short-range mode of the distance distribution cannot 

be explained by limitations on the mutational stage of HGT. Thus, we expected that the 

observed distribution instead reflects the distance distribution of co-functioning genes within 

the transferred DNA segments: only co-functioning genes are likely to be retained together 

by natural selection. To explain this short-range mode of the distance distribution, we initially 

hypothesized that it is consistent with the distances of gene pairs in operons, as these are 

often considered to be the basic unit of gene transfer (Lawrence and Roth 1996). Our 
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simulations show that the distance distribution of co-transferred gene pairs expected from 

operon sizes underestimates the spatial extent of the observed short-range mode 

substantially (Figure 3). Instead, we found that the distance distribution of gene pairs in uber-

operons (functional gene clusters beyond operons) is highly consistent with the observed 

distribution of co-transferred gene pairs.  

Thus, we propose that uber-operons, rather than operons, are the basic units of 

HGT. In this work, we defined uber-operons based on functional autocovariance; previous 

work has linked such structures to co-regulated operons, regional variation in codon bias, 

and chromosomal coiling (Lathe et al. 2000; Warren and ten Wolde 2004; Hershberg et al. 

2005; Touchon and Rocha 2016; Fritsche et al. 2011; Bailly-Bechet et al. 2006).  

Interestingly, a recent analysis of domesticated phages revealed that while recently 

added phage segments can span larger distances, anciently domesticated phage segments 

also follow a distribution bounded by 30kb, likely because evolution has trimmed down such 

segments to genes useful to the host (Bobay et al. 2014). An analysis of the size of co-

transferred DNA segments in E. coli based on regional codon bias also found an upper size 

limit of approximately 30kb (Bailly-Bechet et al. 2006). However, the same study also found 

a much larger upper limit for the size of regional codon bias in Bacillus subtilis, extending up 

to approximately 180kb (Bailly-Bechet et al. 2006). One possible explanation for this 

disparity is that uber-operons in B. subtilis are much larger than in E. coli. Alternatively, in 

contrast to E. coli, successful HGT in B. subtilis may not be dominated by the uptake of 

beneficial gene sets. While we restricted our analysis to the acquisition and loss of genes, 

the analysis of regional codon bias as performed for B. subtilis also includes the exchange of 

functionally identical sequences through recombination. In such cases, natural selection on 

gene retention plays no important role in determining the fate of horizontally transferred 

sequences; thus, in contrast to E. coli, the observed size distribution of transferred DNA 

segments in B. subtilis may be determined not by natural selection but by limits on DNA 

uptake via transformation. 
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In sum, we have shown that genes consistently co-transferred across E. coli strains 

follow a distance distribution that is consistent with uber-operons, i.e., functional gene 

clusters that extend beyond operons, as the basic unit of HGT. While higher-level functional 

clustering in bacterial genomes has been reported previously (Lathe et al. 2000; Warren and 

ten Wolde 2004; Hershberg et al. 2005; Touchon and Rocha 2016; Fritsche et al. 2011; 

Bailly-Bechet et al. 2006), these structures have so far not been linked to HGT. Future 

studies on the properties and the evolution of uber-operons may greatly contribute to our 

understanding of the structure and evolution of prokaryotic genomes. 

METHODS 

Reconstruction of the phylogenetic tree 

To infer HGT, we first needed to establish a species tree reflecting vertical inheritance. We 

obtained the genbank files for 53 E. coli strains and 17 sequences of closely related species 

(Supplemental Table S1) from NCBI (NCBI Resource Coordinators 2013; Benson et al. 

2009). We extracted the amino acid sequences of all genes and identified orthologous gene 

groups using Proteinortho (Lechner et al. 2011) with the synteny option. We identified a total 

of 16,264 orthologous gene families in the 53+17 strains (Supplemental Table S2 lists the 

proteinortho results that maps the orthologous gene families to the genes in the strains, and 

Supplemental Table S3 lists the gene names, locus tags, gene IDs and protein IDs for each 

orthologous gene family). 

The amino acid sequences of the 1,334 one-to-one orthologs universal to all 70 

genomes were aligned using MAFFT (Katoh and Standley 2013) with default parameters. 

We then concatenated the alignments and estimated a phylogeny of vertical inheritance for 

these 70 genomes using RAxML (Stamatakis 2014) with 200 fast bootstraps and with the 

“PROTCATAUTO” option for model choice. This protocol generated a phylogenetic tree with 

at least 60% bootstrap support at each internal branch. 
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The phylogenetic tree was rooted to group all 53 E. coli strains into a monophyletic 

subtree, with each of the 52 internal nodes of this subtree considered as an ancestral strain 

(see Supplemental Figure S1 for the phylogenetic tree of the 53 E. coli strains, Supplemental 

Figure S2 for the tree of all 70 strains, and Supplemental Data File D1 for the Newick format 

of the 70 strain tree). 

Reconstructing ancestral genomes and inferring the genes acquired through HGT 

We used the GeneTRACE maximum parsimony algorithm (Kunin and Ouzounis 2003) to 

determine the presence and absence of each gene at the 52 ancestral nodes, based on its 

presence and absence on the 53 extant genomes. Note that we preferred not to use a 

maximum-likelihood method to infer ancestral genome content, as existing methods assume 

constant rates of gain and loss along the phylogeny for each gene; this is unlikely to reflect 

evolutionary history, and often leads to the inference of multiple gains and losses on a single 

branch. 

If a gene is present in the ancestral node, but absent in the descendant node, then 

we designate it as lost on the corresponding branch of the phylogenetic tree. If a gene is 

absent in the ancestral node of a branch but present in the descendant node, then we 

designate it as gained on the corresponding branch (see Supplemental Table S5 for the 

orthologs in each of the extant and ancestral strains). 

Identifying the evolutionary associations between gene pairs 

For each of the 16,264 orthologous gene families, we represented the gain and loss history 

along the 104 branches of the phylogenetic tree by two separate binary vectors of 104 

elements: if a gene is gained in an evolutionary step (i.e., on one branch), then the 

corresponding element in its gain-vector is 1, and 0 otherwise; if it is lost in a step, then the 

corresponding element in its loss-vector is 1, and 0 otherwise. 

Next we quantified pairwise evolutionary associations between genes. For each pair 

of vectors, we summed the occurrence of the four element-wise patterns (0,0), (0,1), (1,0) 
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and (1,1) over the 104 rows and represented the sums as a 2-by-2 contingency table. 

Further, as each gene has two vectors representing its gain and loss history, there can be 

three types of associations between two gene families A and B: (i) co-gain of gene A and 

gene B on the same branch; (ii) gain of A with loss of B, or loss of A with gain of B; and (iii) 

co-loss of A and B. The association score of a pair of vectors is defined as the decadic 

logarithm of the p-value at the right tail of Fisher’s exact test. 

Null model of gene association 

We defined the score of association between gene pairs in the empirical data based on p-

values from Fisher’s exact test, but these values have no straight-forward statistical 

interpretation. This is because Fisher’s exact test assumes that observations are 

independent of each other, but the gain and loss patterns of genes on different branches are 

not: e.g., when a gene is gained in one step, it cannot be gained again in the subsequent 

step. We also developed a null model of gene transfer, where the presences and absences 

of each gene among different extant strains is randomly shuffled. The same algorithm of 

maximal parsimony was then applied to reconstruct randomized ancestral genomes, and the 

association scores between genes in this null model were calculated. 

We defined the false discovery rate (FDR) to describe the significance of association 

by comparing the distribution of association score between the empirical data and the null 

model. Let 
��� and 
��� be the number of gene pairs with association scores more 

significant than � in the empirical data and null model, respectively; a gene pair with score � 

then has ����� � �����

�����
. Figure 1 shows that an FDR of 0.05 (0.005) corresponds to a score 

of -5.0 (-6.8). 

Assigning GO categories through UNIPROT 

We queried the UNIPROT database (UniProt Consortium 2015) to obtain the protein 

entries that match our orthologous gene families. For each orthologous gene family, we 

extracted the gene name and locus tag of each of its corresponding genes from the 
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Genbank files, and used them as keywords to query the database for entries that match 

these names and tags (Supplemental Table S3). We then filtered out the entries with 

organism names that do not contain “Escherichia coli” or “Shigella”; gene names or locus 

tags that return multiple entries can cause confusion and so their results were also ignored. 

In the end, each orthologous gene family could map to more than one UNIPROT 

entry. The annotation of each orthologous gene family with gene ontology (GO) terms (Gene 

Ontology Consortium 2015) is then defined as the union of the individual entries. 

Modelling the distribution of gene pair distances 

We developed a simple model to explain the distance distribution of the associated gene 

pairs. We assumed that a pair of associated genes can have one of two origins: (i) both 

gained in the same transfer event, and so their distance is described by a short-range 

distribution ����, which reflects the limit of the transfer carrier or the distance distributions in 

source genomes; or (ii) both genes are transferred independently, and so their distance 

follows a long-range distribution ����, which reflects the limit imposed by the host genome. 

We used a parameter 0 � � � 1 to specify the relative weight of the two modes (� is the 

fraction of gene pairs acquired in the same transfer event among all gene pairs designated 

as associated). Note that � does not affect the boundary between the two modes of the 

distribution or the shapes of the two modes. 

We denoted the short-range distribution as ���� and the long-range one as ����. We 

fixed ���� to be the pairwise distance distribution between all genes in E. coli K-12 MG1655; 

for ����, we tested different pairwise distance distributions based on operons or on uber-

operons (see main text). The overall distribution is 

��� � ����� � �1 � ����� (1) 

We determined � by fitting the empirical distribution of pairwise gene distances of 

associated pairs to Equation (1). Fitting was done by minimizing the area between the 
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cumulative distributions of the empirical data and that of the model, assuming a logarithmic 

scale on the x-axis. 

Delineation of uber-operons through functional autocovariance 

The functional autocovariance ��� can be used to measure the extent of clusters of 

functionally coupled genes. Specifically, given a nucleotide at site � � 0 within a gene with a 

given set of GO annotations (Gene Ontology Consortium 2015), ��� measures the 

probability for another nucleic site � at distance � � � � �  to be within a gene that has at least 

one GO annotation in common. Let us define �	�� to be a discrete function that maps 

distance � to ones and zeros: � can be any nucleic site on the E. coli K-12 MG1655 genome 

within a gene that has at least one GO annotation; � is a positive integer; �	�� � 1 if � and 

� � � are sites of two different genes sharing at least one GO term, and 0 otherwise. The 

functional autocovariance is then 

��� � 1
� � �	��

	
�

 
(2) 

where N is the set of all nucleic sites of genes considered, and n is the number of elements 

in N. 

We assume that there is a higher chance for gene pairs within the same functional 

cluster to share a GO annotation, but a lower chance for pairs across different functional 

clusters; thus, we expect ��� to have the form 

��� � ��������� � ��  

where ��������� is the part of ��� that is due to functional clustering, while �� is the 

background probability that two random genes share a GO annotation. Gene pairs with small 

separation (small �) are likely to be in the same functional cluster and share the same 

annotation; but as � increases, this chance decays to ��.  

Furthermore, while we here used the GO annotation to estimate the functional 

autocovariance, the same formalism can also be based on annotations other than GO, such 
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as InterPro (Hunter et al. 2009). To make the functional autocovariance comparable across 

different sets of annotations, we rescale ��� into ����, as 

���� � ����� ��� �
� � ������ ��� � 

(3) 

here, � ��� �is the mean of ���, while � � ���� is the maximum of ���.  

Regardless of the annotation used for the calculation of the autocovariance, the 

maximum of the rescaled autocovariance ���� is 1, and decays to 0 at large distances. 

Once ���� has decayed to zero, it will only represent noise. Our goal is to estimate the 

pairwise distance distribution of genes in uber-operons from ����; thus, we cut ���� off at 

the point where it first crosses the x-axis beyond the bulk of the distribution (at � � 41410). 

To avoid any influence from unusually large genes, we did not score functional relationships 

of nucleotides within the same gene. This leads to an additional noise term at low distances, 

which we also removed (at  � � 184) before using the resultant distribution to fit the distance 

distribution of co-gained genes. Normalization is then performed to ensure that the terms for 

all � sum to 1, which converts ���� into an estimation of pairwise distance distribution of 

genes in function clusters.  

To test the reliability of our approximation, we applied it also to gene pairs within 

operons in E. coli K-12 MG1655. Supplemental Figure S3 compares the distance distribution 

of gene pairs in K-12 MG1655 operons, and the distance distribution approximated using the 

rescaled and normalized autocovariance function of gene pairs in K-12 MG1655 operons 

that share GO annotations (with � � 17143 trimmed to remove noise). The plot shows that 

while the bulk of the distribution is slightly biased to the right, the right tail is well conserved. 
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FIGURE LEGENDS 
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Figure 1. Distribution of the score for pairwise gene associations in the empirical data (solid 

line) and the null model (dashed line). Each line summarizes the score of all three types of 

association (co-gained, co-lost, and gained-lost). The two vertical dotted lines at scores -5 

and -6.8 correspond to FDRs of 0.05 and 0.005, respectively. 

Figure 2. Cumulative distribution function of genomic distances between co-gained gene 

pairs at FDR 0.05 (solid line) and 0.005 (dashed line), showing a pronounced kink at a 

genomic distance of 30kb (vertical dotted line). See Supplemental Figure S4 for the 

corresponding probability density function, and Supplemental Figure S6 for the distribution of 

co-lost and gained-lost associations. 

Figure 3. Comparison of the observed cumulative distance distribution of co-gained gene 

pairs (solid line) with the expectations from the operon model (dashed line) and the uber-

operon model (dotted line). The operon model uses the distances of gene pairs in E. coli K-

12 MG1655 operons (Mao et al. 2009) to represent the short-range distribution ���� (best fit: 

� � 0.65). The uber-operon model uses the normalized functional autocovariance of E. coli 

K-12 MG1655 genes (best fit: � � 0.67) for the short-range distribution. See Supplemental 

Figure S7 for the corresponding probability density functions. 

Figure 4. Rescaled functional autocovariance of genes in E. coli K-12 MG1655. The solid 

curve is calculated from all genes in E. coli K-12 MG1655, while the dashed curve is 

calculated only from genes that were consistently co-gained across the E. coli phylogeny 

according to our study. For comparison, the dotted line shows the functional autocovariance 

calculated only within E. coli K-12 MG1655 operons (Mao et al. 2009). At small distances, all 

three curves rise from small values to 1, as they leave the first gene (where autocovariance 

is 0 by our definition) and enter the second gene. These rescaled functional autocovariance 

curves then slowly decay to zero, indicating the finite size of uber-operons or operons. The 

operon model curve (dotted) decays substantially faster than the empirical functional 
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autocovariance curves (solid and dashed), indicating that real functional clusters in E. coli K-

12 MG1655 extend far beyond its operons. 
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TABLES 

Table 1. Statistical tests for functional relationships between associated gene pairs (FDR 

0.05). 

   Nsuccess / Ntrial
1, (p-value)2 
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Association 

type 
total pairs 

both have GO 

annotation 
distance < 30kb distance > 30kb total 

co-gained 7538 2206 
377 / 1581  

(0.00016) 
248 / 625 (<1E-6) 

625 / 2206 

(<1E-6) 

gained-lost 71 18 - 
1 / 18  

(0.9825) 

1 / 18  

(0.98) 

co-lost 1055 612 
164 / 419  

(<1E-6) 
35 / 193 (0.7791) 

199 / 612  

(<1E-6) 

overall 8664 2836 
541 / 2000  

(<1E-6) 
284 / 836 (<1E-6) 

825 / 2836 

(<1E-6) 

1 the null expectation is Nsuccess / Ntrial = 20.12% 

2 p-values from binomial test 
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