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Abstract 

A number of methods have been developed to use genetic sequence data to identify and 

delineate species. Some methods are based on heuristics, such as DNA barcoding which is 

based on a sequence-distance threshold, while others use Bayesian model comparison under 

the multispecies coalescent model.  Here we use mathematical analysis and computer 

simulation to demonstrate large differences in statistical performance of species identification 

between DNA barcoding and Bayesian inference under the multispecies coalescent model as 

implemented in the BPP program.  We show that a fixed genetic-distance threshold as used in 

DNA barcoding is problematic for delimiting species, even if the threshold is “optimized”, 

because different species have different population sizes and different divergence times, and 

therefore display different amounts of intra-species versus inter-species variation.  In contrast, 

BPP can reliably delimit species in such situations with only one locus and rarely supports a 

wrong assignment with high posterior probability.  While under-sampling or rare specimens 

may pose problems for heuristic methods, BPP can delimit species with high power when 

multi-locus data are used, even if the species is represented by a single specimen.  Finally we 

demonstrate that BPP may be powerful for delimiting cryptic species using specimens that are 

misidentified as a single species in the barcoding library. 

Introduction 

DNA barcoding was initially proposed as a fast and inexpensive approach to species 

identification.  With a reference library of sequences for a “universal locus” from species that 

are identified a priori, biological specimens can be identified through calculation of the 

genetic distance between the query and sequences in the library (Hebert et al., 2003).  The 

universal locus is typically mitochondrial cytochrome oxidase 1 (CO1) or cytochrome b 

(cytb), as mtDNA is easier to type than nuclear DNA from highly processed and degraded 

tissue.  One particularly successful application of DNA barcoding is in forensics or “DNA 

detective” work, where DNA evidence is used to track illegal trade of wildlife (Alacs et al., 

2010).  Similarly adult life stages of insects with easily identifiable morphological features 

can be used to construct the reference library, and then DNA barcodes from juvenile or 

incomplete specimens can be matched to the library. 

DNA barcoding has also been used for species discovery or species delimitation.  This 

typically relies on determining a genetic distance threshold or ‘barcoding gap’.  The query 

specimen is identified and assigned to an existing species in the library if the shortest 
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pairwise sequence distance from the query to the sequence library is smaller than a pre-

specified threshold.  If the smallest distance exceeds the threshold, there will be a non-

identification, which indicates that the specimen is from a new species, not represented in the 

library.  The threshold may be arbitrarily chosen.  For example, the ‘10 rule’ (Hebert et al., 

2004) specifies the interspecific divergence to be at least 10 times as large as the intraspecific 

diversity.  Dowton (2014) used 4% of cox1 divergence.  More sophisticated methods 

generate a threshold by taking a database with a known taxonomy and minimizing the false-

positive errors (incorrectly identifying a specimen as a new species) and false-negative errors 

(incorrectly lumping a specimen into another species) (Meyer and Paulay, 2005).  For 

example, Ratnasingham and Herbet (2013) calculated a threshold of 2.2%.  Methods have 

also been developed to “optimize” thresholds in empirical databases, such as Spider (Brown 

et al., 2012) and ABGD (Automatic Barcode Gap Discovery, Puillandre et al., 2012).  

However, different species have different population sizes and divergence times.  As a result, 

one expects considerable overlap between intraspecific variation and interspecific divergence 

(Meyer and Paulay, 2005), so that there may not be a “one-size-fits-all” threshold, whatever 

method is used to determine the threshold. In a case study examining DNA barcoding 

performance in a diverse group of marine gastropods, Meyer and (2005) found that use of one 

threshold to delineate all species was particularly problematic for closely related species in 

taxonomically understudied groups. 

In contrast, the multispecies coalescent  (MSC) model (Rannala and Yang, 2003) 

naturally accommodates different population sizes and species divergence times.  In theory it 

should be possible to delimit species even in extreme cases where the within-species diversity 

for some species is higher than the between-species divergence between other species. 

Another potential advantage of the MSC-based approach is its ability to delimit cryptic 

species  (specimens in the database that are distinct species but recognised as one species).  

Although the potential clearly exists, the performance of bpp to delimit cryptic species in 

practical data analysis has not been carefully examined.  Indeed Collins and Cruickshank 

(2014) suggested that “it is questionable whether such statistics would be reliable due to the 

sampling and parameter estimation problems associated with taxon rarity in species 

delimitation methods.”  We demonstrate that BPP can delimit cryptic species with high 

accuracy even if the species are under-sampled. 

There has been much recent discussion about the impact of species under-sampling, or the 

rarity of species, on species delimitation (Lim et al., 2012; Collins and Cruickshank, 2014).  
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Rarity indeed appears to be very common.  For example, 48.5% of species in the African 

beetles library examined by Ahrens et al. (2016) were singletons.  Many authors have 

considered species rarity to be a major challenge for species delimitation.  For example, Lim 

et al. (2012) claim that many newly developed methods either implicitly or explicitly require 

that all species are well sampled.  They argue that delimitation techniques should be modified 

to accommodate the commonness of rarity.  Their conclusions are based on the intuition that 

species delimitation requires information about the within-species diversity relative to the 

between-species divergence, and such information will be hard to obtain if some species are 

under-sampled or are singletons.  Furthermore, heuristic methods of species delimitation have 

indeed been found to suffer from poor species sampling.  For example, in a case study of 

southern African beetles using cox1 sequences from >500 specimens and ~100 species, 

Ahrens et al. (2016) demonstrated that limited sampling effort can compromise species 

delimitation by the Generalized Mixed Yule Coalescent (GMYC) method (Fujisawa and 

Barraclough, 2013).  The difficulty appears to lie more with the high sensitivity of GMYC to 

variable population sizes than with high proportions of singletons per se; GMYC appears to 

have difficuly generating reliable estimates of intra- vs. interspecies evolutionary parameters 

when some species are under-sampled.   

We note that species rarity is naturally accommodated by BPP.  It is simply a matter of 

information content and power, and BPP can make reliable inferences using multi-locus data 

even if a species is represented by a single specimen (singleton). New species have often 

been described based on rare specimens using morphology and it therefore appears self-

evident that genetic data should also contain enough information to infer the species status of 

a rare specimen.   

In this paper, we conduct simple computer simulations to demonstrate the differences 

between an MSC-based method (BPP) and heuristic barcoding methods for species 

delimitation.  First, we show that in realistic scenarios it is impossible to identify a single 

distance threshold (barcoding gap) that allows correct species delimitation for all species.  

However, BPP can identify all species in this case without difficulty.   Second, we illustrate 

the use of BPP to detect cryptic species.  Finally we study the problem of rare specimens or 

singletons, and demonstrate that with multi-locus data BPP can delimit singleton species with 

high precision and high accuracy. 

One barcode gap for identifying all species may not exist 
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We simulate sequence data using the species tree of figure 1a, with 1 + 10 sequences from A, 

10 Bs, 1 + 10 Cs, 10 Ds, 10 Es, and 1 F.  The 10 sequences each from species A-E (50 

sequences in total) are used as the ‘library’, while the 1 A, 1 C and 1 F are used as three 

‘query’ sequences (denoted A1, C1, and F).  We generate one locus, of 1000bp, by simulating 

the gene trees under the MSC (Rannala and Yang, 2003) and evolving sequences along the 

gene tree.  The program MCCOAL, which is part of the BPP package (Yang, 2015), was used 

for the simulations.  The number of replicate simulated datasets was 100.   

We analyzed the simulated data using both the DNA barcoding gap and the BPP program.  

Note that BPP will never separate one population into two species but may merge different 

populations into one species.  The reversible-jump Markov chain Monte Carlo (rjMCMC) 

algorithm (Yang and Rannala, 2010) explores different delimitation models, which 

correspond to different groupings of populations into the species, as well as different 

phylogenetic relationships among the delimited species.  The analysis assumes 8 populations: 

A, B, C, D, and E, and the three query sequences.  We use Prior 3 for the species-tree models, 

which assigns uniform probability (1/8) for 1, 2, …, and 8 species (Yang, 2015).  The priors 

on parameters are  ~ G(2, 200), with mean 0.01, and ABC ~ G(3, 100), with mean 0.00333.  

The shape parameters 2 and 3 are relatively small, indicating that the gamma priors are fairly 

diffuse.  The prior means are set to be equal to the true values. 

For each simulated dataset (which consists of 53 sequences for one locus), sequences A1, 

C1 and F were queried against the sequence library made up of the remaining 50 sequences.  

Let d(A1, A) = mind(A1, Ai), i = 2, …, 10 be the smallest distance from the query A1 to 

species A, and define d(C1, C) and d(F, E) accordingly.  A1 is correctly assigned to species A 

if d(A1, A) is smaller than the distance threshold, while F is correctly assigned to be a species 

distinct from E if d(F, E) is larger than the distance threshold.  Thus to assign A1 and C1 

correctly to species A and C, respectively, one would prefer a large distance threshold, and to 

assign F correctly into a distinct species from species E, one would like a small distance 

threshold.  It will be impossible to assign all three queries correctly if d(F, E)  d(A1, A) or if 

d(F, E)  d(C1, C).  This happened in 28 out of the 100 replicate datasets.  For example in one 

dataset, d(A1, A) = d(A1, A2) = 0.001, d(C1, C) = d(C1, C5) = 0.004, and d(F, E) = d(F, E2) = 

0.003.  With the within-species distance (0.004 for C) being greater than the between-species 

distance (0.003 between F and E), it is impossible to use one distance threshold to make 

correct assignments.  Whatever the distance threshold, it will be impossible to avoid both the 

false positive error of claiming A1 or C1 as a new species (a non-identification) and the false 
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negative error of lumping F into species E.  In the other datasets, it is theoretically possible to 

choose a threshold that will allow correct assignment of all three queries, but mis-

assignments may still occur if an imperfect threshold is chosen.  

Fig. 2 shows the proportion (among 100 replicate datasets) of correct species assignments 

when each dataset is analyzed using a fixed distance threshold.  For example, at the distance 

threshold of 0.003 (three differences per kb), A1 is correctly assigned to species A in 96% of 

datasets, C1 is correctly assigned to species C in 70% of datasets, and F is correctly assigned 

to a species distinct from species E in 39% of datasets. 

The same datasets of one single locus were also analyzed using BPP and the resulting 

posterior probabilities of assignments are summarized in fig. 3 for data.  Here P(A1A) is the 

posterior probability that population A1 and A are (correctly) grouped into one species, to the 

exclusion of all other populations.  The average posterior probability was 0.81 for correctly 

assigning A1 to species A, and was 0.17 for recognizing it as a new species (over-splitting).  

The average posterior probability was 0.71 for correctly assigning C1 to species C, with the 

false positive rate of oversplitting to be 0.29. The average posterior probability for correctly 

identifying F as a new species was 0.68, with the false negative rate of incorrectly lumping it 

with species E to be 0.31. Although the information is weak with a single locus, BPP is clearly 

outperforming the threshold method. High posterior probabilities (>0.9) for an incorrect 

assignment are very rare (less than 1% on average). 

Increasing the number of loci from 1 to 10 led to increased posterior probabilities for 

correct assignments and to reduced error rates.  The posterior probabilities for correctly 

assigning A1 to species A, C1 to species C, and F to a distinct species from E are shifted 

towards 1 (fig. 4a-c), while the posterior probabilities for incorrectly assigning A1 or C1 to 

distinct species are shifted towards 0 (fig. 4d-f).  Query F is identified as a distinct species 

with posterior probability 1.0, and the error rate for lumping E and F is 0 in every dataset. 

Identifying cryptic species 

To examine the performance of BPP in identifying cryptic species we simulated sequence data 

using the species tree for 3 species of figure 1b, with 4 sequences (two diploid individuals) 

from each species. The parameter values were  = 0.01 for all populations, AB = 0.01 and 

ABC = 0.02.  A and B represent distinct cryptic species, misidentified as one species in the 

library.  Each locus was 1000bp.  The number of loci was either 2 or 10.  The number of 

replicate simulations was 100.  The BPP analysis assumed 5 populations (A1, A2, B1, B2, C), 

 
6

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 28, 2016. ; https://doi.org/10.1101/041608doi: bioRxiv preprint 

https://doi.org/10.1101/041608


with each individual from A and B treated as a separate population.  We assign Prior 3 for the 

species-tree models, with uniform probability (1/5) for 1, 2, …, 5 species (Yang, 2015).  The 

priors on parameters are  ~ G(1, 100) and ABC ~ G(4, 200).  These are diffuse priors with 

the means equal to the true values. 

The true model in this case has 3 species, with the phylogeny ((A, B), C), and with A1 and 

A2 grouped into one species (A), and B1 and B2 into another (B).  With 2 loci, 82% of the 

simulated datasets produced a maximum a posteriori (MAP) model with 3 species that 

matched the true model.  The histogram for the posterior probability for the correct model 

(which separates A and B into distinct species and also infers the correct species phylogeny) 

is shown in fig. 5a.  While this probability is >70% in most datasets, it is low in many other 

datasets, reflecting the low information content in data of one single locus.  With 10 loci, 

97% of the simulated datasets produced a MAP model with 3 species that matched the true 

model.  The histogram for the posterior probability for the correct model is shown in fig. 5b.  

The shift towards 1 relative to that of fig. 5a reflects the dramatic increase in the information 

content in data of 10 loci.   

If a posterior probability of 0.90 is used as a cut-off to choose a model, the error rate is 

1% for 2 loci and 0% for 10 loci.  With a 0.90 posterior probability cut-off the power to 

identify the true model is 17% with 2 loci and 69% with 10 loci.  The average posterior 

probability Pr(A1A2) for grouping A1 and A2 into one species was 0.83 with 2 loci and 0.94 

with 10 loci, and the average posterior probability Pr(B1B2) for grouping B1 and B2 into one 

species was 0.85 with 2 loci and 0.94 with 10 loci.  The distributions of posterior 

probabilities of the A1A2 and B1B2 groupings with either 2 or 10 loci are shown in fig. 6.  

Additional loci may be needed to infer the true model with almost complete certainty. 

Identifying rare species 

To examine the performance of BPP in identifying rare species we simulated data on the 

species tree of figure 1b, with 1 A, 10 Bs, and 10 Cs.  The one A sequence represents one 

specimen (a singleton) from a haploid species.  We are interested in whether BPP can 

correctly infer A to be a distinct species when sequence data from multiple loci are available.  

Note that having two A sequences (as would be available if the species is diploid) will make 

the task easier.  The parameter values are  = 0.01 for all populations, AB = 0.01 and ABC = 

0.02.  Each locus was 1000bp.  The number of loci was either 2 or 10.  The number of 

replicates was 100.  The BPP analysis assumes 3 populations (A, B, C).  We assign Prior 3 for 
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the species-tree models, which assigns uniform probability (1/3) for 1, 2, and 3 species (Yang, 

2015).  The priors on parameters are  ~ G(1, 100) and ABC ~ G(4, 200). 

The true model in this case is 3 species, with the species tree ((A, B), C).  The MAP 

model was the true model for all simulated datasets with either 2 loci or 10 loci.  In all 

datasets, three species were delimited with posterior probability greater than 0.95, whether 2 

or 10 loci are analyzed.  The average posterior probability of 3 species was 0.998 with 2 loci 

and 1.000 with 10 loci.  The power of inference is very high in this case compared with the 

simulation of cryptic species, because multiple individuals (10 sequences) are available from 

species B. 

Discussion 

We suggest that species identification and discovery using genetic sequence data be best 

viewed as a statistical inference problem, given the stochastic nature of the coalescent and the 

process of sequence evolution.  Species assignment by BPP under the MSC makes an efficient 

use of information in the sequence distances, or in the greater between-species divergence 

than within-species polymorphism.  However, BPP in addition uses information in the gene 

trees and branch lengths, even though the gene trees at each individual locus may involve 

considerable uncertainties and sampling errors.  The method accommodates the fact that 

some species have large population sizes and thus show greater within-species diversity, and 

that some species diverged recently so that the between-species divergence may not 

necessarily exceed the within-species diversity.  By using a formal modeling framework and 

incorporating information about contemporary and ancestral population sizes available from 

multilocus sequence data one avoids the need to specify subjective distance thresholds as in 

DNA barcoding.  Another advantage of the statistical modeling methods such as BPP over 

heuristic methods such as DNA barcoding is that they provide measures of uncertainties in 

the form of posterior probabilities. 

Lim et al. (2012;  see also Collins and Cruickshank, 2014) claim that “in studies using 

coalescence much of the evidence for species limits comes from coalescence points, which 

are by definition lacking for rare species…”  This intuition is faulty, as can be seen from our 

simulation results showing that BPP identified the singleton species with higher power, even 

though the single sequence from the singleton species cannot provide any within-species 

coalescent points.  Indeed, the simulation of Zhang et al. (2011, fig. 3) showed that BPP can 

assign species correctly with 10 or 50 loci (depending on the mutation rate or sequence 

divergence level) even if a single sequence is sampled from each population at every locus so 
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that estimation of intra-species diversity is not possible for either species.  Lim et al. (2012) 

went on to recommend several approaches for identifying statistical ‘outliers’ for use in 

species recognition.  Those suggestions are neither valid nor relevant.   

Dowton et al. (2014) suggested that coalescent-based species delimitation methods can be 

used to make more accurate specimen identifications than single-locus DNA barcoding.  

However, Collins and Cruickshank (2014) suggest that “to benchmark the efficiency and 

accuracy of species delimitation methodologies, it should now be a priority to highlight 

exemplar data sets—empirical and/or simulated—for which MSC methods clearly 

outperform simpler mtDNA analyses.”  In this study we have generated several such 

exemplar cases by simulation and showed that simple distance threshold does not work well.   

Collins and Cruickshank (2014) further discussed the computational burden of species 

delimitation methods based on the MSC.  While algorithmic improvements are being made 

(Rannala and Yang, 2016), it may be interesting to note that BPP recovered the true model 

(species delimitation and species phylogeny) with near certainty with a moderate number of 

loci such as 10 or 20.  Thus there is probably no need to use the whole genome to infer 

species status.  Inference methods such as BPP can be practical and powerful for smaller 

numbers of loci and individuals.  Similarly there may not be a need to analyze 500 species, 

say, in one combined analysis, to delimit species.  It may be reasonable to analyze divergent 

groups of species as separate datasets, thus further reducing the computational burden 

involved.  Collins and Cruickshank (2014) stated that they “agree that researchers should be 

looking into ‘smarter’ methods for taxon identification, but only in cases where the ‘dumb’ 

methods have first been comprehensively shown not to work.”  Here we show that for the 

species tree that we considered it was impossible for the ‘dumb’ barcoding method to make 

correct identifications for all species in about 30% of datasets.  The BPP method, on the other 

hand, produced reasonable results with one locus, favouring the correct assignment and never 

supporting a wrong assignment with high posterior probability.  With 10 loci, it had both high 

precision and high accuracy.  We suggest that the ‘dumb’ method failed dramatically in this 

case.  We suggest that “comprehensively” showing that the method does not work is 

unnecessary since a practical ‘smart’ method is already available that does not have the 

pathological behaviour and will achieve accurate inferences with sufficient numbers of loci.  

We note that even the two dumbest methods one could imagine, one assigning every query 

specimen to a new species, and the other assigning every query specimen to the most 

common species in the library, cannot be shown “comprehensively” to fail, because they will 
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provide perfect answers in a substantial proportion of datasets. 
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Figure legends 
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Fig. 1.  Species trees used in simulating sequence alignment under the MSC, with branches 
drawn using the species divergence times (s).  In (a), the species divergence-time parameters 
are shown in red bold font next to the internal nodes: AB = EF = 0.0025, CD = 0.01, ABCD = 
0.02, and ABCDEF = 0.03, while the population size parameters are shown along the branches: 
A = B = AB = E = F = EF = 0.005, C = D = CD = 0.02, and ABCD = ABCDEF = 0.01.  In 
(b), the parameters are AB = 0.01, ABC = 0.02, and  = 0.01 for all populations.  Both s and 
s are measured by the expected number of mutations per site. 

 

 

Fig 2. The proportion of correct species assignments when the distance threshold is fixed at 
different values, averages over 100 simulated replicate datasets. 
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Fig 3. The histograms of posterior probabilities for correctly assigning A1A, C1C, and F into 
one species, and for incorrectly assigning A1, C1, EF into one species by BPP in datasets of 
one single locus.   

 

 

 

Fig 4. The histograms of posterior probabilities for species assignments by BPP in datasets of 
10 loci.  See legend for fig. 3.  P(F) = 1 and P(EF) = 0 in every dataset so that those plots are 
not shown. 
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Fig 5. The histograms of posterior probabilities for correctly inferring the cryptic species 
status as well as the species phylogeny by BPP using datasets of 2 and 10 loci.  There are 3 
species in the dataset, with A and B representing two cryptic species. 
 

 

 
Fig 6. The histograms of posterior probabilities for correctly identifying cryptic species by 
BPP using datasets of 2 and 10 loci.   
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