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SUMMARY

 Plant interactions with arbuscular mycorrhizal fungi have long excited interest  for 

their potential to promote more efficient use of mineral resources in agricultural 

production. Their use, however, remains limited, in part because of a lack of 

understanding of the factors that determine symbiotic outcome. In this work, variation

in response to arbuscular mycorrhizal colonization was characterized  a panel of 

genetically diverse maize inbred lines. 

 The parents of the maize Nested Association Mapping population were evaluated, 

with and without colonization, in early vegetative stages. Subsequently, six lines with 

contrasting phenotypes were selected for further characterization, including 

quantification of fungal colonization, mycorrhiza-mediated phosphorus uptake,  and 

accumulation of transcripts encoding plant PHT1 family phosphate transporters.  

 The relative growth of lines changed between non-inoculated and inoculated plants, 

indicative of variation in host capacity to profit from symbiosis. Patterns of Pht1 

transcript accumulation varied among lines, and were correlated with outcome. 

 Larger growth responses were correlated with more extensive development of root-

external hyphae, increased accumulation of specific Pht1 transcripts and a high level 

of mycorrhiza-mediated phosphorus uptake. The data suggest that host genetic factors

influence fungal growth strategy with subsequent impact on plant biomass production.

Key words: arbuscular mycorrhiza, maize, PHT1, phosphorus, root-external hyphae 
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INTRODUCTION

The rising cost of agricultural inputs and an increasing awareness of the negative 

environmental consequences have resultes in ever greater interest in beneficial crop-microbe 

interactions and their potential application (Perez-Montano et al., 2014; Vance, 2014). The 

most prevalent nutrient-delivering symbiosis is the association of plants with fungi of the 

phylum Glomeromycota, resulting in the formation of arbuscular mycorrhizas (Smith & 

Read, 2008). More than 80% of extant terrestrial plants establish arbuscular mycorrhizal 

(AM) symbioses, and this fundamental capacity has been retained in major crop species 

throughout the processes of domestication and improvement (e.g. Koide et al., 1988; Hetrick 

et al., 1992; Kaeppler et al., 2000; Sawers et al., 2008). Concomitantly, these same crops 

have retained a conserved molecular machinery required for symbiotic establishment and 

nutrient exchange (Paszkowski et al., 2002; Gutjahr et al., 2008; Yang et al., 2012; Willman 

et al., 2013). 

AM fungi provide the plant host with greater access to soil nutrients and water 

through connection to a network of fungal hyphae more extensive than the plant's own root 

system (Bucher, 2007). In addition, AM symbioses have been implicated in enhanced 

tolerance to a range of abiotic and biotic stresses (Smith & Read, 2008). Such benefits are not

provided without cost, however, and the plant host must provide carbohydrates to the fungus, 

which represents a diversion of photosynthetically fixed carbon away from primary 

productivity and yield. Ultimately, the outcome, which may be positive or negative, is 

dependent not only on the specific plant-fungus combination (Walder et al., 2012) but on the 

requirements and limitations imposed by any given environment (Janos, 2007). Indeed, in 

high-input modern agricultural systems, the benefit of the symbiosis to the plant may be 
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marginal (Grace et al., 2009), and it has been hypothesized that conventional breeding 

practices may have promoted weakening of the mutualism (Hetrick et al., 1992, 1996). 

Comparisons of mycorrhizal response, however, can be complicated by variation in overall 

plant adaptation to a given set of conditions - poorly adapted plants will typically show the 

greatest performance increase following AM colonization (e.g. Hetrick et al., 1992; Kaeppler 

et al., 2000), although such improvement need not indicate a superior capacity to benefit 

from colonization per se (Sawers et al., 2010). The maize mutant lrt1, which exhibits reduced

lateral root development, illustrates an extreme case: high dependency under low P 

availability that can be largely compensated by the formation of AM symbiosis (Paszkowski 

& Boller, 2002). The question remains as to whether , and how, certain varieties derive 

greater benefit from AM symbioses than others and to what extent plant breeding can 

optimize these interactions for agricultural systems (Sawers et al., 2008; Fester & Sawers, 

2011). A better understanding of the molecular and physiological impact of AM symbiosis 

has the potential to enhance greatly interpretation of outcome variation. 

The best characterized benefit of AM symbiosis is enhanced plant phosphorus (P) 

nutrition. Given that limited P availability is a major check on global agricultural production 

and food security, assessment of AM outcome in terms of P nutrition is a justifiable 

approximation of this complex symbiotic trade-off. The efficiency with which crop plants 

convert P resources to yield (P Efficiency; PE) can be partitioned between the efficiency of 

uptake (P Acquisition Efficiency; PAE), and the efficiency of internal use (P Use Efficiency; 

PUE) (Rose at al., 2011; Veneklaas et al., 2012), AM symbiosis most directly impacting the 

former.  Levels of P fertilizer uptake in agricultural systems are typically low (15-20%; Syers 

et al., 2008), largely as a result of the relative immobility of P in the soil and the ready 
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formation of a zone of P depletion around the root (Bucher, 2007). Optimization of the root 

system architecture can contribute significantly to P foraging (Lynch, 2011), but, under a 

given set of conditions, AM symbioses may present the greatest opportunity to access a 

greater soil volume. Physiological studies have demonstrated that symbiotic phosphate 

uptake is a distinct functional alternative to direct uptake by the plant (Smith et al., 2003; 

Bucher, 2007), and in a field setting, the majority of the phosphate taken up by a plant may be

acquired via the symbiotic route (Schweiger and Jakobsen, 1999; Smith et al., 2003; Yang et 

al., 2012). 

Molecular analyses have supported the distinction between symbiotic and direct 

phosphate uptake,  identifying the various members of the plant PHT1 P transporter family to

play roles specific to the the two pathways. Where plants are competent to host AMF, there is 

at least one family member (PT11 in rice and variously named orthologs in other species) 

acting predominantly, or exclusively, during AM symbiosis (Rausch et al., 2001; Harrison et 

al., 2002; Paszkowski et al., 2002; Glassop et al., 2005; Nagy et al., 2005; Maeda et al., 

2006; Caesar et al., 2014; Walder et al., 2015). Mutant analysis has demonstrated PT11 

proteins to be essential for formation and maintenance of AM symbiosis (Maeda et al., 2006; 

Javot et al., 2007; Yang et al., 2012), although this phenotype has been partially rescued by 

nitrogen starvation in medic (Breuillin-Sessoms et al., 2015) and co-cultivation with wild-

type plants in maize (Willmann et al., 2013). In medic, the PT11 protein MtPT4 has been 

localized to the peri-arbuscular membrane (Harrison et al., 2002; Kobae & Hata, 2010; 

Pumplin et al., 2012), and the PT11 proteins are considered to provide the principal route of P

uptake from fungus to plant. 
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In this study, differences in mycorrhiza response among a panel of diverse maize lines

are dissected to identify variation linked to a greater ability of the host to profit from the 

symbiosis. Selected lines were further characterized by quantification of AM-mediated and 

total P uptake, fungal colonization of roots and soil, and accumulation of transcripts encoding

PHT1 family P transporters. 

MATERIALS AND METHODS

Evaluation of response to AMF in maize diversity panel

A panel of 30 diverse maize lines, comprising  the 26 diverse inbred founders of the maize 

NAM population (McMullen et al., 2009), Pa36 (a line tolerant of low P availability; 

Kaeppler et al., 2000), and the lines B73, W22 and W64A (a line used previously for study of

AM symbiosis; Paszkowski et al., 2006), was evaluated in one litre pots, under conditions of 

low phosphorus availability, with or without inoculation with Funneliformis mosseae (isolate 

number 12, European Bank of Glomales, http://www.kent.ac.uk/bio/beg/), as previously 

described (Sawers et al., 2010). At 8 weeks after emergence, the aerial part of the plant was 

harvested, dried and weighed.  Six experiments (A-F) were conducted in the greenhouse 

facility at the University of Lausanne, Switzerland, during the period 2007 - 2010. Each 

treatment was replicated three times in each experiment, with the exception of experiment D 

in which each treatment was replicated five times. Shoot dry weight data was analyzed 

without further transformation for clarity. Systematic variation among experiments was 

eliminated using linear estimation. The experiment effect was estimated separately for non-

inoculated and inoculated plants. Mycorrhiza response was estimated for each genotyping by 

calculation of a t-interval for the difference of inoculated and non-inoculated means. All 
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analysis was performed using R statistics (www.r-project.org). See Supporting Information 

for raw data and further details.

Determination of elemental concentration by ICP-MS analysis

Tissue samples were weighed then digested in 2.5mL concentrated nitric acid (AR Select 

Grade, VWR) with internal standard added (20ppb In, BDH Aristar Plus).  Sample digestion 

and dilution was carried out as described in Ziegler et al., 2013. Elemental concentrations of 

B, Na, Mg, Al, P, S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Mo, and Cd were measured 

using an Elan 6000 DRC-e mass spectrometer (Perkin-Elmer SCIEX) connected to a PFA 

microflow nebulizer (Elemental Scientific) and Apex HF desolvator (Elemental Scientific) 

using the procedure described in Ziegler et al. To correct for machine drift both during a 

single run and between runs, a control solution is run every tenth sample. All analysis was 

performed using R statistics. See Supporting Information for raw data and full analysis.

Characterization of AM phosphorus uptake in six selected lines

 Six maize lines with different low P tolerance were selected and evaluated at the Technical 

University of Denmark. Plants were grown in 2.4 L PVC tubes in accordance with Smith et 

al., 2003. The growth medium (hereafter referred to as soil)  contained 7.9 mg 0.5M 

bicarbonate-extractable P kg-1 (Olsen et al., 1954) and was a 1:1 (w:w) mixture of sand and 

irradiated soil (10 kGy, 10 MeV electron beam) that received basal nutrients (Pearson & 

Jakobsen, 1993) and  KH2PO4 at nil, 15 or 90 mg P kg -1. All nutrients were added in solution 

and carefully mixed into the soil. The root plus hyphal compartment (RHC) contained 2750 g

soil and the hyphal compartment (HC) was a small plastic vial placed in the middle of the 

RHC. The HC contained 55 g of 33P labeled soil (5 kBq g-1) and lined with a 25 μm nylon 
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mesh at both ends to prevent root in-growth. Seven weeks later, bicarbonate extracts had a 

specific activity (SA = 33P/31P) of 144.7, 79.9 or 29.4 kBq mg-1 P in soil amended with nil, 15 

or 90 mg P kg-1. Each maize line was grown in 8 replicate pots in half of which 140 g dry 

soil-root inoculum of Rhizophagus irregularis BEG87 was thoroughly mixed into the growth 

medium. Filtered BEG87 inoculum leachings were added to all pots as an attempt to establish

the same soil microbial community (Pearson & Jakobsen, 1993). Two pre-germinated seeds 

were planted in each pot and thinned to one at the two leaf stage. Plants were maintained 

under controlled conditions (12 hour day length at 500 μmol m-2 sec-1, 28/20oC day/night and 

60 % relative humidity) and watered daily by weight to 70% of the water holding capacity. In

addition to the initial basal nutrient dressing, supplemental N (NH4NO3), Mg and S (MgSO4
2-)

was added periodically to additionally provide 375 mg N, 15 mg Mg and 20 mg S per pot. 

Shoots were harvested at growth stage 51 (BBCH scale; tassel emergence at the top of the 

stem), oven dried to constant weight at 70oC and dry weights were recorded. Roots system 

was carefully washed clean using a pressurized water jet and a fine mesh to collect fine root 

pieces. Roots were blotted dry and total fresh weight (FW) was recorded. Subsamples were 

taken for root length/colonization measurement (1.5g FW, stored in 50% EtOH) and RNA 

extraction (1g, flash-frozen in liquid nitrogen). Dried and ground shoot and root samples 

were oxidized in a 4:1 mixture (v:v) of 65% nitric:70% perchloric acids, and total P was 

determined by the molybdate blue method using AutoAnalyzer 3 (Bran+Luebbe, Norderstedt,

Germany). The 33P in shoot tissue was determined in the same digests in a Packard TR 1900 

liquid scintillation counter (PerkinElmer, Waltham, MA, USA). Specific activities of 33P in 

shoots and in bicarbonate extracts of HC soil were used to estimate the relative contribution 

of the AM pathway to total shoot P uptake as described in Smith et al. (2004). Root length 
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was measured by image analysis using the Win-Rhizo software (Win-Rhizo version 2009b, 

Regent Instruments, Canada) and a scanner (Epson (ModelJ1221A), Seiko Epson Corp. 

Japan). Images were acquired by placing 1.5 g untangled roots (FWRL), from the RHC 

subsample in a water filled Plexiglas tray (17.5 x 23.9 cm). Total root length of each plant 

was calculated as RL x FWRoot x (FWRL)-1. The abundance of total fungal structures 

(hyphae, arbuscules or vesicles) or arbuscules specifically was evaluated microscopically as 

percentage of root length using the grid-line intersect method (Newman, 1966) after clearing 

and staining (Kormanik & McGraw, 1982). Hyphal length was measured by a grid 

intersection method after wet-sieving of aqueous soil suspensions on membrane filters 

(Jakobsen et al., 1992). Where appropriate, mycorrhiza response was estimated for each 

genotyping by calculation of a t-interval for the difference of inoculated and non-inoculated 

means. All analysis was performed using R statistics. See Supporting Information for raw 

data and full analysis

Bioinformatic identification of maize Pht genes

To identify a complete set of putative PHT1 encoding genes in maize, the Saccharomyces 

cerevisiae PHO84 protein (Uniprot id P25297) was used as a BlastP query (Altschul et al., 

1990) to search the primary transcript predicted protein sequences from version 6a of the 

annotated B73 maize genome (Schnable et al., 2009), obtained from Phytozome 10 

(Goodstein et al. 2012). Using a cut-off E-value of 1e-54, 13 gene-models were retrieved and 

aligned using MUSCLE (Edgar, 2004). All 13 sequences contained the conserved 

GGDYPLSATIxSE motif in helix 4 reported previously to be present in PHT proteins 

(Karandashov & Bucher, 2005). The resulting block-alignment file was converted to 

Stockholm 1.0 format, and used as input to hmmbuild (HMMER suite version 3.1b2) to 
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search (hmmsearch) the maize primary transcript predicted protein sequences for additional 

PHT1 proteins. 35 new protein sequences were identified based on an inclusion threshold of 

E-value <0.01. None of these additional sequences, however, contained the conserved 

GGDYPLSATIxSE motif and consequently there were not considered to be authentic PHT1 

proteins. The final list of 13 maize PHT1 encoding gene models is presented in Supporting 

Information.

Analysis of ZmPt transcript accumulation 

A LightCycler 480 SYBR green I master mix kit (Roche; Mannheim, Germany) was used to 

prepare samples before analysis on a Roche 480 LightCycler. Each biological sample was 

analysed as three technical replicates. Three water controls were used for each gene tested. 

qRT-PCR expression and melting curves were calculated using the LightCycler 480 software 

(Roche, Version 1.5.9, Mannheim, Germany). Samples were normalized to the geometric 

mean of expression levels of 3 constitutive genes (GAPDH, Cyclophilin2, ß-actin) as 

described earlier (Gutjahr et al., 2008). In total 6 phosphate transporters were analysed 

together with an AM specific marker gene ZmAm3, ortholog of OsAM3 (Gutjahr et al., 2008) 

and a Rhizophagus irregularis elongation factor gene (Sokolski et al., 2010). Statistical 

analysis was performed using R statistics. See Supporting Information for full analysis.

Principal component analysis of combined growth, physiology and molecular data sets

Pairwise correlations were calculated for a matrix of growth, physiological and molecular 

data obtained from six selected lines as described above (shoot dry weight, shoot P, root dry 

weight, root P, total colonization, arbuscule abundance, length of root-external hyphae, P 

uptake from the hyphal compartment, transcript accumulation of Pt6, Pt8b, Pt11,  Pt13a, 
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Pt13b, Am3 and RiEF) using rcorr::rcorr in the R stastistics package and the results visualized

using corrplot::corrplot. Principal component analysis (PCA) was performed with 

ade4::dudi.pca in the R statistics package using centered and scaled data, and the results 

vizualized with ade4::scatter. 

RESULTS

Mycorrhiza response is correlated with accumulation of phosphorus in the leaves 

To define physiological and molecular patterns correlated with variation in the outcome of 

AM symbioses, a panel of thirty diverse maize lines (see Materials and Methods), was 

evaluated under P limiting conditions in the greenhouse, with (M) or without (NC) 

inoculation with the fungus Funneliformis mosseae. Plants were harvested eight weeks after 

emergence (V8 stage, before the onset of flowering; Counce et al., 2000) and shoot dry-

weight (SDW; g) determined (Table 1). Collectively, the evaluated lines showed a positive 

outcome when inoculated with AMF (Fig. S1), with a significant (p < 0.001) increase in 

mean SDW from 1.05g in NC plants to 2.16g in M plants, equating to a panel-wide 

mycorrhiza response (MR = M - NC) of 1.1g ±0.08g (95% interval for difference in means). 

Roots were harvested from a subset of plants, and the abundance of fungal structures 

quantified by microscopic inspection. NC plants were confirmed to be free of fungal 

structures. The greatest SDW in NC plants was seen in Pa36 (1.67g), and the lowest in Hp301

(0.44g). The level of colonization in M plants was generally high, with a mean of 57% ±0.7%

(95% interval for proportion) of root positions examined containing at least one type of 

fungal structure (hyphae, arbuscules or vesicles), although a broad range of colonization was 

observed (5% - 98%). At the level of individual lines, all showed increased SDW following 
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inoculation (Fig. 1a; Table 1). In the panel evaluation, the most responsive line was Oh43 

(MR = 1.85g), and the least responsive was Mo18W (MR = 0.72g). The contrast in outcome 

between Oh43 and Mo18W was reflected by rank-changing shifts in growth relative to other 

lines in the panel: similar and typical of the panel in the absence of fungus; different and 

outlying when inoculated (Fig. 1b). As such, Oh43 and Mo18W show similar dependence but

a divergent capacity to profit from AM symbiosis. 

Evaluation was conducted under P limiting conditions, suggesting that variation in 

performance would be driven largely by differences in P accumulation. To evaluate plant 

nutrition status, the accumulation of P and nineteen other elements was quantified in roots 

and leaves using inductively coupled plasma-mass spectroscopy (ICP-MS; Baxter et al., 

2008). Ten elements (Na, Al, P, S, Mn, Fe, Co, Ni, Zn, Cd) were found to accumulate to 

different levels between M and NC plants, in either roots and/or leaves (p<0.05, adjusted for 

multiple tests; Table S1). Principal component analysis indicated variation in P content was 

the most important factor differentiating lines and NC and M plants (Fig. S2). Leaf P content 

was positively correlated with SDW, notably in AM plants (Table 1; Fig. 1; p<0.01, r2=0.24). 

Leaf P content was similar in Mo18W and Oh43 when non-colonized (393ppm and 292ppm, 

respectively) but  diverged when plants were inoculated (422ppm and 625ppm, respectively), 

mirroring SDW, and suggesting variation in P uptake efficiency to be driving the difference in

MR (Fig. S3). On the basis of this initial screen, Mo18W and Oh43 were selected for more 

detailed physiological study. HP301 and Pa36 were selected also as they showed the lowest 

and highest dependence (i.e. NC SDW), along with the broadly used lines B73 and Mo17. 

Mycorrhizal response is correlated with the abundance of root-external hyphae
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As plant growth was correlated with P accumulation in the initial screen, it was decided to 

characterize in detail direct and AM P uptake across a range of P availability in the selected 

lines Oh43, Mo18W, Pa36, HP301, B73 and Mo17. Plants were grown in a previously 

described split-compartment system using 33P uptake and accumulation (Smith et al., 2003). 

SDW increased with greater P addition, irrespective of AMF inoculation (Table2; Fig. 2).  In 

contrast, average MR across lines ranged from positive to negative with increasing P 

availability  (low P MR = 9.56g; medium P MR = 3.95g, high P MR = -1.57g). The relative 

MR among lines changed also with P availability. Growth at low P was strongly correlated 

with seed size (Fig. S4). Root dry weight (RDW) was greater in M than in NC plants at low P,

was not significantly affected by colonization at medium P and was reduced in M relative to 

NC plants at high P (data not shown). As observed in the panel evaluation, SDW was 

correlated with total shoot P content, both among lines and between NC and M treatments 

(Fig. 2). At low P, MR (in terms of SDW) was higher in Oh43 than in the other lines, 

consistent with the results of the panel evaluation. Oh43 remained highly responsive at 

medium P, but exhibited a negative response at high P (Fig. 2). Although showing high MR at

low P, Oh43 did not show a greater total root colonization than the other  lines (Fig. 3a). 

Indeed, the proportion of root length containing arbuscules was marginally lower in Oh43 

than other lines (Fig. 3a). In contrast, Oh43 supported a significantly greater development of 

extra-radical hyphae than the other lines at low P, and the greatest AM P uptake (Fig. 3b). 

Across all lines, the length of root-external hyphae decreased with increasing P availability, 

although P uptake from HC soil increased (Fig. 3b). B73 continued to supported abundant 

extra-radical hyphae even at high P availability with a concomitant high level of AM P 

uptake.
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The maize genome encodes multiple AMF-responsive PHT1 phosphate transporters

To investigate further the balance of direct and AM P uptake, transcripts encoding Pht1 

phosphate transporters were quantified. A previous report identifying 13 Pht1-encoding genes

in the maize genome (Liu et al., 2016) was confirmed using a hidden Markov search (Table 

S3). Maize and rice PT protein sequences were aligned, along with a number of previously 

characterized mycorrhiza associated sequences from other species, and this alignment used to

construct a maximum likelihood tree, identifying gene groups and providing the basis for the 

nomenclature used below (Fig. S5; maize genes are named by similarity to rice following a 

nomenclature reported in doi: http://dx.doi.org/10.1101/042028. A key relating the 

nomenclature used here to that of Liu et al. is provided in Table S3.)

ZmPT11 (previously reported as ZmPHT1;6. Nagy et al., 2006; Willmann et al., 2013) 

was the unique maize member of a group including the well-characterized mycorrhiza-

associated proteins medic MtPT4 (Harrison et al., 2002), rice OsPT11 (Paszkowski et al., 

2002), potato StPT4 (Nagy et al., 2005) and tomato LePT4 (Nagy et al., 2005). ZmPT14 was 

the only maize member of a second mycorrhiza-associated group that included barley HvPT8

and wheat TaPT1:myc (Glassop et al., 2005). ZmPT9 and ZmPT13a-d defined a further 

group with the mycorrhiza-associated rice protein OsPT13 (Yang et al., 2012). The remaining

ZmPT proteins belonged to a larger group that contained a number of rice proteins 

characterized previously to play roles in direct P uptake and translocation.

To gain a general panorama, ZmPt transcript accumulation was investigated using two 

existing seedling transcriptome datasets (Wang et al., 2009; Li et al., 2010) and and a third 

set profiling reproductive tissues (Davidson et al., 2011). Representative Pt transcripts were 
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found in all tissues and developmental stages examined, indicating the importance of the 

family throughout the plant life cycle, while revealing specialization at the level of transcript 

accumulation (Fig. S6). Ten Pt transcripts were selected and quantified directlt in the roots 

and shoots of B73 seedlings, grown under low (10μM), moderate (100μM) or high (1000μM)

P availability in the absence of AM colonization, or under moderate P with R. irregularis 

inoculation. Seven of ten selected Pt transcripts (Pt6, Pt7, Pt9, Pt11, Pt13a, Pt13b and Pt14) 

accumulated differentially between NC and M plants, in at least one of the tissues assayed 

(Tukey HSD, α=0.05; Fig. 4). The transcripts Pt7, Pt9, Pt11, Pt13a and Pt14 accumulated to 

significantly higher levels in the roots of M plants compared to NC plants. In the case of 

ZmPt14, transcripts accumulated exclusively in the roots of M plants. Transcripts encoded by 

ZmPt11 were the most abundant in colonized roots, although they were present also at lower 

levels in roots and shoots of NC plants. The transcripts Pt6, Pt9, Pt11, Pt13a and Pt13b 

accumulated to significantly lower levels in the leaves of M plants compared to NC plants. 

With the exception of ZmPt14, all transcripts were detected in NC plants in at least one of the

tissues assayed.

 

Accumulation of ZmPt transcripts is correlated with mycorrhizal P uptake

To investigate the relationship between AM outcome and Pt function, accumulation of Pt6, 

Pt8b, Pt11, Pt13a and Pt13b transcripts was quantified in root samples collected from the 

characterization of six selected lines. In all cases, transcript accumulation broadly followed 

the patterns previously observed in B73 with respect to inoculation status and P addition (Fig.

S7; Supporting Information). To synthesize growth, physiological and molecular data (Table 

2), pairwise trait correlations were investigated across all treatments (Fig. 5a). Significant 
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positive correlations (p < 0.05) were observed between the abundance of fungal structures 

and the accumulation of transcripts encoded by RiEF, AM3 (respectively, fungal and plant 

marker transcripts) and Pt11, Pt13a, supporting the primary role of these two transporters in 

AM symbiosis. Accumulation of Pt6 and Pt13b transcripts was significantly negatively 

correlated (p < 0.05) with P accumulation and dry weight in both roots and shoots, indicating 

induction under low-P stress. To investigate further patterns associated with AM outcome, the

analysis was repeated restricting the dataset to observations of M plants under low-P (Fig. 

5b). A significant positive correlation (p <  0.05) was observed between the extent of root 

external hyphae and P uptake from the hyphal compartment (PHC), which in turn was 

positively correlated with shoot P and plant growth. Interestingly, the abundance of intra-

radical fungal structures was strongly, if not significantly, negatively correlated with both the 

extent of root-external hyphae and PHC. At the molecular level, accumulation of Pt6 and 

Pt8b transcripts was significantly positively correlated (p < 0.05) with root dry weight, and, 

at lesser significance, with SDW, root and shoot P content and PHC. Accumulation of Pt13a 

transcripts showed also a weakly significant (p < 0.1) positive correlation with shoot dry 

weight. Trait correlation in M plants at low-P was investigated further using principal 

component (PC) analysis. Collectively, the first two PCs captured 76% of the trait variation 

and well separated the six lines (Fig. 6). The abundance of root-external hyphae, PHC and 

shoot P were observed to increase together with root and shoot dry weight and accumulation 

of Pt6 and Pt8b. Accumulation of the Pt6 and Pt8b transcripts was more tightly associated 

with increasing root and shoot dry weight than with root-external hyphae or PHC. Oh43 was 

characterized by high levels of root-external hyphae, PHC, shoot P and MR. The line Pa36 

was associated more with higher dry weight than higher PHC. Total AM colonization and 
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arbuscule abundance was antagonistic to the abundance of root-external hyphae, Hp301 and 

Mo18W exhibiting high levels of intra-radical fungal structures, but low levels of root-

external hyphae, P accumulation, and root and shoot dry weight. Mo17 was distinct in 

expressing high levels of accumulation of AM associated transcripts, although with no 

associated increase in colonization, development of root-external hyphae or MR.

DISCUSSION

Data presented in this study reveal genetic variation in the capacity of maize varieties to 

profit from AM symbiosis, beyond differences in plant dependence (Janos 2007; Sawers et 

al., 2008, 2010). Evaluation of the relative growth of thirty highly diverse lines (McMullen et

al., 2009) distinguished those that were highly responsive on the basis of poor performance in

the absence of symbiosis (e.g. HP301) from those that benefited more from the symbiosis per

se (e.g. Oh43). Support for this initial interpretation was obtained by detailed physiological 

characterization that provided a mechanistic explanation, and linked superior responsiveness 

to enhanced PAE on the basis of greater abundance of root-external hyphae.     

P limitation of plant growth results primarily from the low mobility of P in the soil, 

especially at non-neutral pH, with AM fungi acting primarily to increase PAE through 

enhanced soil foraging (Smith & Read, 2008). Indeed, in this study, it was observed that 

increased plant growth in AM colonized plants was accompanied by greater P uptake. On 

reaching the root surface, or being delivered to the peri-arbuscular space, P will be rapidly 

taken up through the action of high-affinity PHT1 phosphate transporters, not limiting PAE. 

In contrast, movement of P into the vicinity of the root will be slow, resulting in the formation

of a zone of P depletion surrounding the root (Bucher, 2007). As is consistent, it was not the 

extent of intra-radical colonization nor the accumulation of Pt11 transcripts that showed the 
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greatest correlation with P uptake, but the abundance of root-external hyphae. If anything, 

greater arbuscule abundance was negatively correlated with MR, HP301 and Mo18W 

exhibiting high levels of colonization but low levels of AM P uptake. This is in general 

support of previous studies (e.g. Schweiger & Jakobsen 1999, Jakobsen et al., 2001, Yao et 

al., 2001, Schnepf et al., 2008), including an evaluation of diverse fungal isolates with a 

common plant host, which again found a similar correlation between fungal P uptake and 

hyphal length (Munkvold et al., 2004). Although a further report characterizing AM response 

variation in four Chinese maize varieties (Chu et al., 2013) did not reveal a clear relationship 

between P uptake and the length of root-external hyphae, this may be a function of the 

specific genotypes evaluated, of the fact that the contribution of mycorrhizal P uptake was not

directly quantified. Regarding the apparent antagonism between the abundance of intra-

radical and root-external fungal structures, the data are consistent with a trade-off in fungal 

growth, the balance of which is influenced by plant genetic factors. Given the importance of 

hyphal abundance to PUE, the data suggests that quantification of intra-radical structures 

alone is not predictive of MR, nor an indication of the strength of mutualism.

Prior physiological characterization has demonstrated that AM P uptake is not a simple 

addition to the plant's direct uptake pathway, but may represent a functional alternative: in the

extreme case, a colonized plant may obtain nearly all of its P requirement via the AM 

pathway, whether as a result of down regulation of the direct pathway or owing to a greater 

efficiency of fungal P foraging compared with that of plant roots (Smith et al., 2003; Schnepf 

et al., 2008). Furthermore, the AM pathway may remain important at higher P availability, 

even when MR itself is small, or even negative. In the evaluation of six selected lines, 

increasing the availability of P resulted in reduced abundance of both root-external and intra-
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radical fungal structures, along with declining MR. Nonetheless, the absolute quantity of P 

obtained via the AM pathway was greater, presumably as the result of increased Pi in solution

as the capacity of the soil to adsorb P was saturated. At highest availability, in the lines with 

the highest P uptake, the growth response to shoot P accumulation was apparently saturated. 

B73 and Pa36 attained maximum growth irrespective of AM inoculation, although in both M 

plants accumulated less shoot P in the shoots than NC plants, i.e. they exhibited greater PUE. 

Interestingly, although at high P B73 and Pa36 showed equivalent levels of intra-radical 

fungal structures, the abundance of the root-external hyphae was greater in B73. Indeed, B73 

supported a high level of root-external hyphae, second only to Oh43 at low P and greater than

all other lines at high P Collectively, these data illustrate the complexity of determining 

symbiotic outcome, and the range of plasticity among even six lines, with respect to just a 

single environmental variable.                     

Previous transcriptome profiling has identified rice marker genes whose mRNA 

accumulation correlates well with the establishment and development of AM symbiosis, well 

differentiating colonized from non-colonized plants (e.g. Guimil et al., 2005; Gutjahr et al., 

2015). In this study, transcripts encoding PHT1 phosphate transporters were quantified not 

only to generalize among NC and M plants, but also to investigate differences in AM 

outcome among lines. Overall, AM colonization was positively correlated with the 

accumulation of transcripts encoded by Pt11, and to a lesser extent those encoded by Pt13a, 

Pt13b and Pt14, consistent with previous reports (Nagy et al., 2006; Willmann et al., 2013; 

Liu et al., 2016). Arbuscule abundance was found to be a poor predictor of MR among the six

lines evaluated in this study. It is therefore consistent that variation in ZmPt11 transcript 

accumulation was also largely independent of differences MR. These observations are 
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consistent with the physiological data suggesting P transfer at the peri-arbuscular interface to 

be non-limiting, either with respect to arbuscule abundance or to the concentration of PT11 

proteins in the peri-arbuscular membrane. PT11 protein, however, has been reported also to 

regulate developmental responses to P limitation (Volpe et al., 2016), and high levels of Pt11 

accumulation may have additional significance beyond P transfer. A number of additional 

maize Pt transcripts responded to AM inoculation, although they were less abundant than 

those encoded by Pt11. Significantly, at low P, a mild positive correlation was observed 

between accumulation of Pt13 transcripts and shoot biomass among colonized plants, 

indicating a role in the regulation of the symbiosis. Accumulation of Pt6 and Pt8b transcripts,

although generally lower in M relative to NC plants, was positively correlated with root and 

shoot dry weight among M lines. Accumulation of Pt8b was positively correlated also with P 

uptake from the hyphal compartment. Interestingly, the correlation was stronger with dry 

weight than P content, indicating this to be more than a secondary effect of differences in P 

accumulation. These observations, along with previous characterization of pt11 and pt13 

mutants in rice (Yang et al., 2012), suggest a role for PHT1 proteins not only in P uptake but 

in the fine tuning of cost-benefit in AM symbioses. 

Previous characterization of variation in MR has placed an emphasis on the 

development of intra-radical fungal structures, and marker transcripts have been identified 

allowing molecular-based quantification of intra-radical colonization. In this study, it was 

observed that variation in the abundance of root-external hyphae was more significant than 

levels of intra-radical colonization in determining AM outcome. Although accumulation of 

the well characterized Pt11 transcript was not predictive of the abundance of extra-radical 

hyphae, correlations were observed between transcripts encoded by other Pt genes, 
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abundance of extra-radical hyphae and AM outcome. The identification of such variation, 

coupled with the availability of NAM populations for quantitative trait loci mapping 

(McMullen et al.,  2009), opens up the possibility to characterize the genetic basis of host 

effects on the development of extra-radical hyphae, and potentially to develop molecular 

breeding strategies to target this important, but hard to evaluate, component of MR. 
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Table 1. Mycorrhiza response in diverse maize lines

Dry mass (g) Leaf P (ppm +/- SE)

Line NC M MR (95% CI) NC M

Oh43 0.96 2.81 1.85 (1.31 ,2.38) 292 +/- 42 625 +/- 72
CML322 1.13 2.59 1.47 (0.8 ,2.14) 375 +/- 47 489 +/- 3
HP301 0.44 1.82 1.37 (0.91 ,1.84) 475 +/- 50 383 +/- 106
A188 0.98 2.3 1.32 (1.04 ,1.61) 598 +/- 102 537 +/- 46
W64 1.02 2.34 1.32 (0.91 ,1.73) 341 427 +/- 107
B97 0.74 2.04 1.31 (0.89 ,1.73) 455 +/- 64 546 +/- 12
NC350 0.86 2.17 1.31 (0.8 ,1.81) 374 +/- 43 553 +/- 61
M162W 1 2.23 1.23 (0.86 ,1.61) 321 322 +/- 32
P39GB 0.87 2.11 1.23 (0.79 ,1.67) 289 +/- 38 325 +/- 54
Pa36 1.67 2.91 1.23 (0.71 ,1.76) 469 +/- 13 572 +/- 62
Ms71 1.4 2.62 1.22 (0.71 ,1.73) 376 +/- 60 571 +/- 41
CML333 1.19 2.4 1.2 (0.8 ,1.61) 327 +/- 25 546 +/- 77
Mo17 1.53 2.7 1.17 (0.7 ,1.64) 490 +/- 34 548 +/- 46
CML103 1.37 2.52 1.15 (0.87 ,1.43) 294 +/- 69 493 +/- 48
CML52 0.81 1.9 1.1 (0.7 ,1.49) 285 +/- 68 429 +/- 31
Ki11 1.02 2.1 1.08 (0.75 ,1.42) 283 +/- 35 396 +/- 66
IL14H 0.96 2.03 1.07 (0.8 ,1.34) 375 +/- 47 353 +/- 108
B73 0.78 1.82 1.05 (0.78 ,1.31) 498 +/- 113 364 +/- 80
CML277 0.93 1.96 1.03 (0.6 ,1.45) 416 +/- 90 468 +/- 43
CML228 1.38 2.35 0.97 (0.66 ,1.27) 396 +/- 43 403 +/- 100
M37W 0.94 1.91 0.97 (0.38 ,1.57) 390 +/- 37 535 +/- 117
CML247 1.08 1.98 0.9 (0.62 ,1.18) 334 +/- 71 398 +/- 9
Tx303 0.7 1.61 0.9 (0.46 ,1.34) 423 +/- 32 443 +/- 18
Ki3 0.94 1.79 0.85 (0.53 ,1.16) 496 +/- 25 401 +/- 50
Ky21 1.23 2.08 0.84 (0.49 ,1.19) 350 +/- 74 363 +/- 28
NC358 1.22 2.03 0.8 (0.42 ,1.19) 414 +/- 39 393 +/- 62
W22 1.15 1.93 0.78 (0.43 ,1.13) 480 +/- 100 465 +/- 101
Oh7b 1.05 1.81 0.76 (0.39 ,1.13) 236 +/- 26 550 +/- 78
Tzi8 1.48 2.24 0.76 (0.38 ,1.15) 340 +/- 24 340 +/- 34
Mo18W 0.94 1.66 0.72 (0.44 ,1) 393 +/- 39 422 +/- 31

Dry mass (g) and phosphorus (P) accumulation (ppm) in non-colonized (NC) and 

mycorrhizal (M) plants from the evaluation of 30 lines. Mycorrhiza response (MR) was 

calculated as M-NC, numbers in parentheses report a 95% confidence interval (CI). P 

accumulation reported +/- one standard error (SE).
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Table 2. Summary of  growth, physiological and molecular data 

P AMF Line
SDW

(g)
Shoot P

(mg)
RDW

(g)
Root P
(mg)

Col Tot
(%)

Col Arb
(%)

Hyp
(m/g)

PHC
(mg) Pt6 Pt8b Pt11 Pt13a Pt13b Am3 RiEF

High

NC

B73 30 76 12 17 na na na na 0.5 0.7 0.1 0 0 0 0
Mo17 25 63 7 11 na na na na 0.6 0.8 0 0 0 0 0
HP301 28 67 9 14 na na na na 0.4 0.4 0.3 0.1 0 0 0
Pa36 30 93 7 9 na na na na 0.5 0.7 0.3 0 0 0 0
Mo18W 25 63 10 14 na na na na 0.6 0.7 0.2 0 0 0 0
Oh43 31 74 12 13 na na na na 0.5 0.7 0.3 0 0 0 0

M

B73 31 67 11 18 87 43 14.3 1.4 0.5 0.8 0.9 0.2 0.1 1 0.6
Mo17 26 66 7 12 87 54 10.6 0.7 0.5 0.7 0.8 0.2 0.2 0.9 0.7
HP301 21 50 6 11 69 43 7.8 0.6 0.5 0.4 0.8 0.3 0.2 1 0.5
Pa36 31 69 10 12 88 54 9.3 1 0.5 0.6 0.9 0.3 0.3 1 0.5
Mo18W 22 59 7 12 84 56 10.2 0.8 0.5 0.7 0.8 0.3 0.2 0.9 0.2
Oh43 27 69 9 12 75 45 10.3 0.8 0.5 0.7 0.8 0.2 0.1 1 0.4

Low

NC

B73 8 10 3 4 na na na na 0.8 0.8 0.6 0.2 0.3 0 0
Mo17 12 17 4 3 na na na na 1.1 0.9 0.7 0.5 0.6 0 0
HP301 4 6 1 1 na na na na 0.9 0.5 0.6 0.3 0.4 0 0
Pa36 14 17 6 3 na na na na 0.9 0.8 0.6 0.4 0.4 0 0
Mo18W 4 6 2 2 na na na na 0.9 0.8 0.7 0.2 0.4 0 0
Oh43 6 9 3 2 na na na na 0.9 0.8 0.6 0.2 0.4 0 0

M

B73 17 34 5 6 93 85 16.9 0.4 0.7 0.7 1 0.4 0.4 1.1 0.5
Mo17 19 34 5 7 88 79 13 0.4 0.8 0.9 1.3 0.6 0.6 1.4 0.7
HP301 14 28 3 5 93 78 10.5 0.2 0.6 0.4 0.9 0.4 0.4 1 0.5
Pa36 22 40 6 6 94 83 14.2 0.4 0.7 0.7 1 0.5 0.5 1.1 0.6
Mo18W 15 32 5 7 95 79 11.3 0.3 0.7 0.7 0.9 0.4 0.4 1 0.5
Oh43 19 39 5 6 88 70 21.4 0.5 0.7 0.8 1 0.4 0.4 1.1 0.5

Characterization of colonized (M) and non-colonized (NC) plants of sixe selected lines grown under high (53.2 mgP/Kg) or low (7.9 mgP/Kg) 
phosphorus (P) availability. SDW, shoot dry weight; shoot P, P accumulation in the shoot; RDW, root dry weight, root P, P accumulation in the root; 
Col Tot,  abundance of intra-radical fungal structures; Col Arb, arbuscule abundance; HYP, length density of root-external hyphae, PHC, P uptake from
the hyphal compartment; Pt6, Pt8b, Pt11,  Pt13a, Pt13b, Am3 and RiEF, transcript accumulation normalized to  
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FIGURE LEGENDS

Fig. 1. Mycorrhiza response is correlated with enhanced P uptake. (a) Shoot dry weight (SDW, g; normalized with respect to differences among 

replicates) of 30 diverse maize lines grown for 8 weeks, under greenhouse conditions, with (M; right box) or without (NC left box) inoculation with the

fungus Funneliformis mosseae. Boxes show 1st quartile, median and 3rd quartile. Whiskers extend to the most extreme points within 1.5x box length; 

outlying values beyond this range are not shown. The mean values of NC (1.05g, n=540) and M ( 2.16g, n=552) groups are shown by vertical lines. 

Lines ordered by increasing mycorrhizal response from top to bottom. Box shading indicates mean accumulation of P31 (ppm) in the shoot as 

determined by ionomic analysis, colour-key shown at top of panel. (b) Reaction norms for 30 diverse maize lines contrasting shoot dry-weight (R 

SDW, g; residual SDW with respect to group mean) of non-inoculated plants (NC) and plants inoculated with the fungus Funneliformis mosseae (M). 

Segments corresponding to six lines selected for further study are labeled and shown in bold. Point shading indicates accumulation of P31 (ppm) in the 

shoot as (a). (c) Accumulation of phosphate in leaves (P31, ppm) and shoot dry weight (SDW, g) in the 30 maize lines (points correspond to mean 

values). Linear fit (yellow line) and associated 95% confidence interval (shaded area) shown.

Fig. 2.  Shoot dry weight (Shoot DW; g) is correlated with total phosphorus (P) accumulation (Shoot P; mg)  in six maize genotypes grown with 

(yellow circles) or without (open circles)  inoculation with Rhizophagus irregularis, under three P regimes (7.9 mgP/kg, 15.5 mgP/kg, 53.2 mgP/kg). 

Points indicate the mean of n observations; whiskers extend +/- 1 standard error; trend lines based on a linear fit to individual observations for each 

treatment.
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Fig. 3.  Phosphorus (P) accumulation is correlated with the abundance of extra-radical hyphae. (a) percentage of total root length containing 

mycorrhizal structures (brown) and arbuscules (yellow) observed in inoculated seedlings of six maize inbred lines, grown under three different levels 

of phosphorus abundance (7.9, 15.5 and 53.2 mgP Kg-1). Boxes show 1st quartile, median and 3rd quartile. Whiskers extend to the most extreme points

within 1.5x box length. (b) Shoot phosphate acquired from 33P soil (mg) as a function of the length of external hyphal (m g-1 soil). 

Fig. 4. Accumulation of transcripts encoding PHT1 proteins responds to phosphorus availability and AM colonization. Heatmap representation of 

accumulation of selected ZmPt (Pt) transcripts quantified by real-time PCR relative to beta-actin. Accumulation of selected Pt transcripts was 

quantified in B73 seedling shoot or root tissue.  Plants were grown across a range of increasing P availability at 10μM, 100μM, 1000μM P without 

inoculation with AMF (NC) and also at 100μM with inoculation with R. irregularis at 100μM (M). Mean accumulation was determined from three 

biological replicates, standardized (Z-score) within transcripts across experimental treatments and represented on a scale from white (below average 

accumulation) to brown (above average accumulation). Accumulation of the maize mycorrhizal marker transcript Am3 and the R. irregularis 

elongation factor RiEF is also shown. Transcripts responsive to inoculation with AMF marked with an asterisk.

Fig. 5.  Accumulation of transcripts encoding PHT1 protiens is correlated with phosphorus accumulation and AMF inoculation across diverse maize 

lines. Selected ZmPt (Pt) transcripts, the maize mycorrhizal marker transcript Am3 and the R. irregularis elongation factor RiEF were quantified by 

real-time PCR in samples taken from the roots of plants described in Fig. 2. (a) Correlation matrix (Pearson) of transcript accumulation, shoot and root 

dry weight (DW, g), shoot and root phosphorus accumulation (P, mg), proportion of root length colonized (% Col, all structures) and proportion of root 
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length containing arbuscules (% Arb). Red circles indicate positive correlation; blue circles indicate negative correlation; the size and intensity of 

shading indicate magnitude. Correlations significant at p < 0.05 marked with an asterisk. Correlations significant at 0.05 < p < 0.1 marked with a point.

(b) as (a) with data restricted to observations of AM colonized plants grown under low P.        

Fig. 6. AM P uptake is correlated with the extent of the root-external mycelium under low P. Principle component analysis (PCA) of plant-growth, 

physiological and molecular observations of inoculated plants grown under low P. Biplot showing scores in the first two principal components (PC1, 

PC2) for traits  (black arrows: shoot dry weight (shoot DW), shoot P, root dry weight (root DW), root P, total colonization (%Col), arbuscule 

abundance (%Arb), length of root-external hyphae (Hyphae), P uptake from the hyphal compartment (PHC), transcript accumulation of Pt6, Pt8b, 

Pt11,  Pt13a, Pt13b, Am3 and RiEF) and the individual genotypes (B73, Mo17, HP301, Pa36, Mo18W, Oh43). Points indicating the different 

genotypes are colour-coded by mycorrhizal response (MR, g) calculated as the difference in shoot dry weight in colonized and non-colonized plants.
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