Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Evolution in Eggs and Phases: experimental evolution of fecundity and reproductive timing in Caenorhabditis elegans

View ORCID ProfileBradly Alicea
doi: https://doi.org/10.1101/042143
Bradly Alicea
1OpenWorm, San Diego, CA.
2University of Illinois, Urbana-Champaign.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bradly Alicea
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

ABSTRACT

To examine the role of natural selection on fecundity in a variety of Caenorhabditis elegans genetic backgrounds, we used an experimental evolution protocol to evolve 14 distinct genetic strains over 15-20 generations. Beginning with three founder worms for each strain, we were able to generate 790 distinct genealogies, which provided information on both the effects of natural selection and the evolvability of each strain. Among these genotypes are a wildtype (N2) and a collection of mutants with targeted mutations in the daf-c, daf-d, and AMPK pathways. The overarching goal of our analysis is two-fold: to observe differences in reproductive fitness and observe related changes in reproductive timing. This yields two outcomes. The first is that the majority of selective effects on fecundity occur during the first few generations of evolution, while the negative selection for reproductive timing occurs on longer timescales. The second finding reveals that positive selection on fecundity results in positive and negative selection on reproductive timing, both of which are strain-dependent. Using a derivative of population size per generation called the reproductive carry-over (RCO) measure, it is found that the fluctuation and shape of the probability distribution may be informative in terms of developmental selection. While these consist of general patterns that transcend mutations in a specific gene, changes in the RCO measure may nevertheless be products of selection. In conclusion, we discuss the broader implications of these findings, particularly in the context of genotype-fitness maps and the role of uncharacterized mutations in individual variation and evolvability.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted March 02, 2016.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Evolution in Eggs and Phases: experimental evolution of fecundity and reproductive timing in Caenorhabditis elegans
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Evolution in Eggs and Phases: experimental evolution of fecundity and reproductive timing in Caenorhabditis elegans
Bradly Alicea
bioRxiv 042143; doi: https://doi.org/10.1101/042143
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Evolution in Eggs and Phases: experimental evolution of fecundity and reproductive timing in Caenorhabditis elegans
Bradly Alicea
bioRxiv 042143; doi: https://doi.org/10.1101/042143

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (2548)
  • Biochemistry (4995)
  • Bioengineering (3503)
  • Bioinformatics (15291)
  • Biophysics (6934)
  • Cancer Biology (5432)
  • Cell Biology (7783)
  • Clinical Trials (138)
  • Developmental Biology (4564)
  • Ecology (7186)
  • Epidemiology (2059)
  • Evolutionary Biology (10264)
  • Genetics (7542)
  • Genomics (9835)
  • Immunology (4905)
  • Microbiology (13311)
  • Molecular Biology (5170)
  • Neuroscience (29607)
  • Paleontology (203)
  • Pathology (842)
  • Pharmacology and Toxicology (1471)
  • Physiology (2155)
  • Plant Biology (4788)
  • Scientific Communication and Education (1016)
  • Synthetic Biology (1343)
  • Systems Biology (4025)
  • Zoology (773)