Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Transposable Element Evolution in the Allotetraploid Capsella bursa-pastoris

J. Arvid Ågren, Hui-Run Huang, Stephen I. Wright
doi: https://doi.org/10.1101/042325
J. Arvid Ågren
1Department of Ecology and Evolutionary Biology, University of Toronto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hui-Run Huang
3Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen I. Wright
1Department of Ecology and Evolutionary Biology, University of Toronto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Premise of the study Shifts in ploidy affect the evolutionary dynamics of genomes in a myriad of ways. Population genetic theory predicts that transposable element (TE) proliferation may follow because the genome wide efficacy of selection should be reduced and the increase in gene copies may mask the deleterious effects of TE insertions. Moreover, in allopolyploids TEs may further accumulate because of hybrid breakdown of TE silencing. However, to date the evidence of TE proliferation following an increase in ploidy is mixed, and the relative importance of relaxed selection vs. silencing breakdown remains unclear.

Methods We used high-coverage whole genome sequence data to evaluate the abundance, genomic distribution, and population frequencies of TEs in the self-fertilizing recent allotetraploid Capsella bursa-pastoris (Brassicaceae). We then compared the C. bursa-pastoris TE profile with that of its two parental diploid species, outcrossing C. grandiflora and self-fertilizing C. orientalis.

Key results We found no evidence that C. bursa-pastoris has experienced a large genome wide proliferation of TEs relative to its parental species. However, when centromeric regions are excluded, we find evidence of significantly higher abundance of retrotransposons in C. bursa-pastoris along the gene-rich chromosome arms, compared to C.grandiflora and C. orientalis.

Conclusions The lack of a genome-wide effect of allopolyploidy on TE abundance, combined with the increases TE abundance in gene-rich regions suggest that relaxed selection rather than hybrid breakdown of host silencing explains the TE accumulation in C. bursa-pastoris

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted June 20, 2016.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Transposable Element Evolution in the Allotetraploid Capsella bursa-pastoris
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Transposable Element Evolution in the Allotetraploid Capsella bursa-pastoris
J. Arvid Ågren, Hui-Run Huang, Stephen I. Wright
bioRxiv 042325; doi: https://doi.org/10.1101/042325
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Transposable Element Evolution in the Allotetraploid Capsella bursa-pastoris
J. Arvid Ågren, Hui-Run Huang, Stephen I. Wright
bioRxiv 042325; doi: https://doi.org/10.1101/042325

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4380)
  • Biochemistry (9578)
  • Bioengineering (7086)
  • Bioinformatics (24843)
  • Biophysics (12596)
  • Cancer Biology (9951)
  • Cell Biology (14345)
  • Clinical Trials (138)
  • Developmental Biology (7944)
  • Ecology (12100)
  • Epidemiology (2067)
  • Evolutionary Biology (15983)
  • Genetics (10918)
  • Genomics (14732)
  • Immunology (9868)
  • Microbiology (23645)
  • Molecular Biology (9477)
  • Neuroscience (50835)
  • Paleontology (369)
  • Pathology (1539)
  • Pharmacology and Toxicology (2681)
  • Physiology (4012)
  • Plant Biology (8654)
  • Scientific Communication and Education (1508)
  • Synthetic Biology (2391)
  • Systems Biology (6427)
  • Zoology (1346)