Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Active Microrheology of Intestinal Mucus in the Larval Zebrafish

Michael J. Taormina, Raghuveer Parthasarathy
doi: https://doi.org/10.1101/042994
Michael J. Taormina
Department of Physics, Institute of Molecular Biology, & Materials Science Institute University of Oregon, Eugene, OR 97403-1274
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Raghuveer Parthasarathy
Department of Physics, Institute of Molecular Biology, & Materials Science Institute University of Oregon, Eugene, OR 97403-1274
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Mucus is a complex biological fluid that plays a variety of functional roles in many physiological systems. Intestinal mucus in particular serves as a physical barrier to pathogens, a medium for the diffusion of nutrients and metabolites, and an environmental home for colonizing microbes. Its rheological properties have therefore been the subject of many investigations, thus far limited, however, to in vitro studies due to the difficulty of measurement in the natural context of the gut. This limitation especially hinders our understanding of how the gut microbiota interact with the intestinal environment, since examination of this calls not only for in vivo measurement techniques, but for techniques that can be applied to model organisms in which the microbial state of the gut can be controlled. We address this challenge by developing a method that combines magnetic microrheology, light sheet fluorescence microscopy, and microgavage of particles, applying this to the larval zebrafish, a model vertebrate. We present measurements of the viscosity of mucus within the intestinal bulb of both germ-free (devoid of intestinal microbes) and conventionally reared larval zebrafish. At the length scale probed (≈ 10μm), we find that mucus behaves as a Newtonian fluid, with no discernable elastic component. Surprisingly, despite known differences in the the number of secretory cells in germ-free zebrafish and their conventional counterparts, the fluid viscosity for these two groups was very similar. Our measurements provide the first in vivo measurements of intestinal mucus rheology at micron length scales in living animals, quantifying of an important biomaterial environment and highlighting the utility of active magnetic microrheology for biophysical studies.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted March 09, 2016.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Active Microrheology of Intestinal Mucus in the Larval Zebrafish
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Active Microrheology of Intestinal Mucus in the Larval Zebrafish
Michael J. Taormina, Raghuveer Parthasarathy
bioRxiv 042994; doi: https://doi.org/10.1101/042994
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Active Microrheology of Intestinal Mucus in the Larval Zebrafish
Michael J. Taormina, Raghuveer Parthasarathy
bioRxiv 042994; doi: https://doi.org/10.1101/042994

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Biophysics
Subject Areas
All Articles
  • Animal Behavior and Cognition (2652)
  • Biochemistry (5278)
  • Bioengineering (3691)
  • Bioinformatics (15820)
  • Biophysics (7272)
  • Cancer Biology (5633)
  • Cell Biology (8113)
  • Clinical Trials (138)
  • Developmental Biology (4779)
  • Ecology (7537)
  • Epidemiology (2059)
  • Evolutionary Biology (10594)
  • Genetics (7740)
  • Genomics (10154)
  • Immunology (5215)
  • Microbiology (13945)
  • Molecular Biology (5397)
  • Neuroscience (30847)
  • Paleontology (216)
  • Pathology (882)
  • Pharmacology and Toxicology (1527)
  • Physiology (2261)
  • Plant Biology (5032)
  • Scientific Communication and Education (1043)
  • Synthetic Biology (1394)
  • Systems Biology (4155)
  • Zoology (814)