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Abstract

Here we use computational modeling of fast neural dynamics to explore the relationship

between structural and functional coupling in a population of healthy subjects. We use

DTI data to estimate structural connectivity and subsequently model phase couplings

from band-limited oscillatory signals derived from multichannel EEG data. Our results

show that about 23.4% of the variance in empirical networks of resting-state fast

oscillations is explained by the underlying white matter architecture. By simulating
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functional connectivity using a simple reference model, the match between simulated

and empirical functional connectivity further increases to 45.4%. In a second step, we

use our modeling framework to explore several technical alternatives along the modeling

path. First, we find that an augmentation of homotopic connections in the structural

connectivity matrix improves the link to functional connectivity while a correction for

fiber distance slightly decreases the performance of the model. Second, a more complex

computational model based on Kuramoto oscillators leads to a slight improvement of

the model fit. Third, we show that the comparison of modeled and empirical functional

connectivity at source level is much more specific for the underlying structural

connectivity. However, different source reconstruction algorithms gave comparable

results. Of note, as the fourth finding, the model fit was much better if zero-phase lag

components were preserved in the empirical functional connectome, indicating a

considerable amount of functionally relevant synchrony taking place with near zero or

zero-phase lag. The combination of the best performing alternatives at each stage in the

pipeline results in a model that explains 54.4% of the variance in the empirical EEG

functional connectivity. Our study shows that large-scale brain circuits of fast neural

network synchrony strongly rely upon the structural connectome and simple

computational models of neural activity can explain missing links in the

structure-function relationship.

Author Summary

Brain imaging techniques are broadly divided into the two categories of structural and

functional imaging. Structural imaging provides information about the static physical

connectivity within the brain, while functional imaging provides data about the dynamic

ongoing activation of brain areas. Computational models allow to bridge the gap

between these two modalities and allow to gain new insights. Specifically, in this study,

we use structural data from diffusion tractography recordings to model functional brain

connectivity obtained from fast EEG dynamics. First, we present a simple reference

procedure which consists of several steps to link the structural to the functional

empirical data. Second, we systematically compare several alternative methods along

the modeling path in order to assess their impact on the overall fit between simulations
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and empirical data. We explore preprocessing steps of the structural connectivity and

different levels of complexity of the computational model. We highlight the importance

of source reconstruction and compare commonly used source reconstruction algorithms

and metrics to assess functional connectivity. Our results serve as an important

orienting frame for the emerging field of brain network modeling.

1 Introduction 1

Resting-state brain activity represents the changes in neuroelectric or metabolic activity 2

that occur when a subject is not performing a specific task and sensory input is largely 3

reduced and stable. In this state spontaneous fluctuations emerge in the ongoing brain 4

activity that synchronize across regions to exhibit a structured spatiotemporal pattern. 5

Emerging resting-state networks have provided useful information regarding functional 6

brain states, alterations in psychiatric or neurologic diseases, served as a basis for 7

mapping and parceling the brain, and have helped to explain trial-to-trial fluctuations 8

in cognitive functions [1, 2]. Although electrophysiological recordings of brain activity 9

have already revealed ongoing activity a long time ago [3–5], the first description of 10

common and organized networks emerging from ongoing activity was from functional 11

Magnetic Resonance Imaging (fMRI)/Positron Emission Tomography (PET) studies 12

which capture correlated slow fluctuations (< 0.1 Hz) across regions [6, 7]. Similarly, 13

amplitude envelopes of alpha- and beta-frequency oscillations (∼ 8− 12 Hz and 14

∼ 12− 30 Hz respectively) display similar correlation patterns as the fMRI signals and 15

are usually oscillating at a similar slow time scale of < 0.1 Hz. Both are here referred to 16

as slow-fluctuating envelope resting-state networks. 17

The origin of resting-state ongoing brain activity is unresolved, but much evidence 18

points to the anatomical skeleton shaping functional interactions between areas. 19

Accordingly, relations of slowly oscillating resting-state networks (< 0.1 Hz) and 20

long-range axonal connections have been detected, indicating that local activity of 21

segregated brain regions is integrated by white matter pathways [8–10]. Although 22

structural connectivity (SC) measured by diffusion tensor imaging (DTI) is a good 23

predictor of functional connectivity (FC), functional connections also occur where there 24

is little or no structural connectivity [8, 9]. Honey et al. found that some of the variance 25
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in FC that could not be related to structure could, however, be accounted for by 26

indirect connections and interregional distance [9]. To explain missing links between 27

anatomical structure and observed resting-state dynamics, bottom-up computational 28

models based on structural priors offer interesting insights [8–10]. Different 29

computational models reflecting various biological mechanisms for the emergence of the 30

spatiotemporal dynamics of resting-state networks have helped to explain the variance 31

between SC and spatiotemporally organized low-frequency fluctuations [11–14]. These 32

dynamic simulations have robustly shown that the introduction of delays, scaling of 33

coupling strength and well as additive noise lead to the emergence of functional patterns 34

which resemble empirical resting-state networks operating in the low-frequency range. 35

Prior DTI-fMRI modeling studies have faced several technical challenges. First, the 36

choice of computational model demands a trade off between highly simplified 37

phenomenological models and biologically realistic models with high parameter space. 38

Surprisingly, as shown by Messé et. al (2014), a simple stationary model of functional 39

connectivity better explains functional connectivity than more complex models [15–17]. 40

Second, preprocessing of DTI data is necessary to derive a structural connectivity matrix 41

on a given parcellation scheme to overcome biases introduced by the latter. But the 42

precise steps giving the most realistic structural connectome map are largely unknown. 43

Large-scale resting-state networks were originally described for correlated slow 44

activity fluctuations recorded by fMRI/PET, or broadband power envelopes of the 45

magneto-/electroencephalography (MEG/EEG) signal [18]. However, there is 46

accumulating evidence that large-scale resting-state networks are also expressed in 47

neuronal rhythms at faster frequencies [19,20]. Fast fluctuations in neuroelectric 48

activity, and especially the functional linkage of regions via phase correlations, are well 49

known to underlie a broad variety of cognitive processes [21–24]. Synchronization of 50

oscillatory neuronal activity among functionally specialized but widely distributed brain 51

regions has been recognized as a major mechanism in the integration of sensory signals 52

underlying perception and cognitive processes [25,26]. 53

Regarding the spatial organization of fast oscillatory phase correlations, its 54

quantitative relationship to SC has not been investigated yet [27,28]. Faster timescales 55

of neural activity comprise for example the alpha, beta, or gamma band which 56

constitute the major rhythms of spontaneous neuroelectric activity picked up by 57
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MEG/EEG. It has been argued, that compared to networks of slow fluctuations, 58

structural connectivity does not strictly determine frequency-specific coupling in 59

networks of ongoing activity at a faster timescale [28]. Indeed, phase coupling between 60

segregated areas strongly relies on cortico-cortical connections [21,29], implicating 61

likewise a strong structure-function relationship. 62

Performance of the reference model In this study we probed this assumption of 63

a strong structure-function relationship by simulating local node dynamics based on SC 64

and comparing the phase relationships emerging from the simulated neural activity with 65

empirically measured phase relationships. To this end, we combined SC from DTI data 66

using probabilistic fiber tracking and FC from EEG data recorded during wakeful rest 67

in 18 healthy individuals. We then used computational modeling approaches to link SC 68

and empirical FC at fast frequencies. We demonstrate that empirical networks of 69

resting-state fast oscillations are strongly determined by the underlying SC and that 70

additional variance between structure and function can be explained by modeling 71

dynamic activity based on white matter architecture. Specifically, the simulated FC 72

explained 28.5% of the variance in the empirical FC that was left unexplained by SC 73

alone. To further understand the explanatory power of our model we investigated its 74

performance at the local level by assessing specific properties of ROIs (nodes) or 75

connections (edges). We found that the model error was highest for large highly 76

interacting ROIs. 77

However, modeling large-scale brain dynamics based on structural priors brings up 78

several methodological alternatives, not only regarding the modeling itself, but also 79

regarding alternative methods regarding the comparison of simulated and empirical 80

data. Especially with resting-state MEG/EEG activity, the specificity of analytic 81

routines requires methodological decisions which potentially lead to tremendous 82

differences in modeling outcomes. We systematically assessed the effect of technical 83

variations on results and their influence on the interpretation of structure-function 84

relations. Specifically, we used our modeling framework to explore several technical 85

alternatives along the modeling path and evaluate the alternative processing steps based 86

on their effect on the performance of the model in simulating empirical FC. Specifically, 87
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we addressed the effects of five critical aspects in the modeling pipeline: 88

Building the structural connectome We used DTI and probabilistic tracking 89

algorithms to compile a whole-brain structural connectome [30]. However, several 90

studies suggested that current fiber tracking algorithms fail at capturing particularly 91

transcallosal motor connections that are observed in non-human primate tracer 92

studies [31,32]. In addition, structural connection strength modeled by probabilistic 93

tractography algorithms is influenced by fiber length due to the progressive dispersion 94

of uncertainty along the fiber tract [33]. Therefore, we evaluateed the effect of 95

normalizations for fiber length of the SC and examined the effect of weighting homotopic 96

connections in our model. Our results show that the correction for fiber distance leads 97

to a small decrease in the performance of our model. The additional weighting of 98

homotopic transcallosal connections, however, increased the model fit [15, 16]. 99

Model of functional connectivity Several alternative computational models of 100

neural dynamics are available. In the choice of a more abstract version to a more 101

realistic description of cortical interactions, these models vary in the complexity of their 102

formulation and therefore might explain more or less variance in the observed FC. The 103

downside of complex models, however, is the increased number of free parameters. These 104

have to be approximated, need to be known a priori, or explored systematically. All 105

these aproaches are problematic. For an assessment of the factor of model complexity, 106

we compared a simple spatial autoregressive (SAR) model to the Kuramoto model of 107

coupled oscillators. Surprisingly we find that the SAR model explains already a large 108

portion of the variance and that the Kuramoto model only gives a slight improvement. 109

Forward and inverse models The comparatively few existing studies on large-scale 110

modeling of MEG/EEG data differ systematically with respect to the comparison with 111

empirical data. Some approaches project the observed time series onto the cortex using 112

an inverse solution, whereas others project the simulated cortical signals into sensor 113

space using the forward model [11,34,35]. We used our analytic framework to compare 114

empirical and simulated FC at different spatial levels. We found that the importance of 115

structural information is dramatically reduced, if the higher spatial resolution obtained 116

by source reconstruction is bypassed. 117
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Source reconstruction algorithms Estimating the spatiotemporal dynamics of 118

neuronal currents in source space generating the EEG and MEG signals is an ill-posed 119

problem, due to the vastly larger number of active sources compared to the number of 120

sensors. Therefore, we assess the impact of specific source reconstruction algorithms on 121

the match of simulated and empirical FC. We compared three routinely used algorithms 122

that differ regarding the assumptions made about the source signal, such as smoothness, 123

sparsity, norms, correlation between source signals. However, we found no compelling 124

superiority of one algorithm over another. 125

Functional connectivity metrics Functional connectivity describes statistical 126

dependencies between two signals often based on undirected temporal average such as 127

correlation. In the last decades, various additional FC metrics have been introduced. 128

These differ with regard to the relative weighting of phase and amplitude or concerning 129

the removal of zero-phase lag components prior to correlation. The theoretical 130

superiority of one approach over another is debated [36]. However, no consensus appears 131

achieved and currently no single metric is dominantly used over the others. Therefore, 132

we compared several widely used metrics to compare empirical and simulated FC. We 133

found that the model fit was much better if zero-phase lag components were preserved 134

in the empirical functional connectome. 135

In the following sections, we first present a reference procedure for modeling FC 136

based on DTI and the comparison with empirical fast dynamics FC as measured by 137

EEG. After an initial short overview of the modeling approach in section 2.1, we guide 138

the reader step by step through the model details with the resulting outputs of each 139

processing stage (section 2.2). From there, the impact of technical alternatives on the 140

performance of the model is presented (section 2.3). 141

2 Results 142

2.1 Workflow 143

We compared the simulated FC based on SC with the empirical FC derived from EEG 144

data (Figure 1). Our model includes the processing steps as shown in Figure 1 with the 145

DTI measurements on the left and the EEG measurements on the right. We address 146
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preprocessing of DTI data in the form of homotopic reweighting. Then, the 66 ROIs of 147

the cerebral cortex according to the ’Desikan-Killiany’ cortical atlas made available in 148

the Freesurfer toolbox, were individually registered for 18 healthy subjects using 149

Freesurfer (surfer.nmr.mgh.harvard.edu) [37]. The SAR model used in the reference 150

procedure was selected based on simplicity and performance. We reconstructed source 151

activity at the geometric center of each ROI based on the EEG time series by a linear 152

constraint minimum variance spatial beam former (LCMV). Then we assessed FC 153

between source time series band pass filtered at 8 Hz where the averaged coherence 154

showed a peak (see supporting material S2 Frequencies). Finally, we evaluated the 155

match of simulated and empirical FC based on the correlation between all pairs of 156

ROIs [38]. Following this modeling approach, several alternative ways at each 157

processing stage arise. Choices exist, for example, for the level of abstraction of the 158

model type [39], metrics to compare functional connectivity and the approach to the 159

inverse problem in interpreting EEG data. 160

2.2 Reference Procedure 161

Reconstructing the structural connectome The assessment of individual SCs is 162

based on the number of probabilistic fibers connecting the parcellated brain regions. In 163

our reference procedure, four preprocessing steps were applied to the raw fiber counts: 164

First, we normalized the total number of tracked fibers between two regions by the 165

product of the size of both regions. This effectively normalizes the connection strength 166

per unit volume [40]. Second, we excluded all self-connections by setting the diagonal 167

elements of the SC matrix (denoted as S) to zero. The resulting SC matrix between the 168

66 anatomical ROIs is presented in Figure 2A. Previous studies showed that current 169

fiber tracking algorithms underestimate transcallosal connectivity [31,32]. Accordingly, 170

modeling studies have revealed that specifically increasing the SC between homotopic 171

regions leads to a general improvement of the predictive power irrespective of the 172

model [15,16]. Therefore, in the reference procedure we also increased the connection 173

strength between homotopic regions by a fraction (h=0.1) of the original input strength 174

at each node. Last, we normalized the input strength of each region to 1, as done in 175

previous simulation studies [12,15]. 176
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Figure 1. Workflow from DTI to the model of functional connectivity and
comparison with empirical EEG data. Each processing step in the reference
procedure can be replaced by several alternative methods. From left to right: Probabilistic
tracts derived from DTI are preprocessed to give the structural connectivity matrix.
From there we simulate functional connectivity and optimize free model parameters to
maximize the global correlation with the empirical functional connectivity. The empirical
functional connectivity is calculated between all pairs of ROIs after projecting EEG scalp
recordings to source space using spatial filters. Alternatively, the comparison between
simulated and empirical connectomes can be done in sensor space by projecting the
simulated functional connectivity into sensor space using the leadfields.

Model of functional connectivity Several computational models of neural 177

dynamics have been presented previously, varying in complexity regarding cellular and 178

circuit properties [15, 41, 42]. In the reference procedure, we chose a model of FC which 179

is as simple as possible while still explaining a substantial fraction of the variance in the 180

empirical data. For resting-state FC derived from fMRI data, it was shown that the 181

simple SAR model generates good matches at low computational expense [16,17]. 182

Therefore, we used the SAR model as a reference to evaluate just the static higher order 183

dependencies in the FC. 184

The SAR model assumes that the time series of each region is a linear combination 185

of the fluctuations of the time series of all other regions with added Gaussian noise, 186

where only instantaneous effects are modelled. The activation of all ROIs ~y in the 187
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steady state condition is given by 188

~y = k · S · ~y + σ · ~ν. (1)

where S is set to the preprocessed SC matrix averaged across subjects as explained in 189

the previous section. k is a global parameter describing the scaling of the coupling 190

strengths. ~ν is uncorrelated Gaussian noise that is added at each node individually and 191

is scaled by σ. This equation describes the equilibrium state of the autoregressive model. 192

The covariance between the time series of the SAR model can be solved analytically 193

by substituting [43] 194

Q = (I− k · S)−1, (2)

so that 195

~y = σ(I− k · S)−1~ν. (3)

The covariance matrix between sources is then given by 196

Cov :=< ~y · ~yT >t=< (σ ·Q · ~ν)(σ ·Q · ~ν)T >t= Q ·Σ ·QT , (4)

where <>t denotes the average over time and Σ = σ2 < ~ν · ~νT >t= σ2I the noise 197

covariance. Due to the assumption of uncorrelated Gaussian noise Σ is the identity 198

matrix. 199

A FC is constructed based on all pairwise correlations between network nodes. This 200

can be calculated using the standard definition of correlation given the covariance from 201

equation 4: 202

Corrij =
Covij√

Covii ·Covjj

. (5)

This step normalizes for different variances in the time series of different network nodes. 203

The resulting correlation matrix, as shown in Figure 2B, is the predicted FC generated 204

by the model given SC. The distribution of modeled FC is less sparse than the raw 205

structural connection strength values: In SC (Figure 2A), many pairwise connections 206

are close to zero and only few pairwise connections are large. To quantitatively evaluate 207

the difference between the SC and the model output, we calculated the kurtosis of the 208
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values in the connectivity matrices: 209

Kurt[X] :=
< X4

ij >ij

< X2
ij >

2
ij

, (6)

where <>ij denotes the average over all upper triangular matrix elements without the 210

diagonal (i.e. i < j). In this definition we divide the fourth raw moment by the second 211

raw moment, where raw means that the moment is about the origin in contrast to 212

central moments about the mean. The SC has a very high kurtosis (Kurt[S] = 62.83), 213

whereas the FC predicted by the SAR model has a much smaller kurtosis 214

(Kurt[Corr] = 5.77), indicating reduced sparsity. 215
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Figure 2. Comparison of empirical and simulated FC in the reference
procedure. A: Structural connectivity among 66 cortical regions after normalization
for ROI size and excluding self-connections (section 2.2, structural connectivity
processing). B: The correlation of the simulated network based on structural connectivity
using the SAR model with optimal global scaling parameter k=0.65 and homotopic
connection strength h=0.1. C: Upper: The respective simulated (k=0.65, h=0.1) and
empirical connection strengths are z-transformed and plotted for each connection.
Correlation is used as a global performance measure. The local model error per
connection is evaluated as the distance (red arrow) to the total-least-squares fit (green
line). Lower: Color indicates the correlation strength at a range of different global
connection strength scaling parameters k, and fraction of added homotopic connections
(h). The black cross indicates the parameters with the maximum correlation. D: The
empirical functional connectivity as the coherence between source reconstructed time
series at the cortical regions. All connectivity matrices (A,B,D) were normalized to have
strengths between 0 (no connection) and 1 (strong connection).

Source reconstruction algorithms The spatiotemporal dynamics of neuronal 216

currents in source space can be estimated using various source reconstruction techniques 217
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applied to the MEG/EEG signal. The algorithms differ regarding the assumptions 218

made about the source signal (i.e. smoothness, sparsity, norms, correlation between 219

source signals). These assumptions about the signals to be reconstructed are a 220

prerequisite to make the ill-posed inverse problem of distributed sources treatable. As a 221

reference, we used a LCMV spatial beamformer, which reconstructs activity with unit 222

gain under the constraint of minimizing temporal correlations between sources [44]. 223

This approach has been applied in large-scale connectivity and global modeling studies 224

before [11,38,45]. Multichannel EEG data was projected to source locations based on 225

individual head models. The spatial filter was calculated for the optimal dipole 226

orientation corresponding to the direction of maximum power, thus giving one time 227

series per ROI. As a priori source locations we used the geometric center of each of the 228

66 ROIs individually registered on T1 images. See supplementary material for details on 229

data acquisition, preprocessing and analysis of EEG data. 230

Functional connectivity metrics FC can be assessed using several methodologies 231

which differ with regard to the relative weighting of phase and amplitude or concerning 232

the reduction of zero-phase lag components prior to correlation [46]. The choice of 233

metric may have an influence on the match between empirical and simulated FC. In the 234

reference procedure, we calculated ordinary coherence as a metric for FC due to its 235

original and prepotent implementation in synchronization studies [25,47–53]. The time 236

series at each source were bandpass filtered at the alpha frequency range (8±2 Hz) and 237

then Hilbert transformed. This choice of frequency was based on the general importance 238

of the alpha rhythm for resting-state topographies [54, 55]. A broad spectrum (3-30 Hz) 239

exploration showed a peak of the mean coherence across all connections at around 8 Hz 240

(see supporting material S2 Frequencies). 241

The FC metrics are based on the analytic signal representation 242

Am(t) = rm(t) · exp(iϕm(t)) (7)

of region m. Furthermore, we calculated the cross-spectrum between two regions of 243

interest m and n as 244

sm,n(t) = Am(t) ·An(t). (8)
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Given the analytic signal, the auto- and cross-spectra were computed and the 245

coherence derived as the normalization of the cross-spectrum by the two 246

auto-spectra [48]. This gives a FC index ranging from 0 to 1 between all pairs of ROIs: 247

Cohm,n =
〈 sm,n(t)√

sm,m(t) · sn,n(t)

〉
t
. (9)

The resulting mean empirical FC matrix across the group is depicted in Figure 2D 248

and was compared with the modeled FC matrix. Intrahemispherically, we found high 249

connectivity within frontal and temporal areas in both hemispheres. 250

Interhemispherically, the insular and cingulate areas were strongly connected. 251

Performance of the reference model The SAR model yields a FC of the 66 252

parcellated brain regions in accordance with the empirical FC. Since both these 253

matrices are symmetric, only the triangular parts are compared to assess the match 254

between simulated and empirical FC. We calculate the performance of the model as the 255

correlation between all modeled and empirical pairwise interactions Figure 2C. This 256

performance metric is also commonly used in other studies [15,41]. We found a high 257

correlation between the FC from the model and EEG coherence values (r=0.674, 258

n=2145, p < .0001) for the parameters k=0.65 (global parameter describing the scaling 259

of the coupling strengths) and h=0.1 (additional weighting of the homotopic 260

connections in the SC matrix) marked in Figure 2C below). 261

To put this into context, we first compared these results with the match between the 262

empirical SC and FC without modeling (r=0.4833, n=2145, p < .0001) and found a 263

shared variance of 23.4% (variance explained is 100 · r2). Modeling FC based on this SC 264

backbone increased the global correlation to 45.4% (square of r=0.674). In other words, 265

the modeled FC explains roughly 28.8% of the variance in the empirical FC that is left 266

unexplained by SC alone. 267

To further understand the explanatory power of our model we investigate its 268

performance at the local level by assessing specific properties of ROIs (nodes) or 269

connections (edges). We defined for each connection the local model error as the 270

distance (example shown as red arrow in Figure 2C, upper) between each dot and the 271

total-least-squares fit (green line in Figure 2C, upper). Specifically, the question arises 272
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whether the high correlation between modeled and empirical FC is driven more by long 273

or short edges. For example, the FC estimation between very close ROIs (in Euclidean 274

space) might be spuriously inflated by volume conduction. Alternatively, there might be 275

an overestimation of the SC between specifically close regions which could cause a 276

higher model error [56]. To address this question we compared for each edge the model 277

error with the fiber distance (Figure 3A). The average fiber distance between connected 278

ROIs was negatively correlated with the logarithm of the local model error of each 279

connection (r=-0.32, n=2145, p < .0001). A similar dependence was calculated between 280

Euclidean distance between ROI locations and local model error (r=-0.33, n=2145, 281

p < .0001). Both results indicate that the SAR model performed worse in simulating 282

FC for closer ROIs in topographic space (measured in fiber lengths) and Euclidean 283

space (measured as distance between ROI locations). This can be attributed to a higher 284

variance in the SC and empirical FC matrices for close ROIs (as shown in the 285

supporting material S3 Connection strength and distance). 286
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Figure 3. Dependence of residual and model error (absolute value of
residual) on edge and node characteristics. A: linear fit of the log of the model
error per connection showing a negative correlation with fiber distance. B: linear fit of
the average model error per ROI showing a negative correlation with the size of the ROI.
C: linear fit of the average model error per ROI showing a negative correlation with the
betweenness centrality of the ROI. The angle brackets <> denote the average over all
edges of the corresponding ROI. Residuals in A-C are calculated from the total least
squares fit, negative values (blue dots) indicate that the average modeled functional
connectivity per node was higher than the empirical functional connectivity, positive
values (yellow dots) indicate that the the modeled functional connectivity per node was
smaller than the empirical functional connectivity.

We further evaluated the performance in relation to certain node characteristics and 287

averaged the errors of all edges per node. The node performance in terms of model error 288

is shown in Figure 3B-D dependent on different node characteristics. First, we looked at 289

the influence of ROI size on the model error. We hypothesized that due to larger sample 290
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sizes and more precise localization, the model error would be smaller for large ROIs. As 291

expected, the model error for each ROI is negatively correlated with the corresponding 292

size of the ROI (r=-0.37, n=66, p < .005) as shown in Figure 3B. Then we hypothesized, 293

that due to the sparseness of SC, some ROIs in SC have a very high connectedness 294

compared to functional data, leading to a larger model error. To address this aspect we 295

calculated several graph theoretical measures that assess the local connectedness in 296

different ways and related this to the average model error. As a first measure we 297

calculated for each node the betweenness centrality, defined as the fraction of all 298

shortest paths in the network that pass through a given node [57]. The absolute model 299

error is positively correlated with the betweenness centrality (r = 0.58, n = 66, 300

p < .0001) as shown in Figure 3C. A similar indicator of a nodes connectedness in the 301

network is the sum of all connection strengths of that node. Also for this metric, we 302

find a linear relationship between the total connection strength of a node and the model 303

error (r = 0.35, n = 66, p < .005). In addition, the dependence between the model error 304

and the eigenvalue centrality, which measures how well a node is linked to other network 305

nodes [58], was evaluated (r=0.26, n=66, p < .05). The local clustering coefficient, 306

which quantifies how frequently the neighbors of one node are neighbors to each 307

other [59], did not show significant relations with the local model error (r=0.06, n=66, 308

p = .65). 309

Overall, the reference model can explain much of the variance in the empricial FC. 310

The error in the predicted FC of the reference model appears to be highest for small 311

highly interacting ROIs. This might be due to the more heterogeneous structure of 312

small highly interacting ROIs. On the other side, interactions between more distant and 313

large ROIs are better predicted by the model, probably due to the more homogenous 314

connectivity. 315

2.3 Alternative modeling approaches 316

The modeling of large-scale brain dynamics based on structural priors brings up several 317

methodological alternatives. As a principal choice, the model may be evaluated either in 318

source or in sensor space. In the baseline model that was presented above, we made 319

specific choices at each processing stage based on simplicity and good explanatory 320
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performance. Especially with resting-state EEG activity, a lack of analytic routines 321

requires methodological decisions to be made heuristically, which could potentially lead 322

to substantial differences in the conclusions drawn. In the following section we 323

systematically compare different alternatives of the procedural stages delineated above 324

and compare the outcome regarding global correlation between simulated and empirical 325

FC. First, we assessed the influence of distance normalization and weighting of 326

homotopic connections in the structural connectome on simulated FC. Second, we 327

tested if a more complex simulation model of coupled oscillators is able to capture a 328

larger part of the variance of the empirical data that is not explained the simple SAR 329

model. Third, we evaluated an alternative comparison in the sensor space using a 330

forward projection of the source time series in contrast to source reconstruction. Then, 331

we compared different source reconstruction methods. Finally, we tested the impact of 332

removing zero-phase lags in functional interactions. 333

Reconstructing the structural connectome The structural connectome was 334

compiled using global probabilistic tractography. Interregional connections (edges) of 335

the brain are represented by the number of ”probabilistic streamlines” between these 336

regions (nodes). We tested the performance of two alternative modifications of the SC 337

(Figure 4). 338

The pooled connectivity results obtained by the probabilistic fiber tracking are 339

directly proportional to the size of the seed and target regions. The size of the regions, 340

determined by the parcellation scheme, vary [9]. They are parcelated based on standard 341

gyral-based neuroanatomical regions [37]. In order to account for a bias of stronger 342

connectivity of larger regions, SC was normalized using the size of the regions. However, 343

the exact method of normalization for ROI size is currently a matter of debate and no 344

operational routine has emerged yet [60]. Therefore, we compared different 345

normalizations regarding the quality of the model. In the reference procedure, we 346

normalized the number of tracked fibers between two regions by the product of the 347

region sizes. We found that this approach gives the best model performance (r=0.674, 348

n=2145, p < .0001) in comparison with alternative normalizations that are presented in 349

the following paragraphs. 350

First, instead of the normalization by the product of the two ROI sizes it is possible 351
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correlation
0  0.1 0.6 0.7

reference preprocessing

fiber distance correction

no homotopic connection reweighting

Original SC
Shuffled SC

normalization by sum of region size

Figure 4. Structural connectivity preprocessing. The correlation between
modeled and empirical functional connectivity for different preprocessing steps of
structural connectivity. In the reference procedure, the number of tracked fibers between
two regions was normalized by the product of the region sizes. The model based on the
original structural connectivity is shown in blue and the baseline model which is based on
shuffled structural connectivity in yellow. The gray box marks the reference procedure.

to normalize using the sum [15]. However, the performance decrease in comparison to 352

the reference procedure is very small (r = 0.65, n = 2145, p < .0001). 353

Second, an additional weighting was applied to correct for the influence of fiber 354

length on the probabilistic tracking algorithm. Therefore, the the number of streamlines 355

connecting two regions was multiplied by the average fiber length between these areas. 356

This normalization leads to a small decrease in performance (r = 0.64, n = 2145, 357

p < .0001). 358

Third, we tested the influence of homotopic transcallosal connections by omitting 359

the additional weighting applied in the reference procedure. As a result, the correlation 360

between modeled and empirical FC drops from r = 0.674 to r = 0.63. These results 361

demonstrate that our reference method of reconstructing SC is slightly superior to the 362

evaluated alternative approaches. Overall, the performance of the empirical simulation 363

based on the SC is rather robust with respect to the choices of preprocessing. 364

Model of functional connectivity In the previous sections we showed that a 365

considerable amount of variance in empirical FC can be explained even with a simple 366

SAR model that captures only stationary dynamics. Several alternative computational 367

models of neural dynamics have been presented that vary regarding their complexity. 368

More complex models can incorporate aspects of cortical processing at the microscopic 369

scale such as cellular subpopulations with differing membrane characteristics or, at the 370
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macroscopic scale, time delays between nodes [39,41,61]. The downside of complex 371

models is the increased number of free parameters whose values need to be 372

approximated, have to be known a priori, or explored systematically. We hypothesized 373

that a more complex model which incorporates more parameters in order to simulate 374

neural dynamics more realistically might explain more variance in FC. We decided to 375

use the Kuramoto model of coupled oscillators as an alternative to investigate whether 376

this holds true [62,63]. In contrast to the SAR model, the Kuramoto model can 377

incorporate delays between nodes and thus becomes a model of dynamic neural 378

processes [42,64]. At the same time the Kuramoto model is simple enough to 379

systematically explore the parameter space. The progression of the phase of each 380

neuron is modeled by the differential equation 381

∂ϕj(t)

∂t
= 2πω − k

∑
i 6=j

Sij · sin
(
ϕj(t)− ϕi(t− d−Dij/v)

)
, (10)

where d is a fixed delay at each node and v is the transmission velocity which is 382

multiplied by the distance Dij , (see S1 Empirical Data) which leads to a 383

connection-specific delay. The Kuramoto model was simulated using the Euler 384

integration method in time steps of 0.1 ms. In contrast to the SAR model, which does 385

not reflect temporal dynamics, in the Kuramoto model we used the same bandpass 386

filters and coherence estimation method as described in equations 7, 8, and 9. 387

An additional alternative to the SAR model is an even more simple direct 388

comparison between the empirical SC and FC. The simple structure-function 389

comparison gave a 23.4% match between structural and functional connectivity alone 390

(r=0.4833, n=2145, p < .0001). The SAR model and the Kuramoto model both explain 391

more variance of the functional connectivity than this direct comparison of structural 392

and functional connectivity (Figure 5A). Using the SAR model we simulated a 393

functional connectome with a 45.4% match to the empirical data (r=0.674, n=2145, 394

p < .0001). With the Kuramoto model however, the match could be further increased to 395

54.0% (r=0.735, n=2145, p < .0001). In other words, the modeled FC using the 396

Kuramoto model explains 40.0% of the variance in the empirical functional connectivity 397

that is unexplained by structure alone. In addition, demonstrating the importance of 398

the underlying structural network, all three variants have a significantly higher 399
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Figure 5. Model of functional connectivity. A: Performance comparison between
the SAR model (reference model), the Kuramoto model and directly between the
empirical and structural connectivity. The model based on the original structural
connectivity is shown in blue and the baseline model which is based on shuffled structural
connectivity in yellow. The gray box marks the reference procedure based on the SAR
model. B: Performance of the Kuramoto model for different parameters k and h close to
the optimal point with fixed velocity = 1.7 m/s and delay = 1.25 ms. C: Same as B but
with varying velocity v and delay d with fixed k = 700 and h = 0.12. In panels B and C
the X marks the parameter that was selected for the corresponding other panel.

correlation than for the randomly shuffled SC. 400

The Kuramoto model showed the best performance for a connection strength scaling 401

of k = 700 (Figure 5B). Important to note is that the constant delay can be neglected 402

without a large performance drop (Figure 5C). In contrast, the velocity introduces a 403

connection specific delay that is modulated by the DTI fiber lengths and the model 404

performance has a considerable peak around v ≈ 1.7. 405

Forward and inverse models In the comparatively few studies on large-scale 406

modeling of MEG/EEG data, a discrepancy exists to whether simulations are compared 407

with empirical data in the source or sensor space [11,34,35]. In other words, the 408

measured time series are either projected onto the cortex using an inverse solution or 409

the simulated cortical signals are projected into sensor space using a forward model. 410

Here we compare both approaches, source reconstruction vs. forward projection, with 411

respect to the global correlation strength between modeled and empirical FC. The 412

source reconstruction approach has been described above (see section 2.2 and S1 413

Empirical Data). 414

For the inverse solution and forward projection, we computed as a forward model a 415

boundary element method volume conduction model based on individual T1-weighted 416

structural MRI of the whole brain and comprising 8196 dipoles distributed over 66 417
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regions [65]. Each dipole has six degrees of freedom defining its position, orientation, 418

and strength in the cortex. The positions for each vertex are defined to be lying equally 419

spaced within the parcellated brain regions of the cortical sheet. The electric source 420

activity can be approximated by the fluctuation of equivalent current dipoles generated 421

by excitatory neurons that have dendritic trees oriented perpendicular to the cortical 422

surface [34]. For the inverse solution, the dipoles orientation was assessed according to 423

its maximal power. For the forward projection of simulated time series, the dipole 424

orientations were defined by the normal vector of the cortical surface of the 425

corresponding region in the segmented MRI image. Since each of the parcellated brain 426

regions extends over several surface vertices, all dipole normals within each region are 427

averaged. This results in one average direction vector per region (average length over all 428

regions: 0.52) which is used to project into the EEG sensor space. 429

In the previous sections we showed that the underlying SC had a large impact on the 430

relatively good match between simulated and empirical FC. Figure 4 and Figure 5A 431

show large drops in correlation when the simulation is based on shuffled SC (yellow 432

bars) instead of the original SC (blue bars). By comparing the source reconstruction 433

with the forward model approach, we find that the comparison in sensor space using the 434

forward projection yields higher correlations between simulated and empirical data 435

(Figure 6A). If, however, the underlying structural connectivity is shuffled before 436

applying the SAR model, the correlation of simulated and empirical FC remains equally 437

high in sensor space. This indicates that the importance of structural information is 438

dramatically reduced if the higher spatial resolution obtained by source reconstruction 439

is bypassed. The forward projection of the simulated time series leads to a very low 440

spatial specificity of the functional connectivities in sensor space (Figure 6B). 441

Since several inverse methods are routinely used without a clear superiority of one 442

over another, we aimed to assess the impact of the specific source reconstruction 443

algorithm on the fit between simulated and empirical FC. We compared three prominent 444

and widely used inverse methods which make fundamentally different assumptions. 445

(Figure 7). As a reference, we used an LCMV spatial beamformer which reconstructs 446

activity with the constraint of minimizing temporal correlations between sources [44]. 447

For comparison we calculated the inverse solution by using exact low resolution brain 448

electromagnetic tomography (ELORETA) which reconstructs activity by spatial 449
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Figure 6. Comparisons of forward projection and source reconstruction. A:
Global correlation between simulated and empirical functional connectivity in sensor
space by applying the forward projection to the SAR model, or in source space by
applying the LCMV beamformer to the EEG time series. Blue bars show simulations
based on original structural connectivity and yellow bars simulations for randomly
shuffled structural connectivity. The gray box marks the reference procedure. B: EEG
functional connectivity measured by coherence (left) and the forward projected modeled
functional connectivity (right), both in sensor space.

smoothness constraints and in this sense it emphasizes local temporal correlations in 450

comparison to beamforming approaches [66]. It is also widely used in source 451

connectivity analyses [67,68]. Additionally we calculated the minimum-norm estimate 452

(MNE) which recovers source activity by reducing overall energy [69] which is based on 453

the assumption that the data gives no information about the null space component of 454

the leadfield which is thus set to zero. Figure 7 shows the global correlation values 455

resulting from these three alternative inverse solutions. It can be seen that all of them 456

have a similar performance level (LCMV:r=0.674, n=2145, p < .0001), ELORETA: 457

(r=0.728, n=2145, p < .0001), MNE: (r=0.676, n=2145, p < .0001). The connectivity 458

maps of time series of the inverse solutions were highly correlations (LCMV-ELORETA: 459

r=0.84, LCMV-MNE: r=0.95,MNE-ELORTEA: r=0.84; all p < .0001). 460
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Figure 7. Source reconstruction. The correlation between modeled and empirical
functional connectivity for different source reconstruction algorithms. The model based
on the original structural connectivity is shown in blue and the baseline model which is
based on shuffled structural connectivity in yellow. The gray box marks the reference
procedure.

Functional connectivity metrics We compared several widely used FC metrics 461

regarding the global relation between empirical and simulated functional connectivity. 462

Previous modeling studies implemented different metrics, and clear superiority of one 463

over another has not been shown [36,46,70]. In the reference procedure, empirical FC 464

was calculated as ordinary coherence and compared to the FC matrix derived from the 465

SAR model. In addition, we investigated several alternative FC metrics. 466

All metrics were based on the same analytic signal representation as shown in 467

equation 7 and the cross-spectrum as defined in equation 8. The different metrics are 468

listed in Table 1 with their corresponding equations, characteristics and results. 469

Comparing the performances based on all five measures (see Figure 8), we found a high 470

correspondence in model performance between coherence and PLV. In contrast, PLI, 471

WPLI, and LPC all showed a significantly lower match between simulated and empirical 472

FC, with correlation coefficients between 0.10 and 0.18. ICOH showed the smallest 473

correlation between modeled and empirical data with a non-significant p-value (r=0.103, 474

n=2145, p=.37). For all metrics, the global correlation essentially vanished if the 475

underlying SC was shuffled prior to simulation. 476

In summary, there are substantial decisions to be made at each stage of the 477

processing pipeline. We selected the reference procedure prior to the evaluation of all 478

alternatives in all these processing stages. Then, we evaluated the combination of all 479
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Figure 8. Functional connectivity metrics. The bars show the correlation between
the empirical functional connectivity and the simulated functional connectivity obtained
using the SAR model. The model based on the original structural connectivity is shown
in blue and the baseline model which is based on shuffled structural connectivity in
yellow. The gray box marks the reference procedure.

best performing alternatives along the pipeline. This best performing combination 480

consists of the reference preprocessing of DTI data to construct SC, the Kuramoto 481

oscillator network to simulate FC, PLV as a FC metric, and ELORETA as source 482

reconstruction method from EEG. This combination results in a match of 54.4% 483

between simulated and empirical functional connectivity (r=0.7377, n=2145, p < .0001). 484

3 Discussion 485

With this study we contribute to resolving the structure-function relationship in global 486

connectomics. We simulated fast neural dynamics based on a realistic structural 487

connectivity backbone and compare it to empirical functional connectivity derived from 488

phase coupling of oscillatory brain waves. For the empirical data collected in 18 subjects 489
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we found a 23.4% match between structural and functional connectivity alone. Using a 490

simple SAR model to simulate FC based on SC, this match was increased to 45.4%, 491

showing that the model can capture about 28.8% of the variance in the empirical FC 492

that is unexplained by the structure alone. We demonstrate several technical 493

alternatives in the modeling procedure and derivation of empirical connectomes that are 494

commonly used, but only few gave noticeable improvements. Of note, introducing 495

additional model parameters by using the Kuramoto model of coupled oscillators 496

improved the simulation (Figure 5). Our results show that resting-state networks 497

emerging from phase coupling at a fast timescale largely resembles structural 498

connectivity, as it has been previously shown for slow fluctuations of BOLD-signal or 499

broad-band power envelopes [8, 9, 11,13]. 500

3.1 Modeling fast dynamics 501

It has been assumed that for the resting-state networks based on fast dynamics the 502

underlying anatomical skeleton is less important compared to the slow resting-state 503

networks, but this issue has not yet been systematically investigated [28]. We calculated 504

the performance of the reference model as the correlation between all modeled pairwise 505

interactions and all empirical pairwise interactions in an empirical functional phase 506

relation connectome of the alpha rhythm and found a good match of 45.4% (Figure 2C). 507

This finding is in contrast to the prior assumptions and shows that the anatomical 508

skeleton is equally crucial for fast timescale functional interactions [21,29]. 509

To better understand the reference model performance we investigated the model 510

error in relation to node and edge characteristics (Figure 3). In general, the model error 511

decreased with longer fiber distance and Euclidean distance. Specifically, for short fiber 512

distances, the model overestimated FC (negative residuals blue in Figure 3). Why are 513

short connections in general more difficult to model based on white matter tracts? The 514

empirical connectome was extracted from resting-state alpha topographies in which 515

propagating waves play an important role for adjacent and remote brain areas to 516

communicate with each other. Cortico-cortical axons in the white matter tracts are 517

considered as the major route for traveling waves. However, a recent study presented 518

compelling evidence for intracortical axons accounting for spatial propagation of alpha 519
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oscillations [73]. Such a mechanism would enable high local synchrony in the relative 520

absence of structural connectivity measured by DTI. 521

We used a stepwise linear model to extract node characteristics explaining most of 522

the model error and found that ROI size and betweenness centrality play an important 523

role. Regarding ROI size, the smaller model error for larger ROIs could be attributed to 524

the measurements of structural as well as functional connectivity being more reliable for 525

larger ROIs: In the case of the SC measurements using DTI, a larger parcellated cortical 526

region allows to track more streamlines with different initial conditions (i.e. for more 527

voxels) and thereby allows a more reliable estimation of the connection probabilities 528

between regions. In EEG as well as DTI, the localization and inter-subject registration 529

of large ROIs can be assumed to be less effected by small deviations because a small 530

spatial shift of a large ROI still allows a large overlap with the correct ROI volume 531

whereas a small spatial shift of a small ROI could displace it completely outside of the 532

original volume. For betweenness centrality, the opposite scenario was the case: the 533

smaller the betweenness centrality the smaller was the model error. Central hubs in a 534

structural network offer anatomical bridges which enable functional links between 535

regions that are structurally not directly related [57]. Hard-wired connections do not 536

necessarily contribute at all times to FC in the network and, vice-versa, functionally 537

relevant connections do not necessarily have to be strongly hard-wired [9]. Possibly, the 538

simple SAR model, which captures only stationary dynamics, has weaknesses at these 539

central hub nodes. In order to capture the empirical FC at these nodes, a more complex 540

dynamical model able to capture non-stationary dynamics with context switches at 541

slower time scales is needed. Nodes with a high betweenness centrality can be expected 542

to communicate with certain cortical modules only at certain times in specific dynamical 543

regimes. We hypothesize that a more complex dynamical model of neural activity could 544

capture this behavior more accurately. Therefore we suggest that further research could 545

especially improve the model in these cases of dynamical context switches in central hub 546

nodes, which cannot be captured by simple models such as the SAR model. 547
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3.2 Reconstructing the structural connectome 548

Using our modeling framework to compare different alternatives of reconstruction the 549

structural connectome, we found that the best match between simulated and empirical 550

FC was obtained when an additional weighting of connections between homotopic 551

transcallosal regions was applied. Additional weighting for fiber distances did not 552

improve the simulation performance significantly. Overall, the differences were very 553

small proving the modeling approach to be rather robust regarding the evaluated 554

choices of reconstruction. 555

Currently, there is no common approach to correct for the influence of fiber distance 556

on the probabilistic tracking algorithm [13,33,74]. Although we found that the model 557

error was largest for small fiber distances (modeled FC higher than empirical FC), a 558

correction for fiber lengths did not improve the result of the simulation. This suggests 559

that the high local connection strength of SC obtained by DTI reflects actual structural 560

connectivity. Methodically, this finding is supported by the fact that accuracy of 561

probabilistic fiber reconstrunction decreases with distance, whereas short-distance 562

connections are reconstructed with high reliability [31]. However, it remains a challenge 563

to correct probabilistic tracking results for the impact of fiber distance and further work 564

is needed to address this methodological limitation. 565

Our model improved with an additional added weight of homotopic connections, 566

which is supporting the data by Messé et al. [15]. This finding points to a related 567

limitation of the probabilistic tracking algorithms to correctly assess long distance and 568

lateral transcallosal fibers. In agreement with previous studies, we show that this 569

limitation can be addressed by adding an preprocessing step to the structural 570

connectome reconstruction. 571

3.3 Model of neural activity 572

We show that our SAR model already explains much of the variance in the empirical 573

EEG data. Our results indicate that the Kuramoto model moderately improved results 574

compared to the reference model. The SAR model has a small number of parameters 575

allowing a fast exploration of the parameter space [43]. The SAR model served several 576

studies in which complexity and information-theoretical measures characterizing FC 577
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were explored [43,75,76]. As a downside, the SAR model has a smaller number of 578

parameters and therefore lacks the modeling capacity to further optimize the dynamics 579

to better fit to the empirical data. Furthermore, the SAR model cannot model 580

individual frequencies and their interactions, making the Kuramoto model a viable 581

alternative. It has been shown that the Kuramoto model features complex 582

synchronization dynamics which can be related to the explanation of oscillatory 583

phenomena in the human cortex, such as fluctuating beta oscillations [42] or metastable 584

synchronization states [11]. A more detailed analysis of the synchronization properties 585

of the Kuramoto model in the human connectome was done by Villegas et al. [77], 586

where frustration and the transition between synchronous and asynchronous phases 587

were analyzed [78]. The Kuramoto model was also used to study the effects of lesions on 588

cortical dynamics and binding by synchrony [63,79]. However, it has been shown that 589

more complex models with more parameters are usually not better in explaining fMRI 590

functional connectivity from structural data [15–17]. Highly parameterized models 591

which require the numerical integration of differential equations take several orders of 592

magnitude more computational time to obtain a reliable estimate of FC than the simple 593

model used here. For certain neurophysiological questions however, the wider parameter 594

space of complex models can be used to explore neural processing properties. The 595

relative benefit of a dynamical model has to counterbalance the higher computational 596

demand. Therefore, the choice of model depends on the investigated scientific 597

question [17,39]. In this study we used the simpler SAR model as a reference because 598

the focus was to investigate alternatives also in many other stages of the processing 599

pipeline and a more complex simulation model would impede identifying the best 600

alternative in the other stages of the processing pipeline, due to the high dimensional 601

parameter space. 602

3.4 Source reconstruction versus forward projection 603

The inverse problem is ill-posed since the higher number of possible active neuronal 604

sources is higher than the number of recording channels. Thus, the ground truth of 605

brain activity patterns generating the measured signal is impossible to infer. A variety 606

of alternative methodological approaches have been developed regarding source imaging. 607
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Particular caution should be exercised concerning the influence of different inverse 608

solutions on the resulting data [80]. Here, we presented a comparison of the 609

performance of three commonly used inverse methods regarding the global correlation 610

between empirical and simulated FC in our technical framework (Figure 7). All source 611

reconstruction algorithms perform in a similar range with resembling r between 0.674 612

and 0.728. Although the algorithms differ regarding the assumptions made about the 613

source signal, the high correspondence in performance of the three source reconstruction 614

techniques mutually validates their respective inverse solutions. 615

Next, we aimed to investigate the best approach for comparing empirical and 616

simulated FC particularly in sensor and source space, see Figure 1. In the sensor space 617

scenario, the simulated signal, as the mean field source activity generated by the 618

Kuramoto model, was projected into sensor space to generate a simulated EEG signal 619

by applying the leadfield (i.e. forward model). For this approach we found slightly 620

higher correlations between simulated and empirical data (Figure 6A). However, we also 621

found that the high correspondence between empirical and simulated EEG sensor space 622

FC was independent of the underlying SC: Shuffling SC before the simulation did not 623

abolish the correlation between the empirical and simulated FC as was the case when 624

the comparison was done at the source space level. This lack of specificity of the 625

simulated FC regarding the anatomical skeleton strongly suggests that the sensor level 626

connectivity matrix is shaped mainly by the leadfield (Figure 6). In fact, the leadfield 627

and can already explain most of the variance (81.9%) in the empirical FC of the sensor 628

space. In contrast, the inverse solution in the source reconstruction procedure removes 629

much of these volume conduction correlations so that the comparison of coherence in 630

source space appears reasonable. We conclude that the volume conduction model of the 631

head is mixing the source time series such that the coherence in sensor space reflects to 632

a high degree the structure within this mixing matrix and the sensor space is a 633

suboptimal stage for investigating structure-function relationships by large-scale 634

modeling approaches. Thus, one should refrain from such a comparison in sensor space 635

with metrics that do not exclude zero-lag interactions. In order to assess the accuracy of 636

simulated global network characteristics, the comparative spatial level should be at 637

source space in order to avoid signal mixing by the leadfield matrix and allow to include 638

zero-lag interactions. The results offer an important ground for modeling studies using 639
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source connectivity analyses for MEG/EEG data. 640

3.5 Connectivity metrics and the role of phase lags 641

One of the main differences between fMRI/PET and MEG/EEG connectivity studies is 642

that for MEG/EEG a multitude of different metrics to quantify FC are currently 643

available and no single metric is predominantly employed or has emerged as being 644

superior [81,82]. This issue hampers comparability between studies and physiologic 645

interpretation. It was our aim to use our theoretic framework for a systematic 646

comparison of different functional connectivity metrics. We compared six commonly 647

used metrics that differ regarding their sensitivity towards zero-phase lag coupling and 648

amplitude variations. The definition of PLV, PLI, WPLI and LPC theoretically renders 649

those metrics insensitive to amplitude variations. We found no major difference in 650

performance between COH and PLV and no major difference between ICOH, PLI, 651

WPLI, and LPC. This result is easily understood on the basis that the SAR model 652

presents the steady state solution including a small noise component only. An 653

important finding is the high correspondence in model performance between coherence 654

and PLV. Coherence is the cross-spectrum between two sensors normalized with the 655

auto-spectra whereas PLV quantifies the consistency of a phase difference between two 656

signals across time. Both measures are high if there is a consistent phase difference 657

regardless of whether the latter is near zero, 180° or inbetween. Similar results between 658

coherence and PLV have been found in previous studies [83–85]. The similarity of both 659

measures in our study suggests that amplitude variations between areas are of less 660

weight than phase variations. Another main finding is the drop in model performance 661

with the metrics ICOH, PLI, WPLI and LPC which are by design less sensitive to 662

zero-phase coupling. Regarding the latter, a major concern exists whether such coupling 663

in scalp recordings would be contaminated by volume conduction artifacts. Obviously, 664

synchrony at sensor level could result from two channels picking up activity from a 665

common source since the activity of the source signal passes through the layers of 666

cerebrospinal fluid, dura, scalp and skull acting as a spatial filter. This effect leads to 667

the detection of spurious synchrony, even if the underlying sources are independent [86]. 668

Based on the assumption that the quasi-static approximation holds true for EEG, 669
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volume conduction would occur with zero-phase lag [87]. Thus, the most commonly 670

used approach to deal with the problem of volume conduction is to neglect interactions 671

that have no phase delay. This is, however, a potentially overly conservative approach. 672

To address the question of how these biased measures of interactions are suited for 673

comparing modeled and empirical connectomes, we compared global model performance 674

based on connectivity metrics that are sensitive and robust to zero-phase lags in this 675

study. ICHOH, PLI, WPLI and LPC all showed a significantly lower match between 676

simulated and empirical FC (around r=0.18) compared to coherence and PLV 677

(Figure 8). For all six metrics, the global correlation was essentially abolished if the 678

underlying SC was shuffled prior to simulation (yellow bars in (Figure 8)). Also, the 679

overall model performance for ICOH, PLI, WPLI and LPC was considerably smaller 680

than the mere correlation between SC and empirical FC (middle row in Figure 5A). 681

What are the possible reasons for this performance drop with ICOH, PLI, WPLI and 682

LPC? One reason could lie in the fact that the reference model SAR does not include 683

delays, thus the simulated FC mainly consists of instantaneous interactions and a 684

comparison with an empirical FC in which those interactions have largely been removed 685

would be futile. However, the results were very similar using the Kuramoto model. The 686

large-scale connectomes derived from all of the four biased metrics did not much reflect 687

the coupling that emerged from our model of fast dynamics based on structural 688

connectivity. Presumably, a considerable amount of functionally relevant synchrony 689

takes place with near zero or zero-phase lag which is not detected using the biased 690

scores. In fact, zero-phase lag synchronization has been detected between cortical 691

regions in a visuomotor integration task in cats [88]. More recently, a study of spike 692

train recordings showed how paths among somatosensory areas were dominated by 693

instantaneous interactions [89]. But synchrony across areas incorporating delays can 694

also lead to high coherence [90]. A recent modeling study investigated the detection 695

rates of synchrony by different EEG phase synchronization measures (PLV, ICOH, 696

WPLI) in a network of neural mass models. They found that no single phase 697

synchronization measure performed substantially better than all the others, and PLV 698

was the only metric able to detect phase interactions near ±0° or ±180° [81]. This study 699

challenged the supposed superiority of biased metrics in practical applications, because 700

they are biased against zero-phase interactions that do truly occur in the brain. Taken 701
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together we argue that by using biased metrics to detect neural synchrony a major 702

portion of relevant coupling is neglected. However, as the relevant stage for comparisons 703

is the source space, the undesired influence of volume conduction effects on the 704

estimated connectivity is partly reduced [91]. Since effects of field spread can never be 705

completely abolished also in the source space, we cannot rule out that volume 706

conduction artifacts have influenced the high correlation in our model. 707

3.6 Conclusion 708

In summary, our framework demonstrates how technical alternatives and choices along 709

the modeling path impact on the performance of a structurally informed computational 710

model of global functional connectivity. We show that determining the resting-state 711

alpha rhythm functional connectome, the anatomical skeleton has a major influence and 712

that simulations of global network characteristics can further close the gap between 713

brain network structure and function. 714

Supporting Information 715

S1 Empirical Data 716

Participants 717

Eighteen healthy volunteers (7 women, mean age 65.6±10.9 std) underwent DTI and 718

EEG resting-state recording. None of the participants reported any history of serious 719

medical, neurological or psychiatric diseases. None of the participants were taking any 720

central nervous system-active medication. The study design was approved by the Local 721

Ethical Committee of the Medical Association of Hamburg (PV 3777). All participants 722

gave their written informed consent according to the ethical declaration of Helsinki. 723

MRI data acquisition 724

Structural imaging data were acquired using a 3 Tesla Siemens Skyra MRI scanner 725

(Siemens, Erlangen, Germany) and a 32-channel head coil to acquire both 726

diffusion-weighted and high-resolution T1-weighted anatomical images. For 727

diffusion-weighted imaging, 75 axial slices were obtained covering the whole brain with 728

gradients (b=1500 mm2/s) applied along 64 non-collinear directions with the sequence 729
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parameters: Repetition (TR) = 10000 ms, echo time (TE) = 82 ms, field of view (FOV) 730

= 256x204, slice thickness (ST) = 2 mm, in-plane resolution (IPR) = 2x2 mm. The 731

complete dataset consisted of 2 x 64 b1500 images and additionally one b0 image at the 732

beginning and one after the first 64 images. For anatomical imaging, a 733

three-dimensional magnetization-prepared, rapid acquisition gradient-echo sequence 734

(MPRAGE) was used with the following parameters: TR = 2500 ms, TE = 2.12 ms, 735

FOV = 240x192 mm, 256 axial slices, ST = 0.94 mm, IPR = 0.94 x 0.94 mm. 736

DTI data preprocessing and cortical parcellation 737

Diffusion-weighted images were analysed using the FSL software package 5.1 738

(http://www.fmrib.ox.ac.uk/fsl). All datasets were corrected for eddy currents and head 739

motion. Fractional anisotropy (FA) maps were calculated fitting the diffusion tensor 740

model at each voxel. Structural T1-weighted anatomical images were processed using 741

the Freesurfer software package 5.3.0 with standard procedures and parameters resulting 742

in a cortical parcellation of 68 cortical regions [92–94]. Accuracy of cortical parcellation 743

was checked visually. Two homologous regions (left and right entorhinal cortex) were 744

discarded from further analysis due to frequent imaging artefacts surrounding this area 745

of the brain. The remaining set of 66 parcellated brain regions were used for further 746

analysis. Registration of structural and diffusion images was achieved using linear and 747

non-linear transformation tools implemented in FSL [95]. Each cortical parcellation was 748

transformed to diffusion space using the non-linear transformation coefficient file and 749

accuracy of registration checked individually. 750

Fiber tractography and structural connectome construction 751

Processing of diffusion data included application of a probabilistic diffusion model, 752

modified to allow estimation of multiple (n=2) fiber directions using the program 753

bedpostx [96,97]. From each seed ROI voxel, 10000 samples were initiated through the 754

probability distribution on principle fiber direction. Tracking resulted in individual 755

maps representing the connectivity value between the seed ROI and individual voxels. 756

Structural connectivity between two regions was measured masking each seed ROI 757

results by each of the remaining ROI’s. In probabilistic tractography, connectivity 758

distribution drops with distance from the seed mask. We calculated the average length 759

between different ROI’s using the distance-correction option of probtrackx following 760

recommendations from the online documentation of the FSL library. Values of average 761
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distances between seed and target ROI were applied alternatively to the reference 762

method (Figure 1) to account for the confounding effect of tract length. 763

EEG data acquisition and analysis 764

Continuous EEG was recorded from 63 cephalic active surface electrodes arranged in 765

the 10/10 system (actiCAP®, Brain Products GmbH, Gilching, Germany) during eight 766

minutes eyes-open resting-state. Impedance was kept below 20 kΩ. Data were sampled 767

at 1000 Hz, referenced to the Cz-electrode (actiCHamp® amplifier, Brain Products 768

GmbH, Gilching). One electrode was mounted below the left eye for EOG-recording. 769

Electrode positions were registered using an ultrasound localization system (CMS20, 770

Zebris, Isny, Germany) before EEG-recording. Patients were instructed to fixate a 771

stationary fixation cross (viewangle ±5°) to reduce eye movements and were asked to 772

avoid eye blinks, swallowing, any other movements and mental tasks like counting. The 773

continuous EEG was offline rereferenced to a common cephalic average, demeaned, 774

detrended and subjected to an independent component analysis (logistic infomax 775

ICA; [98]) to remove eye-blink artifacts which were mostly reflected in 1-2 components. 776

The data was downsampled to 125 Hz and segments containing artifacts like muscle 777

activity, lead movements, electrode artifacts or incompletely rejected blink artifacts 778

were removed visually. 779

The source activity was reconstructed using different inverse solutions: 780

1. an LCMV beamformer constrained by the covariance of the sensor data [44], 781

2. an ELORETA spatial filter [99] or 782

3. the MNE [69]. 783

As a forward model we computed a boundary element method volume conduction 784

model [65] based on individual T1-weighted structural MRI of the whole brain and 785

individual electrode positions using the source space modeling functions of the SPM12 786

toolbox. The source time series were band pass filtered at the alpha frequency band 787

(8±2 Hz) and a Hilbert transform applied. From there functional connectivity estimates 788

were derived as explained above. Analysis was performed with the FieldTrip package for 789

MEG/EEG data analysis [100] and the Statistical Parametric Mapping software 790

(SPM12b, Wellcome Trust Centre for Neuroimaging, London, UK, 791
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http://www.fil.ion.ucl.ac.uk/spm) on MATLAB Version 7.12.0 (R2011a, The 792

Mathworks Inc., Massachusetts, USA). 793
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Evaluation of different EEG frequencies. A: The mean coherence values (±SEM, 796

shaded area) between all ROIs (n = 2145) is calculated for the frequency range of 797

3-30 Hz. Overall coherence at lower frequencies is higher with a peak around 8 Hz and a 798

smaller peak around 24 Hz. B: The model performance for different frequencies. 799
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euclidean distance is measured between the center coordinates of individual ROIs. The 803

strength between ROIs are the number of tracked DTI fibers divided by the product of 804

both ROI sizes. The logarithm of the structural connection strength is inversely 805

correlated with the euclidean distance (r = −0.37, n = 1883, p < .0001). Connections 806

with zero strength (pairs of ROIs with no probabilistic tracked fibers between them) 807
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were excluded (n=262) due to the logarithmic axis. 808
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77. Villegas P, Moretti P, Muñoz MA. Frustrated hierarchical synchronization and

emergent complexity in the human connectome network. Scientific reports.

2014;4.

78. Sadilek M, Thurner S. Physiologically motivated multiplex Kuramoto model

describes phase diagram of cortical activity. Scientific reports. 2015;5.
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