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Choice-induced biases in perception

Long Luu and Alan A. Stocker

Illusions provide a great opportunity to study how perception is affected by both the ob-
server’s expectations and the way sensory information is represented1,2,3,4,5,6. Recently,
Jazayeri and Movshon7 reported a new and interesting perceptual illusion, demonstrating
that the perceived motion direction of a dynamic random dot stimulus is systematically
biased when preceded by a motion discrimination judgment. The authors hypothesized
that these biases emerge because the brain predominantly relies on those neurons that are
most informative for solving the discrimination task8, but then is using the same neural
weighting profile for generating the percept. In other words, they argue that these biases
are “mistakes” of the brain, resulting from using inappropriate neural read-out weights.
While we were able to replicate the illusion for a different visual stimulus (orientation), our
new psychophysical data suggest that the above interpretation is likely incorrect: Biases
are not caused by a read-out profile optimized for solving the discrimination task but rather
by the specific choices subjects make in the discrimination task on any given trial. We
formulate this idea as a conditioned Bayesian observer model and show that it can explain
the new as well as the original psychophysical data. In this framework, the biases are not
caused by mistake but rather by the brain’s attempt to remain ’self-consistent’ in its infer-
ence process. Our model establishes a direct connection between the current perceptual
illusion and the well-known phenomena of cognitive consistency and dissonance9,10.

We first tested whether the original illusion generalizes to other stimulus variables. We replicated

the main experiment of the original study7 using, however, a visual orientation stimulus consisting

of a circular array of small line segments (see Fig. 1a). After stimulus presentation subjects first

had to indicate whether the overall orientation of the array was clockwise (cw) or counter-clockwise

(ccw) of a discrimination boundary (discrimination task), and then had to reproduce their perceived

overall orientation of the array by adjusting a reference line (estimation task). We tested three

levels of stimulus uncertainty by adjusting the width of the distribution the individual line segments

were sampled from.

We found that subjects’ response behavior in both the discrimination and the estimation task was

very similar to the results of the original study. Discrimination performance monotonically de-

pended on the level of stimulus uncertainty and, more importantly, perceived stimulus orientations

showed the same repulsive biases away from the discrimination boundary with larger biases for

stimulus orientations closer to the boundary and for higher levels of stimulus uncertainty (Fig. 1b).
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Figure 1: Generalization of the illusion and potential model explanations. (a) Experiment 1: The

design was essentially identical to the original study except that we used an orientation stimulus.

(b) Data for the average subject (N=5; see Extended Data Figure 1 for individual subject data).

Subjects’ behavior was very similar compared to the original study, both in terms of the discrimi-

nation performance and their estimation biases (compare, e.g., to Figs. 2b and 3c in Jazayeri and

Movshon 7). Biases are repulsive, away from the discrimination boundary (only shown for correct

trials). (c) Task-dependent model by Jazayeri and Movshon 7 . The estimation biases are assumed

to arise from a bimodal sensory weighing profile aimed at optimally solving the discrimination task.

(d) Alternative choice-dependent model proposed by Stocker and Simoncelli 11 . In contrast, this

model assumes that the biases arise because a subject’s judgment in the discrimination task (e.g.

’cw’) re-enters the subsequent perceptual estimation process in form of a conditioned prior.
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According to Jazayeri and Movshon7 these biases are the result of a selective readout of the

population of neurons representing the sensory evidence. They hypothesized that the brain pref-

erentially weighs signals from those neurons whose responses are most informative with respect

to the fine discrimination task, but is then compelled to use the same (bimodal) weighting profile

when performing the secondary estimation task. In their model, weighing (i.e. multiplying) an

unimodal sensory representation centered at the true stimulus orientation with a bimodal weight-

ing profile, and applying a winner-takes-all mechanism to the weighted response leads to stimulus

estimates that show repulsive biases (Fig. 1c). Jazayeri and Movshon demonstrate that with a par-

ticular choice of the weighting function the model can be fit to the observed experimental biases.

A distinct characteristic of the model is that the weighting profile must be established right at the

beginning of each trial (as soon as the discrimination boundary is shown and the task is defined,

Fig. 1a), and then both the discrimination as well as the estimation outcome simply follow from

two independent feedforward processes based on the same sensory information and the same

weighting profile.

An alternative and, as we will demonstrate, more appropriate explanation of the illusion is to con-

sider the two tasks as causally dependent, where a subject’s judgment in the discrimination task

directly conditions the inference process of the subsequent estimation task (Fig. 1d). More specif-

ically, we assume that subjects trust their choice in the discrimination task such that in the es-

timation process, they only consider stimulus values that are consistent with this choice. This

behavior can be mathematically formulated as a conditioned Bayesian observer model11. The

model jointly accounts for subjects’ behavior in both the discrimination as well as the estimation

task. The model makes the fundamental assumption that along a task sequence based on the

same sensory evidence, human perception attempts to remain self-consistent by conditioning the

subsequent inference process on the subject’s preceding decisions.

While both models can account for the original dataset7,11 and the results of Experiment 1, they

obviously provide fundamentally different explanations for the illusion. We run two additional ex-

periments designed to distinguish the two model hypotheses. Experiment 2 was identical to Ex-

periment 1 except that at the beginning of each trial, subjects were explicitly reminded of the total

range within which the stimulus orientation would occur in the trial (gray arc, Fig. 2a). Because

the optimal weighting profile for the discrimination task does not depend on the stimulus range

(except for very small ranges), the model by Jazayeri and Movshon does not predict any change

in shape nor magnitude of the estimation biases compared to the measured biases in Experiment

1. In contrast, the self-consistent Bayesian observer model per definition depends on the stimu-

lus range (i.e. the stimulus prior). Thus the model predicts a shift of the crossover point of the

estimation bias curves towards the discrimination boundary under the assumption that the explicit

representation of the stimulus range provides subjects with a better, and presumably narrower,

estimate of the stimulus prior. Indeed, the measured estimation bias curves in Experiment 2 show
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Figure 2: Probing the two model hypotheses. (a) Experiment 2 was identical to Experiment 1,

except that at the beginning of each trial subjects were shown the total range within which the

stimulus orientation would occur in the trial (gray arc). The stimulus distribution relative to the

discrimination boundary was uniform and the same throughout all three experiments.
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Figure 2 (previous page): (b) Subjects’ bias curves (average subject, see Extended Data Figure

3 for individual subject data) were shifted towards the discrimination boundary compared to the

curves obtained in Experiment 1 (Fig. 1b). Because the optimal weighting profile does not de-

pend on the stimulus range, this change is not predicted by the model of Jazayeri/Movshon. It is,

however, correctly accounted for by our proposed conditioned Bayesian observer model assuming

that explicitly showing the range leads to a more accurate (and more narrow) estimate of the prior

distribution. (c) Experiment 3: subjects were provided with the correct answer for the orientation

discrimination task before the stimulus was presented. Subjects performed an unrelated color

discrimination task instead, where they needed to remember the color (red/green) of the cue indi-

cating the correct answer. There was no correlation between the color (red/green) and the given

correct answer (’cw’ or ’ccw’). (d) The measured bias curves were very similar to the curves mea-

sured in Experiment 2 (average subject; see Extended Data Figure 3 for individual subject data).

This is inconsistent with the task-dependent model of Jazayeri/Movshon because without the need

to perform the discrimination task, there is no rationale for assuming the same bimodal weighting

profile necessary for explaining these biases. In contrast, the self-consistent Bayesian observer

model would, by definition, treat a ’given answer’ identical to a judgment the subject had made

him/herself. As a result, the model essentially predicts the same bias curves as those in Experi-

ment 2, which is supported by the data (there is a slight difference in the predictions because the

given answer was always correct while a subjective judgment naturally can be incorrect). (e) To ex-

clude the scenario in which subjects simply ignored the given answer and implicitly performed the

orientation discrimination task themselves instead, we compared the fraction of incongruent trials

(trials where the discrimination judgment was inconsistent with the estimate) across Experiments

2 and 3 with the predicted fraction if they were indeed making implicit judgments. The fraction

was much lower and of comparable size to subjects’ error rates in the color discrimination task,

suggesting that the errors are simply due to erroneous memory retrieval.
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a clear and consistent shift of the crossover point toward the discrimination boundary (Fig. 2b),

much in agreement with the predicted shift by our proposed model, but not the model by Jazayeri

and Movshon.

With Experiment 3 we directly targeted the key difference between the two models by separating

the discrimination judgment from the discrimination task. Subjects were no longer asked to per-

form the fine orientation discrimination task but instead were directly given the correct answer at

the beginning of each trial by a colored cue (Fig. 2c). For control reasons they still had to perform

a color discrimination task that, however, was completely unrelated to the orientation stimulus.

As Fig. 2d shows, subjects’ estimation biases in Experiment 3 are very similar to the biases in

Experiment 2.

This rules out the model by Jazayeri/Movshon because, in order to account for the data, it would

need to assume the same weighting profile (optimized for the discrimination task) for Experiments

2 and 3, even though subjects no longer need to perform the discrimination task in Experiment

3. Instead, we expect the model to predict no (or at least very different) estimation biases. In

contrast, because the subjects still have access to a discrimination judgment signal, the condi-

tioned Bayesian observer model predicts estimation biases that are essentially identical to those

in Experiment 2 (a small difference remains because the given answer is always correct while

the subjective judgments naturally can be incorrect). Note that both Experiment 2 and 3 were

conducted on the same set of subjects (with half of the group doing Experiment 2 first and the

other half starting with Experiment 3). We can also rule out that subjects may have ignored the

given answer and implicitly performed the orientation discrimination task instead, and thus still

have applied a bimodal weighting profile leading to the observer biases. If this were the case,

then the expected rate of inconsistent trials (i.e. trials in which the estimated orientation was not in

agreement with the given correct answer) would be much larger than what we measured. Instead,

the rates for Experiment 2 and 3 are comparable and are of the same magnitude as the error rates

for the (irrelevant) color discrimination task, suggesting that these errors simply reflect memory

retrieval errors (Fig. 2e).

Summary and conclusion

We were able to replicate the new perceptual illusion reported by Jazayeri and Movshon7 for a

different visual stimulus, which suggests that the observed estimation biases may reflect a general

perceptual illusion. However, our new data strongly suggest that the original explanation for these

biases is incorrect. We find that it is the subjects’ individual judgments rather than the demand

for an optimal performance in the discrimination task (as proposed by Jazayeri and Movshon) that

causes the biases in the subsequent estimation task. This choice-dependent behavior can be well
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formalized with a conditioned Bayesian observer model in which a subject’s estimate of the stimu-

lus value is conditioned not only on the sensory evidence but also on the subject’s judgment in the

preceding discrimination task11. The across-subject differences in behavior are well described by

meaningful variations in subjects individual noise levels and their knowledge of the accurate stim-

ulus prior (Extended Data Figure 1 and 3). This is also in stark contrast to the model by Jazayeri

and Movshon where the individual differences in the readout profile lack any clear interpretation.

Finally, the model not only accounts for subjects’ average estimates, but also for the full distribution

of the estimates both in correct and incorrect trials (see e.g. Extended Data Figure 2).

The implications of our results are of significance. First, our data suggest that subjects did not

distinguish between a decision outcome they generated themselves (as in Experiment 2) and a

decision outcome that was given to them (Experiment 3), implying that a human observer in such a

perceptual task sequence treats their own subjective judgment as if it were true. Computationally,

this is interesting because it is clearly a non-optimal behavior with regard to perceptual accuracy

(obviously, the subjective judgment can be wrong) yet has the fundamental advantage that the

subject is “self-consistent” along the sequential inference chain. The proposed self-consistent

observer model may indeed reflect a more general framework for understanding perception and

behavior within the time-dependent causal structures of natural environments: The brain fuses

incoming sensory evidence with both prior expectations and its current internal hypotheses about

the structure of the world, and thus, by ensuring self-consistency in drawing conclusions from

the same sensory evidence, generates and maintains a robust and consistent interpretation of

the external world. Second, our new interpretation of the illusion creates a direct link to the well

known phenomena of cognitive consistency9 and dissonance10. It leads to the interesting and

exciting hypothesis that there is a very general and unifying description of human sequential de-

cision making behavior that transcends the perception/cognition boundary. Finally, results from

recent physiological recordings show that choice-related signals are fed back along the perceptual

processing pathway all the way to early sensory areas12,13. The new observer model may provide

an explanation for the computational purpose and perceptual consequences of these feedback

signals: to guarantee that the perceptual process remains self-consistent.
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Methods

Experimental setup

Ten subjects with normal or correct-to-normal vision (6 males, 4 females; one non-naïve) partici-

pated in the experiments. One subject (male) was excluded from the analysis because he failed

to correctly execute the estimation task. All subjects provided informed consent. The experiments

were approved by the Institutional Review Board of the University of Pennsylvania under protocol

#819634. The number of subjects and trials were chosen such that the statistical power in our

data was similar to the one of the original study7, which allowed a fair comparison. Details of the

experimental setup can be found in the Supplement.

Conditioned Bayesian observer model

Let θ be the true stimulus orientation, m the noisy sensory measurement gathered from the stim-

ulus, and C = {’cw’, ’ccw’} the binary decision variable indicating whether the the stimulus ori-

entation is clockwise or counter-clockwise of the decision boundary. The observer is assumed to

solve two perceptual tasks in sequence. After stimulus presentation, the observer first performs

the discrimination task using Bayesian inference with regard to a uniform loss function,

Ĉ(m) = argmaxC∈{’cw’,’ccw’}p(C|m) . (1)

The posterior distribution p(C|m) is computed using Bayes’ rule, thus

p(C|m) ∝ p(m|C)p(C) . (2)

We set p(C) = 0.5 for both values of C since the two choices are equally likely in the Experiments

1-3 and compute p(m|C) by marginalizing over all stimulus orientations:

p(m|C) =
∫ π

−π
p(m|θ)p(θ|C)dθ , (3)

where p(θ|C) is the experimental distribution of stimuli for each choice. We assume the measure-

ments m to be corrupted by additive Gaussian noise. Thus p(m|θ) is Gaussian with mean θ and

a standard deviation σ that is monotonically dependent on the distribution width of the stimulus

orientation array.

Second, the observer solves the subsequent estimation task by computing the mean of the poste-

rior distribution (i.e. minimizing squared error), conditioned on both the sensory measurement m

and their choice in the preceding discrimination task Ĉ:

θ̂(m) =

∫ π

−π
θp(θ|m, Ĉ(m))dθ , (4)
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where

p(θ|m, Ĉ(m)) ∝ p(m|θ, Ĉ(m))p(θ|Ĉ(m)) . (5)

The estimation mean and the full distribution of the estimates can be computed by marginalizing

Eq. (4) and Eq. (5), respectively, over the measurement distribution p(m|θ).

Model fit

The conditioned Bayesian model was fit using a maximum likelihood procedure. See Supplement

for more details. The predictions for the model by Jazayeri and Movshon are qualitative and not

based on numerical fits.

Code availability

Computer code (MATLAB) for the model implementation is available upon request.
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Extended Data Figure 1: Experiment 1: Joint model fits for individual subjects. The conditioned

Bayesian observer model was jointly fit to the discrimination and estimation data of individual

subjects. Top two rows: Discrimination judgments of Subjects 1-5 (green points) together with

the predicted psychometric curves of the model (red curves). Slopes of the psychometric curves

were consistently steeper for higher stimulus noise. Subjects show large individual variations

in overall noise sensitivity. Bottom two rows: Measured bias curves (correct trials only) and the

corresponding model fits are shown. The bias magnitudes varies widely across subjects. However,

the variations corresponds to individual differences in perceptual noise and is nicely predicted by

the model. In addition, the bias curves consistently intersect around 20 degree for all subjects

except the non-naïve Subject 1. This indicates that naïve subjects similarly overestimated the

stimulus range as indicated by their fit stimulus priors (black arcs).
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Extended Data Figure 2: Experiment 1: Full distributions of estimates and model fits. The his-

tograms of subjects’ orientation estimates at each noise level and stimulus orientation are shown

for the average subject, together with the predicted distributions of the conditioned Bayesian ob-

server model. The model closely fits the distributions for both, the correct (top) as well as the

incorrect trials (bottom). Note that incorrect trials are increasingly less frequent (to completely

absent at low noise) for stimulus orientations that are increasingly farther away from the discrimi-

nation boundary.
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Extended Data Figure 3: Experiment 2 and 3: Estimation data and fits for the same set of subjects.

The measured bias curves in Experiment 2 are similar to those in Experiment 1 (Extended Data

Figure 1) except that for most subjects the point where the bias curves intersect the x-axis (zero

bias) is shifted toward the discrimination boundary. This difference is captured by the model in form

of a prior (black arcs) that is narrower compared to the prior for Experiment 1 due to the explicit

display of the total stimulus range in Experiment 2 (see Fig. 2a). Importantly, although the bias

curves vary substantially between individual subjects, subjects show a remarkable consistency

across both Experiment 2 and 3: The magnitude and shape of the bias curves are similar as well

as the fit stimulus prior. Data are well fit by our conditioned Bayesian observer model.
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Supplement

Experimental setup

General method: Subjects sat in a darkened room in front of a special purpose computer monitor

(VIEWPixx3D, refresh rate of 120 Hz and resolution of 1920 x 1080 pixels). Viewing distance was

83.5 cm and enforced with a chin rest. We programmed all experiments in Matlab (Mathworks,

Inc.) using the MGL toolbox (http://justingardner.net/mgl) for stimulus generation and presenta-

tion. The code was run on an Apple Mac Pro computer with Quad-Core Intel Xeon 2.93 GHz, 8GB

RAM. Subjects were asked to fixate at the fixation dot whenever it appeared on the screen. Before

subjects did the main experiments, they each had 2-3 training sessions during which they famil-

iarized themselves with the discrimination and the estimation task. After that, each subject either

completed 1800 trials in 3-4 sessions for Experiment 1 or completed 3600 trials in 6-8 sessions

for Experiment 2 and 3. This is equivalent to 40 trials per each of the 15 stimulus orientations and

the three noise conditions. Each session lasted approximately 50 minutes.

Experiment 1: Five subjects (Subjects 1-5) participated in Experiment 1. In each trial, subjects

viewed a white fixation dot (diameter: 0.3o) and two black marks (length: 3o, distance from fixation:

3.5o) indicating a decision boundary whose orientation was randomly chosen around the circle.

After 1300 ms, an array of white line segments (length: 0.6o) was presented for 500 ms. The array

consisted of two concentric circles centered on the fixation: the outer (diameter: 3.8o) contained

16 line segments and the inner (diameter: 1.8o) contained 8 line segments. A random jitter (from

−0.15o to 0.15o) was independently added to the x-y coordinates of each line segment. The orien-

tation of each line segment was drawn from a Gaussian distribution with mean given as one of 15

stimulus orientations relative to the boundary (from −21o to 21o in steps of 3o) and standard devi-

ation as one of 3 values ([0o, 6o and 18o]). After the stimulus disappeared, subjects were asked to

indicate whether the average orientation of the array was clockwise or counter-clockwise relative

to the boundary by pressing a corresponding button. If subjects did not respond within 4 seconds,

the current trial was skipped. If they responded within 4 seconds, subjects then subsequently

were tasked to indicated their perceived average orientation of the array by adjusting a reference

line with an analog stick of a gamepad (PS4 DualShock 4). Each trial was followed by a randomly

chosen inter-trial interval of 300 ms to 600 ms duration (blank screen).

Experiment 2: Five subjects (Subject 1 and Subjects 6-9) participated in Experiment 2. The

procedure was identical to Experiment 1 except that at the beginning of each trial, a prior cue

consisting of a gray arc was presented for 800 ms. The arc (width: 0.2o, eccentricity from fixation:

3.5o) always spanned the range −21o to 21o relative to the discrimination boundary. Subjects were

instructed that the stimulus orientation was guaranteed to occur anywhere within this range with

equal probabilities.
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Experiment 3: The same five subjects in Experiment 2 also participated in Experiment 3. The

procedure was identical to Experiment 2 except for the following: First, the full prior cue (gray

arc) was present only for 500 ms, after which it was reduced to a colored arc that only spanned

the orientation range at the side of the discrimination boundary where the stimulus orientation in

this trial would occur. This colored cue indicating the correct answer (’cw’ or ’ccw’) was shown

for 300ms. The color (red or green) was randomly assigned and uncorrelated with the stimulus

orientation. Second, instead of the orientation discrimination task, subjects were tasked to recall

the color of the answer cue.

Fitting procedure

We jointly fit the model to the data of both the decision and estimation task by maximizing the

likelihood of the model given the data.

p(D|ρ) =
n∏
i=1

P (Di|ρ) =
n∏
i=1

P (Ĉi|ρ, θ)p(θ̂i|Ĉi, ρ, θ) (6)

where D is the data, ρ is the parameters of the model, θ is the true orientations, Ĉi is the decision

outcome, θ̂i is the orientation estimate, i is the trial index and n is the number of trials. Thereby,

the probability of the decision P (Ĉ|θ), and the distribution of estimates conditioned on the deci-

sion p(θ̂|Ĉ, θ) are computed by marginalizing Eqs. (1) and (5) over the measurement distributions

p(m|θ) (Gaussian).

Our model contains a total of 8 parameters including:

• standard deviations for the 3 noise levels of the stimuli (additive Gaussian noise)

• lapse rate and guess rate for the discrimination task

• width and smoothness of the prior distribution over orientation

• standard deviation for memory noise (additive Gaussian)

The Nelder-Mead simplex algorithm is used to minimize the term −log(p(D|ρ)). Twenty iterations

of the optimization procedure were performed using randomized initial parameter values in oder

to obtain the best fitting model.
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