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Abstract 
The number of sequenced genomes is growing exponentially, profoundly shifting the 

bottleneck from data generation to genome interpretation. Traits are often used to 

characterize and distinguish bacteria, and are likely a driving factor in microbial 

community composition, yet little is known about the traits of most microbes. We 5 

present Traitar, the microbial trait analyzer, a fully automated software package for 

deriving phenotypes from the genome sequence. Traitar accurately predicts 67 traits 

related to growth, oxygen requirement, morphology, carbon source utilization, 

antibiotic susceptibility, amino acid degradation, proteolysis, carboxylic acid use and 

enzymatic activity. 10 

Traitar uses L1-regularized L2-loss support vector machines for phenotype 

assignments, trained on protein family annotations of a large number of characterized 

bacterial species, as well as on their ancestral protein family gains and losses. We 

demonstrate that Traitar can reliably phenotype bacteria even based on incomplete 

single-cell genomes and simulated draft genomes. We furthermore showcase its 15 

application by characterizing two novel Clostridiales based on genomes recovered 

from the metagenomes of commercial biogas reactors, verifying and complementing 

a manual metabolic reconstruction. 

Traitar enables microbiologists to quickly characterize the rapidly increasing number 

of bacterial genomes. It could lead to models of microbial interactions in a natural 20 

environment and inference of the conditions required to grow microbes in pure 

culture. Our phenotype prediction framework offers a path to understanding the 

variation in microbiomes. Traitar is available under the GPL 3.0 license at 

https://github.com/hzi-bifo/traitar. 
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Introduction 
Microbes are often characterized and distinguished by their traits, for instance, in 

Bergey’s Manual of Systematic Bacteriology (Goodfellow et al., 2012). A trait or 

phenotype can vary in complexity; for example, it can refer to the degradation of a 

specific substrate or the activity of an enzyme inferred in a lab assay, the respiratory 5 

mode of an organism, the reaction to Gram staining or antibiotic resistances. Traits 

are also likely to be a driving factor for microbial community composition; for 

example, in the cow rumen microbiota, bacteria capable of cellulose degradation 

influence the ability to process plant biomass material (Hess et al., 2011). In the 

Tammar wallaby foregut microbiome, the dominant bacterial species is implicated in 10 

the lower methane emissions produced by wallaby compared to ruminants (Pope et 

al., 2011).   

Microbial diversity analysis via 16S rRNA amplicon sequencing can reveal the 

taxonomic composition of microbial communities, for example, in the human gut 

(Human Microbiome Project Consortium, 2012); however, it remains to be 15 

investigated to what degree the differences in composition have an impact on 

function. The major challenge for analyzing and interpreting the growing amount of 

microbial community sequencing data is to learn the molecular determinants of 

microbial phenotypes (Martiny et al., 2015). 

The genotype–phenotype relationships for some microbial traits have been well 20 

studied; for instance, bacterial motility is attributed to the proteins of the flagellar 

apparatus (Macnab, 2003). Recently, we have shown that delineating these 

relationships from microbial genomes with known phenotype information using 

statistical learning methods allows the de novo discovery of novel protein families 

that are relevant for the realization of the plant biomass degradation phenotype and 25 
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to predict the phenotype with high accuracy (Weimann et al., 2013). However, a fully 

automated software framework for prediction of a broad range of traits from only the 

genome sequence is missing thus far. Additionally, horizontal gene transfer, a 

common phenomenon across bacterial genomes, has not been utilized to improve 

trait prediction before. Traits with their causative genes may be transferred from one 5 

bacterium to the other (Ochman et al., 2000; Pal et al., 2005) (e.g. for antibiotic 

resistances (Martinez, 2008)) and the vertically transferred part of a bacterial genome 

might be unrelated to the traits under investigation  (Barker and Pagel, 2005; Harvey 

and Pagel, 1991; Martiny et al., 2015) .  

Recently, several methods based on e.g. differential coverage and k-mer usage 10 

(Alneberg et al., 2014; Cleary et al., 2015; Gregor et al., 2016; Imelfort et al., 2014; 

Kang et al., 2015; Nielsen et al., 2014) to recover genomes from metagenomes 

(GFMs) were developed, which allow to recover genomes without the need to obtain 

microbial isolates in pure cultures (Brown et al., 2015; Hess et al., 2011). In addition, 

single-cell genomics provides a complementary approach for culture-independent 15 

analysis and allows, although often fragmented, genome recovery also for less 

abundant taxa (Lasken and McLean, 2014; Rinke et al., 2013).  

The aim of this study was to develop an easy-to-use, fully automated software 

framework for the accurate prediction of a large number of microbial phenotypes 

solely from features derived from the microbial genome sequence. This allows the in 20 

silico characterization of the growing number of microbial isolates and microbial 

community members with genomes recovered from single-cell sequencing or 

metagenomes. We named our software Traitar, the microbial trait analyzer (Figure 1). 
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Figure 1: Application scenario: Traitar can be used to phenotype microbial 
community members based on genomes recovered from single-cell sequencing or 
(metagenomic) environmental shotgun sequencing data and microbial isolate 
genomes. Traitar provides classification models based on protein family annotation 
for a wide variety of different phenotypes related to growth, oxygen requirement, 
morphology, carbon source utilization, antibiotic susceptibility, amino acid 
degradation, proteolysis, carboxylic acid use and enzymatic activity. 

We used phenotype data from the microbiology section of the Global Infectious 

Disease and Epidemiology Network (GIDEON), a resource dedicated to the 

diagnosis, treatment and teaching of infectious diseases and microbiology (Berger, 

2005), for training phenotype classification models on the protein family annotation of 

a large number of sequenced genomes of microbial isolates.  We investigated the 5 

effect of incorporating ancestral protein family gain and losses into the model 

inference on classification performance, to allow consideration of horizontal gene 

transfer events for phenotype-related protein families. We rigorously tested the 

performance of our software in cross-validation experiments and by applying it to an 

independent test set. We then used Traitar to phenotype bacteria based on single 10 

amplified genomes (SAGs) and simulated incomplete genomes to investigate its 
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potential for phenotyping microbial samples with incomplete genome sequences. We 

characterized two novel Clostridiales species of a biogas reactor community with 

Traitar, based on their population genomes recovered with metagenomics. We show 

how our predictions verified and complemented a manual metabolic reconstruction. 

Traitar is implemented in Python 2.7, is freely available under the open-source GPL 5 

3.0 license at https://github.com/hzi-bifo/traitar and can be installed on Linux/Unix via 

the Python Package Index as a stand-alone program. It is also available as a web 

service at https://research.bifo.helmholtz-hzi.de/traitar and as a Docker container. 

Results 
We begin with a description of Traitar software and the training of the phenotype 10 

models, first based on phyletic patterns and then including ancestral protein family 

gains and losses. We then proceed by describing the performance of the phenotype 

classification obtained in the cross-validation experiments. Subsequently, we provide 

the classification performance for different taxonomic levels. We then show the 

accuracy estimates computed for an independent test set.  We further evaluate 15 

Traitar on simulated GFMs and SAGs, thereby demonstrating the suitability of our 

approach for incomplete bacterial genomes.  

Afterwards, we provide several examples for the underlying genetic components of 

specific phenotypes, namely i.e. ‘Motility’, ‘Nitrate to nitrite’ conversion and ‘L-

arabinose’ fermentation. Finally, we apply Traitar to characterize two uncultured 20 

phylotypes that were derived from a commercial biogas reactor and cross-reference 

our results with a manual metabolic reconstruction. 
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Traitar software 

Traitar classifies 67 microbial traits (Table 1, Supplementary Table 1) for input 

samples. The software predicts these phenotypes based on models that were trained 

on protein and phenotype presence–absence data from 234 bacterial training 

species, as well as on models that were trained by incorporating the ancestral protein 5 

family gains and losses. The input to Traitar is either a nucleotide DNA FASTA for 

every sample, which is first run through gene prediction software, or an amino acid 

FASTA file for every sample. Traitar then annotates the proteins with protein families. 

Subsequently, it predicts phenotype labels for the input samples based on the 

models for the 67 traits. Finally, it cross-references the predicted phenotypes with the 10 

Pfam families that are relevant for their classification and then outputs GFF files that 

allow their inspection in a genome browser (Figure 2). These steps are described in 

more detail below. Parallel execution is supported by GNU parallel (Tange, 2011).  

Table 1: The 67 phenotypes from the GIDEON database annotated as being present 
or absent for at least 10 microbial species each. We group each of these phenotypes 
into a microbiological or biochemical category, and provide information about the 
general type of microbiological assay required for testing the phenotype according to 
the GIDEON database. 

Phenotype(a) Category(b) Test type(c) 
Arginine dihydrolase Amino Acid General test 
Indole Amino Acid General test 
Lysine decarboxylase Amino Acid General test 
Ornithine decarboxylase Amino Acid General test 
Acetate utilization Carboxylic Acid General test 
Citrate Carboxylic Acid General test 
Malonate Carboxylic Acid General test 
Tartrate utilization Carboxylic Acid General test 
Alkaline phosphatase Enzyme General test 
Beta hemolysis Enzyme General test 
Coagulase production Enzyme General test 
DNase Enzyme General test 
Lipase Enzyme General test 
Nitrate to nitrite Enzyme General test 
Nitrite to gas Enzyme General test 
Pyrrolidonyl-beta-naphthylamide Enzyme General test 
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Bile-susceptible Growth General test 
Growth at 42°C Growth General test 
Growth in 6.5% NaCl Growth General test 
Growth in KCN Growth General test 
Growth on MacConkey agar Growth Basic test 
Growth on ordinary blood agar Growth Basic test 
Mucate utilization Growth General test 
Colistin-Polymyxin susceptible Growth: Antibiotic General test 
Bacillus or coccobacillus Morphology Basic test 
Coccus Morphology Basic test 
Coccus - clusters or groups predominate Morphology Basic test 
Coccus - pairs or chains predominate Morphology Basic test 
Gram negative Morphology Basic test 
Gram positive Morphology Basic test 
Motile Morphology General test 
Spore formation Morphology Basic test 
Yellow pigment Morphology General test 
Aerobe Oxygen Basic test 
Anaerobe Oxygen Basic test 
Capnophilic Oxygen General test 
Facultative Oxygen Basic test 
Catalase Oxygen:Enzyme Basic test 
Oxidase Oxygen:Enzyme Basic test 
Hydrogen sulfide Product General test 
Casein hydrolysis Proteolysis General test 
Gelatin hydrolysis Proteolysis General test 
Cellobiose Sugar Fermentation or acidification 
D-Mannitol Sugar Fermentation or acidification 
D-Mannose Sugar Fermentation or acidification 
D-Sorbitol Sugar Fermentation or acidification 
D-Xylose Sugar Fermentation or acidification 
Esculin hydrolysis Sugar General test 
Glycerol Sugar Fermentation or acidification 
Lactose Sugar Fermentation or acidification 
L-Arabinose Sugar Fermentation or acidification 
L-Rhamnose Sugar Fermentation or acidification 
Maltose Sugar Fermentation or acidification 
Melibiose Sugar Fermentation or acidification 
myo-Inositol Sugar Fermentation or acidification 
ONPG (beta galactosidase)(d) Sugar General test 
Raffinose Sugar Fermentation or acidification 
Salicin Sugar Fermentation or acidification 
Starch hydrolysis Sugar General test 
Sucrose Sugar Fermentation or acidification 
Trehalose Sugar Fermentation or acidification 
Urea hydrolysis Sugar General test 
Gas from glucose Sugar:Glucose General test 
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Glucose fermenter Sugar:Glucose Basic test 
Glucose oxidizer Sugar:Glucose Basic test 
Methyl red Sugar:Glucose General test 
Voges Proskauer Sugar:Glucose General test 
(a) GIDEON phenotypes with at least 10 presence and 10 absence labels 
(b) Phenotypes assigned to microbiological / biochemical categories 
(c) Type of test required for wet lab phenotype determination according to GIDEON 
(d) ONPG: o-Nitrophenyl-β-D-galatopyranosid 

 
 

Annotation 
In the case of nucleotide DNA sequence input, Traitar uses Prodigal (Hyatt et al., 

2010) for gene prediction prior to Pfam family annotation. The amino acid sequences 

are then annotated in Traitar with protein families (Pfams) from the Pfam database 

(version 27.0) (Finn et al., 2014) using the hmmsearch command of HMMER 3.0 5 

(Finn et al., 2011).  

Each Pfam family has a hand-curated threshold for the bit score, which is set in such 

a way that no false positive is included (Punta et al., 2012). A fixed threshold of 25 is 

then applied to the bit score (the log-odds score) and all Pfam domain hits with an E-

value above 10-2 are discarded. The resulting Pfam family counts (phyletic patterns) 10 

are turned  into presence or absence values, as we found this representation to yield 

a favorable classification performance (Weimann et al., 2013).  

  
Figure 2: Work flow of Traitar. Input to the software can be genomic samples in 
nucleotide or amino acid FASTA format. Traitar predicts phenotypes based on pre-
computed models and provides graphical and tabular output. In the case of 
nucleotide input, the protein families that are important for the phenotype predictions 
will be further mapped to the predicted protein-coding genes 
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Traitar phenotype models 

We represented each phenotype from the set of GIDEON phenotypes across all 

genomes as a vector yp, and solved a binary classification problem using the matrix 

of Pfam phyletic patterns XP across all genomes as input features and yp as the 

binary target variable (Figure 3). For classification, we relied on support vector 5 

machines (SVMs), which are a well-established machine learning method (Boser et 

al., 1992). Specifically, we used a linear L1-regularized L2-loss SVM for classification 

as implemented in the LIBLINEAR library (Fan et al., 2008). For many datasets, 

linear SVMs achieve comparable accuracy to SVMs with a non-linear kernel but allow 

faster training. The weight vector of the separating hyperplane provides a direct link 10 

to the Pfam families that are relevant for the classification. L1-regularization enables 

feature selection, which is useful when applied to highly correlated and high-

dimensional datasets, as used in this study (Zou and Hastie, 2005). We used the 

interface to LIBLINEAR implemented in scikit-learn (Pedregosa et al., 2011). For 

classification of unseen data points—genomes without available phenotype labels 15 

supplied by the user—Traitar uses a voting committee of five SVMs with the best 

single cross-validation accuracy (see Materials & Methods – Nested cross-

validation). Traitar then assigns each unseen data point to the majority class 

(phenotype presence or absence class) of the voting committee.   

Ancestral protein family and phenotype gains and losses 20 

We constructed an extended classification problem by including ancestral protein 

family gains and losses, as well as the ancestral phenotype gains and losses in our 

analysis, as implemented in GLOOME (Cohen and Pupko, 2011). Barker et al. report 

that common methods for inferring functional links between genes, that do not take 
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Figure 3: Schematic overview of the Traitar phenotype model training. (a) The 
phenotype and Pfam protein family phyletic patterns correspond to gain events on a 
star-shaped phylogenetic tree. Alternatively, we reconstructed the ancestral Pfam 
family and phenotype gain and loss events on the sequenced Tree of Life. (b) We 
trained a support vector machine classifier either on the phyletic patterns and on the 
ancestral gain and loss events, or solely on the phyletic patterns. (c) In this way, we 
inferred classification models for all available phenotypes. 

the phylogeny into account, suffer from high rates of false positives (Barker and 

Pagel, 2005). Here, we jointly derived the classification models from the observable 

phyletic patterns and phenotype labels, and from phylogenetically unbiased ancestral 

protein family and phenotype gains and losses, that we inferred via a maximum 

likelihood approach from the observable phyletic patterns on a phylogenetic tree, 5 

showing the relationships among the samples. In this case, the phyletic patterns 

correspond to gain events on the branches of a star-shaped phylogeny (Figure 3). 

Ancestral character state evolution in GLOOME is modeled via a continuous-time 

Markov process with exponential waiting times. The gain and loss rates are sampled 

from two independent gamma distributions (Cohen and Pupko, 2010). 10 

GLOOME needs a binary phylogenetic tree with branch lengths as input. The 

taxonomy of the National Center for Biointechnology Information (NCBI) and other 
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taxonomies are not suitable, because they provide no branch length information. We 

used the sequenced tree of life (sTOL) (Fang et al., 2013), which is bifurcating and 

was inferred with a maximum likelihood approach based on unbiased sampling of 

structural protein domains from whole genomes of all sequenced organisms (Gough 

et al., 2001). We employed GLOOME with standard settings to infer posterior 5 

probabilities for the phenotype and Pfam family gains and losses from the Pfam 

phyletic patterns of all NCBI bacteria represented in the sTOL and the GIDEON 

phenotypes. Each GIDEON phenotype   is available for a varying number of 

bacteria. Therefore, for each phenotype, we pruned the sTOL to those bacteria that 

were both present in the NCBI database and had a label for the respective phenotype 10 

in GIDEON. The posterior probabilities of ancestral Pfam gains and losses were then 

mapped onto this GIDEON phenotype-specific tree (Gps-sTOL, Figure 4). 

 

Figure 4: Sequenced Tree of Life (sTOL) and GIDEON phenotype-specific Tree of 
Life (Gps-sTOL) correspondence. The phenotype label for Sample B is not available. 
Consequently, only branches   ,    and    are also found in the Gps-sTOL. The 
posterior probabilities for a Pfam gain or loss are the same for   ,    and    in both 
trees. Branches    and    (blue) are collapsed into a single branch. The posterior 
probability for a gain on branch     ,       is computed from the posterior probability 
for a Pfam gain for    and   ,     and     as follows:                      . 
Branch    (red) in the sTOL does not have an analog in the Gps-sTOL. 
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Let B be the set of all branches in the sTOL and P be the set of all Pfam families. We 

then denote the posterior probability     of an event   for a Pfam family    to be a 

gain event on branch   in the sTOL computed with GLOOME as:  

                                    , 

and the posterior probability of   to be a loss event for a Pfam family   on branch   5 

as: 

                                     . 

We established a mapping        between the branches of the sTOL   and the 

set of branches    of the Gps-sTOL (Figure 4). This was achieved by traversing the 

tree from the leaves to the root.  10 

There are two different scenarios for a branch    in    to map to the branches in B: 

a) Branch    in the Gps-sTOL derives from a single branch b in the sTOL: 

      { }. The posterior probability of a Pfam gain inferred in the Gps-sTOL 

on branch    consequently is the same as that on branch   in the sTOL  

              . 15 

b) Branch    in the Gps-sTOL derives from m branches         in the sTOL: 

      {       } (Figure 4). In this case, we iteratively calculated the 

posterior probabilities for at least one Pfam gain    on branch    from the 

posterior probabilities for a gain        from the posterior probabilities 

       of a gain on branches          with the help of h: 20 
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Inferring the Gps-sTOL Pfam posterior loss probabilities      from the sTOL posterior 

Pfam loss probabilities is analogous to deriving the gain probabilities. The posterior 

probability for a phenotype   to be gained      or lost      can be directly defined for 

the Gps-sTOL in the same way as for the Pfam probabilities. 

For classification, we did not distinguish between phenotype or Pfam gains or losses, 5 

assuming that the same set of protein families gained with a phenotype will also be 

lost with the phenotype. This assumption simplified the classification problem. 

Specifically, we proceeded in the following way: 

1. We computed the joint probability     of a Pfam family gain or loss on branch    

and the joint probability    of a phenotype gain or loss on branch   :  10 

      
       (    

  )        (      )    
                 

   
   (    

  )       
 

      
  (       )                   

2. Let    be a vector representing the probabilities      for all Pfam families       on 

branch bi. We discarded any samples        ) that had a probability for a phenotype 

gain or loss     above the reporting threshold of GLOOME but below a threshold  . 

We set the threshold t to 0.5.  

 15 
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This defines the matrix X and the vector y as: 

                                   , 

By this means, we avoided presenting the classifier with samples corresponding to 

uncertain phenotype gain or loss events and used only confident labels in the 

subsequent classifier training instead.  5 

3. We inferred discrete phenotype labels    by applying this threshold   to the joint 

probability    for a phenotype gain or loss to set up a well-defined classification 

problem with a binary target variable. Whenever the probability for a phenotype to be 

gained or lost on a specific branch was larger than  , the event was considered to 

have happened: 10 

   {    i      
  ,         ot er ise      . 

4. Finally, we formulated a joint binary classification problem for each target 

phenotype    and the corresponding gain and loss events      the phyletic patterns 

  , and the Pfam gain and loss events  , which we solved again with a linear L1-

regularized L2-loss SVM. We applied this procedure for all GIDEON phenotypes 15 

under investigation.  

Software requirements 
Traitar can be run on a standard laptop with Linux/Unix. The runtime for phenotyping 

a typical microbial genome with 3 Mbp is 9 minutes (3 min/Mbp) on an Intel(R) 

Core(TM) i5-2410M dual core processor with 2.30 GHz, requiring only a few 20 

megabytes of memory. 
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Evaluation 

We considered two sets of classifiers trained on:  

a) Binary phyletic patterns of Pfam families (phypat) inferred from 234 species-

level bacterial genomes (see Traitar phenotype models). 

b) Binary phyletic patterns of Pfam families inferred from 234 species-level 5 

genomes augmented with ancestral Pfam gains and losses (phypat+PGL)  

(see Ancestral protein family and phenotype gains and losses). 

We determined the cross-validated macro-accuracy for the 67 GIDEON phenotypes 

as 82.6% for the phypat classifier and 85.5% for the phypat+PGL classifier; the 

accuracy for phypat was 88.1% compared with 89.8% for phypat+PGL (see Materials 10 

& Methods – Evaluation metrics). Notably, we could classify 53 phenotypes with at 

least 80% macro-accuracy and 26 phenotypes with at least 90% macro-accuracy in 

one of the two classification settings (Figure 5, Supplementary Table S2). We 

received a perfect classification assignment when predicting ‘Spore formation’ and 

the outcome of a ‘Met yl red’ test with the phypat+PGL classifier, and ‘Gram positive’ 15 

with the phypat classifier. Bot  ‘Spore  ormation’ and the phenotype ‘Met yl red’ test 

clearly profited from the ancestral protein family and phenotype gains and losses. 

The phypat classifier exhibited a slightly lower classification accuracy of around 90% 

for those phenotypes. Other phenotypes that could be predicted with very high 

confidence with both types of classifiers included oxygen requirement (i.e. ‘Anaerobe’ 20 

and ‘Aerobe’), ‘Growth on MacConkey agar’ or ‘Catalase’. Only a few phenotypes 

proved to be difficult to predict correctly, which included ‘DNAse’, ‘myo-Inositol’ or 

‘Yellow pigment’ and ‘Tartrate utilization’, regardless of which classifier was used. For 

all these phenotypes, only a relatively small number (<20) of positive (phenotype 

present) examples were available. 25 
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Figure 5: Macro-accuracy for each phenotype for the Traitar phypat 
and phypat+PGL phenotype classifiers. The macro-nested cross-
validation accuracy (Material and Methods – Evaluation metrics) is 
shown for the individual GIDEON phenotypes (Table 1) for the phypat 
and the phypat+PGL classifiers. 
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We used the bacterial species that had phenotype information available in GIDEON, 

but had no representative in the sTOL tree, for an independent assessment of 

Traitar’s classification accuracy. In total, this dataset comprised 42 unique species 

with 58 corresponding sequenced bacterial strains (Supplementary Table S3). We 

obtained an additional 1836 phenotype labels for these bacteria, consisting of 574 5 

positive labels and 1262 negative labels. Traitar predicted the phenotypes in this 

dataset with a macro- accuracy of 85.3% using the phypat classifier and 86.7% using 

the phypat+PGL classifier, and accuracies of 87.5% and 87.9%, respectively. For 

calculation of the macro-accuracy, we considered only phenotypes with at least five 

positive and five negative labels. 10 

Performance per clade at different depths of the taxonomy 

We were interested in studying the potential taxonomic biases of the predictors. For 

this purpose, we evaluated the nested cross-validation performance of the phypat 

and phypat+PGL classifiers at different levels of the NCBI taxonomy. For a given 

GIDEON taxon, we pooled all instances of classification as bacterial species that are 15 

ancestors of this taxon. Figure 6 shows the accuracy estimates projected on the 

NCBI taxonomy from the domain level down to taxa at the genus level. We report the 

overall accuracy, as the macro-accuracy requires us to calculate the accuracies for 

all individual phenotypes, which cannot be computed for some phenotypes, since 

low-ranking taxa may have few labels or no labels at all. The accuracy of the 20 

phypat+PGL (phypat) classifier for the phyla covered by at least five bacterial species 

showed low variance and was high across all phyla, ranging from 84% (81%) for 

Actinobacteria over 90% (89%) for Bacteroidetes, 89% (90%) for Proteobacteria, 

91% (90%) for Firmicutes to 91% (86%) for Tenericutes. Of the 39 genera, only the 

genus Treponema  (with the representatives Treponema pallidum and T. denticola) 25 
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was classified with 69% (70%) accuracy, whereas all other genera were classified at 

least 78% (76%) correctly. This is probably because the genus Treponema was the 

only representative of the phylum Spirochaetes. 

 

Figure 6: Classification accuracy for each clade depicted at different depths of the 
NCBI taxonomy. The nested cross-validation accuracy obtained for the GIDEON 
dataset was projected onto the NCBI taxonomy up to the genus level. Colored circles 
at the tree nodes depict the performance of the phypat+PGL classifier (left-hand 
circles) and the phypat classifier (right-hand circles). The size of the circles reflects 
the number of species per taxon. 
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Phenotyping incomplete genomes  
GFMs or SAGs are often incomplete and thus we analyzed the impact of missing 

parts in the genome assemblies on the performance of Traitar. As an initial 

benchmark, we phenotyped bacteria based on SAGs and compared these results to 

the phenotypes inferred from joint genome assemblies. Rinke et al. used a single-cell 5 

sequencing approach to analyze poorly characterized parts of the bacterial and 

arachaeal tree of life, the so-called ‘microbial dark matter’ (Rinke et al., 2013). They 

pooled 20 SAGs from the candidate phylum Cloacimonetes, formerly known as 

WWE1, to generate joint—more complete—genome assemblies that had at least a 

genome-wide average nucleotide identity of 97% and belonged to a single 16S-10 

based operational taxonomic unit, namely Cloacamonas acidaminovorans (Figure  7 

a,b).  

According to our predictions based on the joint assembly, C. acidaminovorans is 

Gram-negative and is adapted to an anaerobic lifestyle, which agrees with the 

description by Rinke et al. (Figure 7). Traitar  urt er predicted ‘Arginine di ydrolase’ 15 

activity, which is in line with the characterization of the species as an amino acid 

degrader (Rinke et al., 2013). Remarkably, the prediction of a bacillus or coco-

bacillus shape agrees with the results of Limam et al. (Limam et al., 2014), who used 

a WWE1-specific probe and characterized the samples with fluorescence in situ 

hybridization. They furthermore report that members of the Cloacimonetes candidate 20 

phylum are implicated in anaerobic digestion of cellulose, primarily in early 

hydrolysis, which is in line with the very limited carbohydrate degradation spectrum 

found by Traitar. 
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Figure 7: Single-cell phenotyping. We used 20 genome assemblies with varying 
degrees of completeness from single cells of the Cloacimonetes candidate phylum 
and a joint assembly for phenotyping with Traitar. We show a heatmap of the 
phenotype predictions (samples vs. phenotypes), which is the standard visualization 
for phenotype predictions in Traitar. The predicted phenotypes for the joint assembly 
are surrounded by a red box. T e origin o  t e p enotype’s prediction (Traitar p ypat 
and/or Traitar phypat+PGL classifier) determines the color of the heatmap entries. 
The sample labels have their genome completeness estimates as suffixes. The 
different colors of the dendrograms code the groupings in the clustering.  

 

Subsequently, we compared the predicted phenotypes based on the SAGs to the 

predictions for the joint assembly. We observed that the phypat classifier recalled 

more of the phenotype predictions of the joint assembly than the phypat+PGL 

classifier for the SAGs. However, the phypat+PGL classifier made fewer false 5 

positive predictions (Figure 8 a). By analyzing the protein families with assigned 
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weights and the bias terms of the two classifiers, we found the phypat+PGL classifier 

to base its predictions primarily on the presence of protein families that were typical 

for the phenotypes. In contrast, the phypat classifier also took typically absent protein 

families from phenotype-positive genomes into account in its decision. More 

technically, the positive weights in models of the phypat classifier are balanced out by 5 

negative weights, whereas for the phypat+PGL classifier, they are balanced out by 

the bias term. This explains the higher number of false positive predictions in sparse 

scenarios for the phypat classifier in comparison to the phypat+PGL classifier, which, 

in turn, made more false negative predictions.  

In the next experiment, we inferred phenotypes based on simulated GFMs, by 10 

subsampling from the coding sequences of each of the 42 bacterial genomes that we 

already had used for an independent assessment of the overall accuracy. We started 

with the complete set of coding sequences and randomly deleted genes from the 

genomes. Note that we did not sub-sample from the Pfam annotation directly, as 

protein coding sequences can be annotated with more than one Pfam family. For 15 

draft genomes with different degrees of completeness, we re-ran the classification 

and computed the accuracy measures, as before. Once again, we observed that the 

performance of the phypat+PGL classifier dropped more quickly with more missing 

coding sequences than the performance of the phypat classifier (Figure 8 b). 

However, the recall of the positive class of the phypat+PGL classifier improved with a 20 

decreasing number of coding sequences (i.e. fewer but more reliable predictions 

were made). These tradeoffs in the recall of the phenotype-positive and the 

phenotype-negative classes were reflected in the similar macro-accuracy of the two 

classifiers across the range of tested genome completeness.  
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Figure 8: Phenotyping simulated draft genomes and single cell genomes. In (a) we 
used 20 genome assemblies with varying degrees of completeness from single cells 
of the Cloacimonetes candidate phylum and a joint assembly for phenotyping with the 
Traitar phypat and the Traitar phypat+PGL classifiers. We depict the performance of 
the phenotype prediction vs. the genome completeness of the single cells with 
respect to the joint assembly. In (b) we simulated draft genomes based on an 
independent test set of 42 microbial (pan)genomes. The coding sequences of these 
genomes were down-sampled and the resulting simulated draft genomes were used 
for phenotyping with the Traitar phypat and the Traitar phypat+PGL classifiers. We 
plotted various performance estimates against the protein content completeness. 

By down-weighting the bias term for the phypat+PGL models by the protein content 

completeness, we could show that the accuracy of the phypat classifier could be 

exceeded by the phypat+PGL model, regardless of the protein content completeness 

(data not shown). However, this requires knowledge of the protein content 

completeness for each genomic sample, which could be indirectly estimated using 5 

methods such as checkM (Parks et al., 2015).  

Depending on the intended usage, the classifiers can be chosen: we expect that the 

reliable predictions inferred with the phypat+PGL classifier and the more abundant,  
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but less reliable predictions made with the phypat classifier will complement one 

another in cases such as application to partial genomes recovered from 

metagenomic data. 

Relevant protein families for selected phenotypes 
We selected the three GIDEON phenotypes ‘Motile’, ‘Nitrate to nitrite’ conversion and 5 

‘L-arabinose’ metabolism for a more detailed analysis of the protein families that 

contributed most to the phenotype classification from the Traitar phenotype models 

(see Materials & methods – Majority feature selection, Table 2). The selected 

phenotypes represent relevant phenotypes from the broader phenotype categories 

morphology, enzymatic activity and carbon source utilization. The protein families 10 

important for classification can be seen to be gained and lost jointly with the 

respective phenotypes within the microbial phylogeny, demonstrating the candidate 

link inferred by Traitar for each of these (Figure 9). Note that L1-regularized models 

tend to select the most informative features for classification, rather than all protein 

families that are involved in realization of the phenotype (Zou and Hastie, 2005).  15 

Among the selected Pfam families that are important for classifying the motility 

phenotype were proteins of the flagellar apparatus and chemotaxis-related proteins 

(Figure 9a, Table 2). Motility allows bacteria to colonize their preferred environmental 

niches. Genetically, it is mainly attributed to the flagellum, which is a molecular motor, 

and is closely related to chemotaxis, a process that lets bacteria sense chemicals in 20 

their surroundings. Motility also plays a role in bacterial pathogenicity, as it enables 

bacteria to establish and maintain an infection. For example, pathogens can use 

flagella to adhere to their host and they have been reported to be less virulent if they 

lack flagella (Josenhans and Suerbaum, 2002). Of 48 flagellar proteins described in 

(Liu and Ochman, 2007), four proteins (FliS, MotB, FlgD and FliJ) were sufficient for 25 
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accurate classification of the motility phenotype and were selected by our classifier, 

as well as FlaE, which was not included in this collection. FliS (PF02561) is a known 

export chaperone that inhibits early polymerization of the flagellar filament FliC in the 

cytosol (Lam et al., 2010). MotB (PF13677), part of the membrane proton-channel 

complex, acts as the stator of the bacterial flagellar motor (Hosking et al., 2006). We 5 

also identified protein families related to chemotaxis, such as CZB (PF13682), a 

family of chemoreceptor zinc-binding domains found in many bacterial signal 

transduction proteins involved in chemotaxis and motility (Draper et al., 2011), and 

the P2 response regulator-binding domain (PF07194). The latter is connected to the 

chemotaxis kinase CheA and is thought to enhance the phosphorylation signal of the 10 

signaling complex (Dutta et al., 1999).  

Nitrogen reduction in nitrate to nitrite conversion is an important step of the nitrogen 

cycle and has a major impact on agriculture and public health. Two types of nitrate 

reductases are found in bacteria: the membrane-bound Nar and the periplasmic Nap 

nitrate reductase (Moreno-Vivian et al., 1999), which we found both to be relevant for 15 

the classification of the phenotype: we identified all subunits of the Nar complex as 

being relevant  or t e ‘Nitrate to nitrite’ conversion p enotype (i.e. t e gamma and 

delta subunit (PF02665, PF02613)), as well as Fer4_11 (PF13247), which is in the 

iron–sulfur center of the beta subunit of Nar. The delta subunit is involved in the 

assembly of the Nar complex and is essential for its stability, but probably is not 20 

directly part of it (Pantel et al., 1998) (Figure 9b, Table 2). We also identified the 

Molybdopterin oxidoreductase Fe4S4 domain (PF04879), which is bound to the alpha 

subunit of the oxidoreductase Fe4S4 domain (PF04879), which is bound to the alpha   
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Figure 9: Phenotype gain and loss dynamics match protein family dynamics. Three 
phenotypes were selected for more detailed analysis: (a) ‘Motile’, (b) ‘Nitrate to nitrite’ 
conversion and (c) ‘L-arabinose’ metabolism. We s o  t e p enotype–protein family 
gain and loss dynamics of subtrees of the sequenced tree of life with a substantial 
number of gain or loss events for these phenotypes. Colored circles along the tree 
branches depict protein family gains (+) or losses (-). The taxa are colored according 
to their (ancestral) phenotype state.  
 

subunit of the nitrate reductase complex (Pantel et al., 1998). We furthermore found 

NapB (PF03892), which is a subunit of the periplasmic Nap protein and NapD 

(PF03927), which is an uncharacterized protein implicated in forming Nap (Moreno-

Vivian et al., 1999). 5 
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Table 2: The most relevant Pfam families for classification of three important 
p enotypes: ‘Nitrate to Nitrite’, ‘Motility’ and ‘L-Arabinose’. We ranked t e P am 
families with positive weights in the SVM weight vector by the correlation of the 
phenotype with the Pfam families and present the 10 highest ranking Pfam families 
along with their descriptions and a link to the phenotype, where we found one.   

Accession(a) Phenotype(b) Pfam description(c) Remarks(d) 
PF13677 Motile Membrane MotB of proton-channel 

complex MotA/MotB 
Flagellar protein 

PF03963 Motile Flagellar hook capping protein 
N-terminal region 

Flagellar protein 

PF02561 Motile Flagellar protein FliS Flagellar protein 

PF02050 Motile Flagellar FliJ protein Flagellar protein 

PF07559 Motile Flagellar basal body protein FlaE Flagellar protein 

PF13682 Motile Chemoreceptor zinc-binding domain Chemotaxis-related 

PF03350 Motile Uncharacterized protein family, 
UPF0114 

 

PF05226 Motile CHASE2 domain Chemotaxis-related 

PF07194 Motile P2 response regulator binding domain Chemotaxis-related 

PF04982 Motile HPP family  

PF03927 Nitrate to nitrite NapD protein Involved in Nar formation 

PF13247 Nitrate to nitrite 4Fe-4S dicluster domain Iron-sulfur cluster center of  the 
beta subunit of Nar 

PF03892 Nitrate to nitrite Nitrate reductase cytochrome c-type 
subunit (NapB) 

Periplasmic Nap subunit 

PF02613 Nitrate to nitrite Nitrate reductase delta subunit Nap subunit 

PF01127 Nitrate to nitrite Succinate dehydrogenase/Fumarate 
reductase transmembrane subunit 

 

PF01292 Nitrate to nitrite Prokaryotic cytochrome b561  

PF03459 Nitrate to nitrite TOBE domain  

PF03824 Nitrate to nitrite High-affinity nickel transport protein  

PF04879 Nitrate to nitrite Molybdopterin oxidoreductase Fe4S4 
domain 

Bound to the alpha subunit of Nar 

PF02665 Nitrate to nitrite Nitrate reductase gamma subunit Nar subunit 

PF11762 L-Arabinose L-arabinose isomerase C-terminal 
domain 

Catalyzes first reaction in L-
arabinose metabolism 

PF04295 L-Arabinose D-galactarate dehydratase / Altronate 
hydrolase, C terminus 

 

PF13802 L-Arabinose Galactose mutarotase-like  

PF11941 L-Arabinose Domain of unknown function 
(DUF3459) 

 

PF14310 L-Arabinose Fibronectin type III-like domain  

PF06964 L-Arabinose Alpha-L-arabinofuranosidase  
C-terminus 

Acts on L-arabinose side chains in 
pectins 

PF01963 L-Arabinose TraB family  

PF01614 L-Arabinose Bacterial transcriptional regulator  

PF06276 L-Arabinose Ferric iron reductase FhuF-like 
transporter 

 

PF04230 L-Arabinose Polysaccharide pyruvyl transferase   

(a) Pfam families that are relevant for one of three phenotypes that were selected for detailed investigation 

(b) Phenotypes that were selected for detailed investigation 

(c) Description of the Pfam family in the Pfam database 

(d)  Link from the Pfam family to the phenotype 
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L-arabinose is major constituent of plant polysaccharides, which is located, for 

instance, in pectin side chains and is an important microbial carbon source (Martinez 

et al., 2008). We could identify the L-arabinose isomerase C-terminal domain 

(PF11762), which catalyzes the first step in L-arabinose metabolism—the conversion 

of L-arabinose into L-ribulose (Sa-Nogueira et al., 1997), as being important for 5 

realizing the L-arabinose metabolism. We furthermore found the C-terminal domain 

of Alpha-L-arabinofuranosidase (PF06964), which cleaves nonreducing terminal 

alpha-L-arabinofuranosidic linkages in L-arabinose-containing polysaccharides 

(Gilead and Shoham, 1995) and is also part of the well-studied L-arabinose operon in 

Escherichia coli (Sa-Nogueira et al., 1997) (Figure 9c, Table 2).  10 

Phenotyping biogas reactor population genomes 
We used Traitar to phenotype two novel Clostridiales species (unClos_1, unFirm_1) 

based on their genomic information reconstructed from metagenome samples. These 

were taken from a commercial biogas reactor operating with municipal waste (Frank 

et al., 2015). The genomes of unClos_1 and unFirm_1 were estimated to be 91% 15 

complete and 60% complete based on contigs ≥5 kb, respectively. Traitar predicted 

unClos_1 to utilize a broader spectrum of carbohydrates than unFirm_1 (Table 3). 

We cross-referenced our predictions with a metabolic reconstruction conducted by 

Frank et al. (submitted). This reconstruction and predictions inferred with Traitar 

agreed to a great extent (Table 3). We considered all phenotype predictions that 20 

Traitar inferred with either the phypat or the phypat+PGL classifier. Traitar recalled 

87.5% (6/7) of the phenotypes inferred via the metabolic reconstruction and also 

agreed to 81.8% (9/11) on the absent phenotypes. Notable exceptions were that 

Traitar only found a weak signal  or ‘D-xylose’ utilization. A weak signal means that 

only a minority of the classifiers in the voting committee assigned these samples to 25 
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the phenotype-positive class (see Traitar phenotype models). However, the metabolic 

reconstruction was also inconclusive with respect to xylose fermentation. 

Furthermore, Traitar only found a weak signal for ‘Glucose  ermentation’ for 

unFirm_1. Whilst genomic analysis of unFirm_1 revealed the Embden–Meyerhof–

Parnas (EMP) pathway, which would suggest glucose fermentation, gene-centric and 5 

metaproteomic analysis of this phylotype indicated that the EMP pathway was 

probably employed in an anabolic direction (gluconeogenesis); therefore unFirm_1 is 

also unlikely to ferment D-Mannose (Frank et al. submitted). The authors of this study 

conclude that unFirm_1 is unlikely to ferment sugars and instead metabolizes acetate 

(predicted by Traitar, Table 3) via a syntrophic interaction with hydrogen-utilizing 10 

methanogens.  

Traitar predicted further phenotypes for both species that were not targeted by the 

manual reconstruction. One of these predictions was an anaerobic lifestyle, which is 

likely to be accurate, as the genomes were isolated from an anaerobic bioreactor 

environment. It also predicted a Gram-positive stain, which is probably correct based 15 

on the presence of the Gram-positive sortase protein family found in both genomes— 

Table 3: Phenotype predictions for two novel Clostridiales species with genomes 
reconstructed from a commercial biogas reactor metagenome. Traitar output (yes, 
no, weak) was cross-referenced with phenotypes manually reconstructed based on 
Kyoto Encyclopedia of Genes and Genomes orthology annotation (Frank et al. 
submitted), which are primarily the fermentation phenotypes of various sugars. We 
considered all phenotype predictions that Traitar inferred with either the phypat or the 
phypat+PGL classifier. A weak prediction means that only a minority of the classifiers 
in the Traitar voting committee assigned this sample to the phenotype-positive class 
(Traitar phenotype). Table entries colored in red show a difference between the 
prediction and the reconstruction, whereas green denotes an overlap; yellow is 
inconclusive.   

  

Glucos
e 

Acetat
e 

Mannito
l 

Starch 
 hydrolysis 

Xylos
e L-Arabinose Capnophili

c 
Sucros
e D-Mannose Maltos

e 
Arginine 
 dihydrolase 

unClos_
1 yes no yes no weak yes yes yes yes yes No 
unFirm_
1 weak yes no no no no no no no no Yes 
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a  Gram-positive biomarker (Paterson and Mitchell, 2004) and because all Firmicutes 

are known to be Gram-positive (Goodfellow et al., 2012). Furthermore, Traitar 

assigned ‘Motile’ and ‘Spore  ormation’ to unFirm_1, based on t e presence o  5 

several flagellar proteins (e.g. FliM, MotB, FliS and FliJ) and the sporulation proteins 

CoatF and YunB. 

Discussion 
We have developed Traitar, a software framework for predicting phenotypes from the 

protein family profiles of bacterial genomes. We showed that Traitar provides a quick 10 

and fully automated way of characterizing microbiota based on their genome protein 

family content alone. Traitar includes classification models for an unprecedented 

number of phenotypes. Microbial trait prediction from phyletic patterns has been 

proposed in previous studies for a limited number of phenotypes (Feldbauer et al., 

2015; Kastenmuller et al., 2009; Konietzny et al., 2014; Lingner et al., 2010; 15 

MacDonald and Beiko, 2010; Weimann et al., 2013). To our knowledge, the only 

currently available software for microbial genotype-phenotype inference is PICA, 

which is based on learning associations of clusters of orthologous genes (Tatusov et 

al., 2001) with traits (MacDonald and Beiko, 2010). Recently, PICA was extended by 

Feldbauer et al. for predicting eleven traits overall, optimized for large datasets and 20 

tested on incomplete genomes (Feldbauer et al., 2015). Traitar allows prediction of 

67 phenotypes, including 60 entirely novel ones. It includes different prediction 

modes, one based on phyletic patterns, one additionally including a statistical model 

of protein family evolution for its predictions.   

 25 
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In cross-validation experiments with 234 bacterial species, we showed that the 

Traitar phypat classifier can phenotype samples with a macro-accuracy of 82.6%. 

Considering ancestral protein family gains and losses in the classification, which is 

implemented in the Traitar phypat+PGL classifier, we could significantly improve the 

accuracy compared to prediction from phyletic patterns only, with respect to both 5 

individual phenotypes and overall. We demonstrated the reliability of these 

performance estimates by phenotyping, with a similar accuracy, an independent test 

dataset that comprised an additional 42 genomes and pangenomes of species which 

had not been used in the cross-validation.  Barker et al. (2005) were first to note the 

phylogenetic dependence of genomic samples and how this can lead to biased 10 

conclusions (Barker and Pagel, 2005). Beiko et al. selected protein families based on 

correlations with a phenotype and corrected for the taxonomy (MacDonald and Beiko, 

2010). However, we are unaware of an approach that directly incorporates the 

phylogeny and accounts for horizontal gene transfer to improve phenotype 

classification. Incorporation of the protein family and phenotype gains and losses did 15 

not only improve the classification accuracy, but we could also showcase the co-

evolutionary dynamics of genotype and phenotype gains and losses for selected 

phenotypes. We thus add evolutionary evidence to the relevance of the identified 

protein families for establishment of the investigated phenotypes. Several of these 

were already known to be associated with those phenotypes, whereas others were 20 

uncharacterized, representing targets for further experiments. Note that even though 

for neither type of classifier, we observed any evidence for a phylogenetic bias 

towards specific taxa, some of the phenotypes might be realized with different protein 

families in taxa that are less well represented in GIDEON.  

 25 
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We found that Traitar can accurately characterize the metabolic capabilities of 

microbial community members even from partial genomes, which is a very common 

scenario nowadays for genomes recovered from single cells or metagenomes. The 

analysis of both the SAGs and simulated genomes for phenotyping led us to the 

same conclusions: the phypat classifier is more suitable for exploratory analysis, as it 5 

assigned more phenotypes to incomplete genomes, at the price of more false 

positive predictions. In contrast, the phypat+PGL classifier assigned fewer 

phenotypes, but also fewer false assignments.  

For the phenotyping of novel microbial species, a detailed (manual) metabolic 

reconstruction such as the one by Frank et al. (submitted) is time-intensive, as such 10 

reconstructions are usually focused on specific pathways and are dependent on the 

research question. This is not an option for studies with 10–50+ genomes, which are 

becoming more and more common in microbiology (Brown et al., 2015; Hess et al., 

2011; Rinke et al., 2013). In that sense, our method is more suitable for the analysis 

of multi-genome studies. It furthermore may pick up on things outside of the original 15 

research focus and could serve as a seed for a detailed metabolic reconstruction in 

future studies.  

As data for more phenotypes (e.g. further antibiotic resistance phenotypes) become 

available, Traitar could be easily extended to include such models into its framework. 

We also expect that the accuracy of the phenotype classification models already 20 

available in Traitar will profit from additional data points. It should be noted that 

genotype–phenotype inference with our method only takes into account the presence 

and absence of protein families of the bacteria analyzed. This information can be 

readily computed from the genomic and metagenomic data, but future research could 

 ocus also on integration o  ot er ‘omics’ data to allow even more accurate phenotype 25 
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assignments. Additionally, expert knowledge of the biochemical pathways that are 

used in manual metabolic reconstructions, for example, could be integrated as prior 

knowledge into the model in future studies.  

We have developed a highly accurate prediction framework for a large number of 

phenotypes from the protein content of bacterial genomes. Our approach provides a 5 

novel and fully automated way for microbiologists to characterize the rapidly 

increasing number of microbial genomes originating from genome and metagenome 

studies. Revealing the catabolic and anabolic capabilities and other phenotype-

related information of bacteria with Traitar, such as the presence of antibiotic 

resistances, the ability to survive at high temperatures or motility, could provide 10 

insights into bacterial lifestyles, could lead to models of microbial interactions in a 

natural environment and inference of the conditions required to obtain bacteria in 

pure cultures. Furthermore, the present phenotype prediction framework offers a path 

to understanding the variation in microbiomes and may help to discover the traits and 

the associated protein families under selection. 15 

Materials & Methods 
We downloaded the coding sequences of all complete bacterial genomes that were 

available via the NCBI FTP server under ftp://ftp.ncbi.nlm.nih.gov/genomes/ as of 11 

May 2014. These were annotated with the Traitar annotation procedure. For bacteria 

with more than one sequenced strain available, we chose the union of the Pfam 20 

family annotation of the single genomes to represent the pangenome Pfam family 

annotation as proposed in (Liu et al., 2006). We obtained our phenotype data from 

the GIDEON database (Berger, 2005). The GIDEON traits can be grouped into 

growth, oxygen requirement, morphology, carbon source utilization, antibiotic 

susceptibility, amino acid degradation, proteolysis, carboxylic acid use and enzymatic 25 
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activity (Table 1, Supplementary Table 1).  We only considered phenotypes that were 

available in GIDEON for at least 20 bacteria, with a minimum of 10 bacteria 

annotated as positive (phenotype presence) for a given phenotype and 10 as 

negative (phenotype absence) to enable a robust and reliable analysis of the 

respective phenotypes. Furthermore, to be included in the analysis, we required each 5 

bacterial sample to have: 

a)  at least one annotated phenotype, 

b)  at least one sequenced strain, 

c) a representative in the sTOL.  

In total, we extracted 234 species-level bacterial samples with 67 phenotypes with 10 

sufficient total, positive and negative labels from GIDEON. GIDEON associates these 

bacteria with 9305 individual phenotype labels, 2971 being positive and 6334 

negative (Supplementary Table 4). GIDEON species that had at least one sequenced 

strain available but were not part of the sTOL tree were set aside for a later 

independent assessment of the classification accuracy. All sequenced strains were 15 

annotated with Pfam protein families (Finn et al., 2014) (see Results - Annotation). 

The number of unique Pfam families per species-level (pan)genome ranged from 547 

to 3610 (see Results – Annotation). 

Cross-validation 

We employed cross-validation to assess the performance of the classifiers 20 

individually for each phenotype. For a given phenotype, we divided the bacterial 

samples that were annotated with that phenotype into ten folds. Each fold was 

selected once for testing the model, which was trained on the remaining folds. The 

optimal regularization parameter C needed to be determined independently in each 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 12, 2016. ; https://doi.org/10.1101/043315doi: bioRxiv preprint 

https://doi.org/10.1101/043315
http://creativecommons.org/licenses/by/4.0/


35 
 

step of the cross-validation; therefore, we employed a further inner cross-validation 

using the following range of values for the parameter C:                        

        ,             . In other words, for each fold kept out for testing in the outer 

cross-validation, we determined the value of the parameter C that gave the best 

accuracy in an additional tenfold cross-validation on the remaining folds. This value 5 

was then used to train the SVM model in the current outer cross-validation step. 

Whenever we proceeded to a new cross-validation fold, we re-computed the 

ancestral character state reconstruction of the phenotype with only the training 

samples included (see Ancestral protein family and phenotype gains and losses). 

This procedure is known as nested cross-validation (Ruschhaupt et al., 2004).  10 

The bacterial samples in the training folds imply a Gps-sTOL in each step of the inner 

and outer cross-validation without the samples in the test fold. We used the same 

procedure as before to map the Pfam gains and losses inferred previously on the 

Gps-sTOL onto the tree defined by the current cross-validation training folds. 

Importantly, the test error is only estimated on the observed phenotype labels rather 15 

than on the inferred phenotype gains and losses. 

Evaluation metrics 
We used evaluation metrics from multi-label classification theory for performance 

evaluation (Manning et al., 2008). We determined the performance for the individual 

phenotype-positive and the phenotype-negative classes based on the confusion 20 

matrix of true positive (TP), true negative (TN), false negative (FN) and false positive 

(FP) samples from their binary classification equivalents by averaging over all   

phenotypes. We utilized two different accuracy measures for assessing multi-class 

classification performance (i.e. the accuracy pooled over all classification decisions 

and the macro-accuracy). Macro-accuracy represents an average over the accuracy 25 
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of the individual binary classification problems and we computed this from the macro-

recall of the phenotype-positive and the phenotype-negative classes as follows:  

                 (∑    
       

 

   
)  ⁄  

                 (∑    
       

 

   
)  ⁄  

     -         (     -               -         )  ⁄ . 

However, if there are only few available labels for some phenotypes, the variance of 

the macro-accuracy will be high and this measure cannot be reliably computed 5 

anymore; it cannot be computed at all if no labels are available. The accuracy only 

assesses the overall classification performance without consideration of the 

information about specific phenotypes. Large classes dominate small classes 

(Manning et al., 2008). 

           ∑    
 
   

∑     
    ∑     

   
 

           ∑    
 
   

∑     
    ∑     

   
 

         (                   )  ⁄ . 10 

Majority feature selection 
The weights in linear SVMs can directly be linked to features that are relevant for the 

classification. We identified the most important protein families used as features from 

the voting committee of SVMs consisting of the five most accurate models, which 
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were also used for classifying new samples. If the majority, which is at least three 

predictors, included a positive value for a given protein family, we added this feature 

to the list of important features. We further ranked these protein families features by 

their correlation with the phenotype using Pearson’s correlation coe  icient. 
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