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Abstract

For most complex traits, gene regulation is known to play a crucial mechanistic role as

demonstrated by the consistent enrichment of expression quantitative trait loci (eQTLs)

among trait-associated variants. Thus, understanding the genetic architecture of gene

expression traits is key to elucidating the underlying mechanisms of complex traits.

However, a systematic survey of the heritability and the distribution of effect sizes

across all representative tissues in the human body has not been reported.

Here we fill this gap through analyses of the RNA-seq data from a comprehensive set

of tissue samples generated by the GTEx Project and the DGN whole blood cohort. We

find that local h2 can be relatively well characterized with 50% of expressed genes
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showing significant h2 in DGN and 8-19% in GTEx. However, the current sample sizes

(n < 362 in GTEx) only allow us to compute distal h2 for a handful of genes (3% in

DGN and <1% in GTEx). Thus, we focus on local regulation. Bayesian Sparse Linear

Mixed Model (BSLMM) analysis and the sparsity of optimal performing predictors

provide compelling evidence that local architecture of gene expression traits is sparse

rather than polygenic across DGN and all 40 GTEx tissues examined.

To further delve into the tissue context specificity, we decompose the expression

traits into cross-tissue and tissue-specific components. Heritability and sparsity

estimates of these derived expression phenotypes show similar characteristics to the

original traits. Consistent properties relative to prior GTEx multi-tissue analysis results

suggest that these traits reflect the expected biology.

Finally, we apply this knowledge to develop prediction models of gene expression

traits for all tissues. The prediction models, heritability, and prediction performance R2

for original and decomposed expression phenotypes are made publicly available

(https://github.com/hakyimlab/PrediXcan).

Author Summary

Gene regulation is known to contribute to the underlying mechanisms of complex traits.

The GTEx project has generated RNA-Seq data on hundreds of individuals across more

than 40 tissues providing a comprehensive atlas of gene expression traits. Here, we

systematically examined the local versus distant heritability as well as the sparsity

versus polygenicity of protein coding gene expression traits in tissues across the entire

human body. To determine tissue context specificity, we decomposed the expression

levels into cross-tissue and tissue-specific components. Regardless of tissue type, we

found that local heritability can be well characterized with current sample sizes. Unless

strong functional priors and large sample sizes are used, the heritability due to distant

variants cannot be estimated. We also find that the distribution of effect sizes is more

consistent with a sparse architecture across all tissues. We also show that the

cross-tissue and tissue-specific expression phenotypes constructed with our orthogonal

tissue decomposition model recapitulate complex Bayesian multi-tissue analysis results.

This knowledge was applied to develop prediction models of gene expression traits for
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all tissues, which we make publicly available.

Introduction 1

Regulatory variation plays a key role in the genetics of complex traits [1–3]. Methods 2

that partition the contribution of environment and genetic components are useful tools 3

to understand the biology underlying complex traits. Partitioning heritability into 4

different functional classes has been successful in quantifying the contribution of 5

different mechanisms that drive the etiology of diseases [3–5]. 6

Most human expression quantitative trait loci (eQTL) studies have focused on how 7

local genetic variation affects gene expression in order to reduce the multiple testing 8

burden that would be required for a global analysis [6, 7]. Furthermore, when both local 9

and distal eQTLs are reported [8–10], effect sizes and replicability are much higher for 10

local eQTLs. Indeed, while the heritability of gene expression attributable to local 11

genetic variation has been estimated accurately, large standard errors have prevented 12

accurate estimation of the contribution of distal genetic variation to gene expression 13

variation [10,11]. 14

While many common diseases are likely polygenic [12–14], it is unclear whether gene 15

expression levels are also polygenic or instead have simpler genetic architectures. It is 16

also unclear how much these expression architectures vary across genes [6]. 17

The relative prediction performance of sparse and polygenic models can provide 18

useful information about the underlying distribution of effect sizes. For example, if the 19

true model of a trait is polygenic, it is natural to expect that polygenic models will 20

predict better than sparse ones. We assessed the ability of various models, with different 21

underlying assumptions, to predict gene expression in order to both understand the 22

underlying genetic architecture of gene expression and to further optimize predictors for 23

our gene-level association method, PrediXcan [15]. When we calibrated the prediction 24

model that was used in the PrediXcan paper, we showed that sparse models such as 25

LASSO performed better than a polygenic score model. We also showed that a model 26

that uses the top eQTL variant outperformed the polygenic score but did not do as well 27

as LASSO or elastic net [15], suggesting that for many genes, the genetic architecture is 28

sparse, but not regulated by a single SNP. 29
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Thus, gene expression traits with sparse architecture should be better predicted with 30

models such as LASSO (Least Absolute Shrinkage and Selection Operator), which 31

prefers solutions with fewer parameters, each of large effect [16]. Conversely, highly 32

polygenic traits should be better predicted with ridge regression or similarly polygenic 33

models that prefer solutions with many parameters, each of small effect [17–19]. To 34

obtain a more thorough understanding of gene expression architecture, we used the 35

hybrid approaches of the elastic net and BSLMM (Bayesian Sparse Linear Mixed 36

Model) [20] to quantify sparse and polygenic effects. 37

Most previous human eQTL studies were performed in whole blood or 38

lymphoblastoid cell lines due to ease of access or culturabilty [8, 21,22]. Although 39

studies with a few other tissues have been published, comprehensive coverage of human 40

tissues was not available until the launching of the Genotype-Tissue Expression (GTEx) 41

Project. GTEx aims to examine the genetics of gene expression more comprehensively 42

and has recently published a pilot analysis of eQTL data from 1641 samples across 43 43

tissues from 175 individuals [23]. Here we use a much larger set of 8555 samples across 44

53 tissues corresponding to 544 individuals. One of the findings of this comprehensive 45

analysis was that a large portion of the local regulation of expression traits is shared 46

across multiple tissues. Corroborating this finding, our prediction model based on whole 47

blood showed robust prediction across the 9 core GTEx tissues chosen by initial sample 48

sizes [15]. 49

This shared regulation implies that there is much to be learned from large sample 50

studies of easily accessible tissues. Yet, a portion of gene regulation seems to be tissue 51

dependent [23]. In order to harness this cross-tissue effect for prediction and to better 52

understand the genetic architecture of tissue-specific and cross-tissue gene regulation, 53

we use a mixed effects model called orthogonal tissue decomposition (OTD) to decouple 54

the cross-tissue and tissue-specific mechanisms in the rich GTEx dataset. We modeled 55

the underlying genetic architecture of the cross-tissue and tissue-specific gene expression 56

components and developed predictors for use in PrediXcan [15]. 57
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Results 58

Local genetic variation can be well characterized for all tissues 59

We estimated the local and distal heritability of gene expression levels in 40 tissues from 60

the GTEx consortium and whole blood from the Depression Genes and Networks 61

(DGN) cohort. The sample size in GTEx varied from 72 to 361 depending on the tissue, 62

while 922 samples were available in DGN [22]. We used mixed-effects models (see 63

Methods) and calculated variances using restricted maximum likelihood as implemented 64

in GCTA [24]. 65

For the local heritability component, we used variants within 1Mb of the 66

transcription start and end of each protein coding gene, whereas for the distal 67

component, we used variants outside of the chromosome where the gene was located. 68

Different approaches to pick the set of distal variants were explored, but results were 69

robust to different selections. See more details in Methods. 70

Table 1 summarizes the local heritability estimate results across all tissues. In order 71

to obtain an unbiased estimates of mean h2, we allow the values to be negative when 72

fitting the REML (unconstrained), as done previously [10,11]. This approach reduces 73

the standard error of the estimated mean of heritability, especially important for the 74

distal component. Even though each individual gene’s distal heritability is noisy, 75

averaging across all genes reduces the error substantially. For the DGN dataset, we were 76

able to estimate the mean distal h2, which was 0.034 (SE = 0.0024). However for the 77

GTEx samples, the sample size was too small and the REML algorithm became 78

unstable when allowing for negative values. This numeric instability would cause only a 79

small number of genes with large positive (and noisy) heritability values to converge 80

biasing the mean value. For this reason we do not show mean distal heritability 81

estimates for GTEx tissues. 82

The left column of Fig. 1 shows the estimated local and distal h2 from DGN. Even 83

though many genes show relatively large point estimates of distal h2, only the ones 84

colored in blue are significantly different from zero (P < 0.05). The local component of 85

h2 is relatively well estimated in DGN with 50% of genes (6399 out of 12719) showing 86

P < 0.05. In contrast, the distal heritability is significant for only 7.3% (931 out of 87

12719) of the genes (P < 0.05). This is not much larger than the expected number at 88
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Table 1. Estimates of unconstrained local h2 across genes within tissues.

tissue n mean h2 (SE) % P < 0.05 num P < 0.05 num expressed
DGN Whole Blood 922 0.143 (0.0015) 50.3 6399 12719
Cross-tissue 450 0.062 (0.0008) 35.4 6003 16951
Adipose - Subcutaneous 298 0.038 (0.0008) 16.9 2402 14205
Adrenal Gland 126 0.043 (0.0011) 11.4 1610 14150
Artery - Aorta 198 0.042 (0.0010) 16.6 2294 13844
Artery - Coronary 119 0.037 (0.0010) 10.5 1477 14127
Artery - Tibial 285 0.042 (0.0009) 17.3 2333 13504
Brain - Anterior cingulate cortex (BA24) 72 0.028 (0.0015) 10.6 1532 14515
Brain - Caudate (basal ganglia) 100 0.037 (0.0012) 10.5 1540 14632
Brain - Cerebellar Hemisphere 89 0.049 (0.0014) 13.3 1901 14295
Brain - Cerebellum 103 0.050 (0.0013) 13.5 1955 14491
Brain - Cortex 96 0.045 (0.0012) 10.7 1575 14689
Brain - Frontal Cortex (BA9) 92 0.038 (0.0013) 10.9 1581 14554
Brain - Hippocampus 81 0.037 (0.0013) 9.8 1422 14513
Brain - Hypothalamus 81 0.017 (0.0013) 9.9 1460 14759
Brain - Nucleus accumbens (basal ganglia) 93 0.029 (0.0012) 10.2 1486 14601
Brain - Putamen (basal ganglia) 82 0.032 (0.0013) 10.1 1456 14404
Breast - Mammary Tissue 183 0.029 (0.0008) 11.7 1714 14700
Cells - EBV-transformed lymphocytes 115 0.058 (0.0013) 11.6 1448 12454
Cells - Transformed fibroblasts 272 0.051 (0.0010) 19.0 2420 12756
Colon - Sigmoid 124 0.033 (0.0011) 12.3 1760 14321
Colon - Transverse 170 0.036 (0.0009) 12.5 1832 14676
Esophagus - Gastroesophageal Junction 127 0.032 (0.0010) 11.6 1638 14125
Esophagus - Mucosa 242 0.042 (0.0009) 17.4 2476 14239
Esophagus - Muscularis 219 0.039 (0.0009) 16.8 2355 14047
Heart - Atrial Appendage 159 0.042 (0.0010) 12.9 1787 13892
Heart - Left Ventricle 190 0.034 (0.0009) 14.7 1960 13321
Liver 98 0.033 (0.0012) 10.0 1350 13553
Lung 279 0.032 (0.0007) 15.7 2315 14775
Muscle - Skeletal 361 0.033 (0.0007) 17.0 2180 12833
Nerve - Tibial 256 0.052 (0.0009) 18.8 2724 14510
Ovary 85 0.037 (0.0013) 8.5 1194 14094
Pancreas 150 0.047 (0.0011) 14.0 1954 13941
Pituitary 87 0.038 (0.0013) 10.7 1621 15183
Skin - Not Sun Exposed (Suprapubic) 196 0.041 (0.0009) 13.4 1966 14642
Skin - Sun Exposed (Lower leg) 303 0.039 (0.0008) 17.7 2589 14625
Small Intestine - Terminal Ileum 77 0.036 (0.0014) 9.0 1341 14860
Spleen 89 0.059 (0.0014) 10.4 1508 14449
Stomach 171 0.032 (0.0009) 12.0 1747 14531
Testis 157 0.054 (0.0010) 16.5 2792 16936
Thyroid 279 0.044 (0.0009) 18.2 2670 14642
Whole Blood 339 0.033 (0.0008) 16.1 1956 12160

Except for DGN Whole Blood, all tissues are from the GTEx Project. Cross-tissue uses derived expression levels from our
orthogonal tissue decomposition (OTD) of GTEx data. Mean heritability (h2) and the standard error of the mean (SE) are
calculated across genes for each tissue. The percentage (%) and number (num) of genes with significant h2 estimates
(P < 0.05) and the number of genes expressed in each tissue are also reported.

this significance level (5%) and the genes with P < 0.05 and negative h2 in Fig. 1 are 89

obvious false positives, within the type 1 error rate. 90
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Figure 1. DGN whole blood expression local and distal heritability (h2).
This figure shows the local and distal heritability of gene expression levels in whole
blood from the DGN RNA-seq dataset. In order to obtain an unbiased estimates of
mean h2, we allow the values to be negative when fitting the REML (unconstrained).
Notice that only a few genes have distal heritability that is significantly different from 0
(P < 0.05). Local was defined as 1Mb from each gene. For the left side panel, distal
heritability was computed using all SNPs outside of the gene’s chromosome. On the the
right side, distal heritability was computing using SNPs that were cis-eQTLs in the
Framingham study. (Top) Distal h2 compared to local h2 per gene in each model.
(Middle) Local and (Bottom) distal gene expression h2 estimates ordered by
increasing h2. As a measure of uncertainty, we have added two times the standard
errors of each h2 estimate in gray segments. Genes with significant h2 (P < 0.05) are
shown in blue. To be conservative, we set h2 = 0 when GCTA did not converge. Genes
in blue with negative h2 are false positives, within the type 1 error (5%).

7/33

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2016. ; https://doi.org/10.1101/043653doi: bioRxiv preprint 

https://doi.org/10.1101/043653
http://creativecommons.org/licenses/by/4.0/


It has been shown that local-eQTLs are more likely to be distal-eQTLs of target 91

genes [25]. Thus, we tested whether restricting the distal genetic similarity computation 92

to QTLs (as determined in the Framingham mRNA dataset of over 5000 individuals [26] 93

independent of the DGN and GTEx cohorts) for other genes could improve distal 94

heritability precision by prioritizing functional variants. We exclude eQTLs on the same 95

chromosome as the tested gene to avoid contaminating distal h2 with cis associations. 96

While using functional priors (known eQTLs) to define distal h2 decreased the mean 97

standard error of the heritability estimates across genes from 0.24 to 0.14, the number 98

of significant genes did not change dramatically (Fig. 1). Also, using the subset of 99

known eQTLs (from an independent source) in other chromosomes for computing distal 100

heritability reduced the mean value from 0.027 to 0.015. Therefore, while we gain some 101

power to detect significant distal heritability by using cis eQTL priors as indicated by 102

the standard error reduction, a good portion of the distal regulation is lost when using 103

only the smaller subset of known cis-eQTL variants. We used functional priors to 104

estimate distal h2 in the GTEx cohort, but less than 1% of genes had a P < 0.05 (S1 105

Fig). 106

Given the limited sample size we will focus on local regulation for the remainder of 107

the paper. 108

Sparse local architecture implied by sparsity of best prediction 109

models 110

Next, we sought to determine whether the local genetic contribution to gene expression 111

is polygenic or sparse. In other words, whether many variants with small effects or a 112

small number of large effects were contributing to expression trait variability. For this, 113

we first looked at the prediction performance of a range of models with different degrees 114

of polygenicity, such as the elastic net model with mixing parameter values ranging 115

from 0 (fully polygenic, ridge regression) to 1 (sparse, LASSO). 116

More specifically, we performed 10-fold cross-validation using the elastic net [27] to 117

test the predictive performance of local SNPs for gene expression across a range of 118

mixing parameters (α). The mixing parameter that yields the largest cross-validation 119

R2 informs the degree of sparsity of each gene expression trait. That is, at one extreme, 120
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if the optimal α = 0 (equivalent to ridge regression), the gene expression trait is highly 121

polygenic, whereas if the optimal α = 1 (equivalent to LASSO), the trait is highly 122

sparse. We found that for most gene expression traits, the cross-validated R2 was 123

smaller for α = 0 and α = 0.05, but nearly identically for α = 0.5 through α = 1 in the 124

DGN cohort (Fig. 2). An α = 0.05 was also clearly suboptimal for gene expression 125

prediction in the GTEx tissues, while models with α = 0.5 or 1 had similar predictive 126

power (S2 Fig). This suggests that for most genes, the effect of local genetic variation 127

on gene expression is sparse rather than polygenic. 128

Figure 2. DGN cross-validated predictive performance across the elastic
net. This figure shows the cross validated R2 between observed and predicted
expression levels using elastic net prediction models in DGN. (A) This panel shows the
10-fold cross validated R2 for 51 genes with R2 > 0.3 from chromosome 22 as a function
of the elastic net mixing parameters (α). Smaller mixing parameters correspond to
more polygenic models while larger ones correspond to more sparse models. Each line
represents a gene. The performance is in general flat for most values of the mixing
parameter except very close to zero where it shows a pronounced dip. Thus polygenic
models perform more poorly than sparse models. (B) This panel shows the difference
between the cross validated R2 of the LASSO model and the elastic net model mixing
parameters 0.05 and 0.5 for autosomal protein coding genes. Elastic net with α = 0.5
values hover around zero, meaning that it has similar predictive performance to LASSO.
The R2 difference of the more polygenic model (elastic net with α = 0.05) is mostly
above the 0 line, indicating that this model performs worse than the LASSO model.

Direct estimation of sparsity using BSLMM also points to 129

sparse local architecture 130

To further confirm the local sparsity of gene expression traits, we turned to the 131

BSLMM [20] approach, which models the genetic contribution as the sum of a sparse 132

and a polygenic component. The parameter PGE in this model represents the 133
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proportion of genetic variance explained by sparse effects. Another parameter, the total 134

variance explained (PVE) by additive genetic variants, is a more flexible Bayesian 135

equivalent of the chip heritability we have estimated using a linear mixed model (LMM) 136

as implemented in GCTA. 137

As anticipated, we find that for highly heritable genes, the sparse component is large. 138

For example, all genes with PVE > 0.50 had PGE > 0.82 and their median PGE was 139

0.989 (Fig. 3A). The median PGE for genes with PVE > 0.1 was 0.949. Fittingly, for 140

most (96.3%) of the genes with PVE estimates > 0.10, the median number of SNPs 141

included in the model was no more than 10. 142

Figure 3. Sparsity estimates using Bayesian Sparse Linear Mixed Models.
(A) This panel shows a measure of sparsity of the gene expression traits represented by
the PGE parameter from the BSLMM approach. PGE is the proportion of the sparse
component of the total variance explained by genetic variants, PVE (the BSLMM
equivalent of h2). The median of the posterior samples of BSLMM output is used as
estimates of these parameters. Genes with a lower credible set (LCS) > 0.01 are shown
in blue and the rest in red. The 95% credible set of each estimate is shown in gray. For
highly heritable genes the sparse component is close to 1, thus for high heritability
genes the local architecture is sparse. For lower heritability genes, there is not enough
evidence to determine sparsity or polygenicity. (B) This panel shows the heritability
estimate from BSLMM (PVE) vs the estimates from GCTA, which are found to be
similar (R=0.96).

BSLMM outperforms LMM in estimating h2 for small samples 143

Also as expected, we find that when the sample size is large enough, such as in DGN, 144

there is a strong correlation between BSLMM-estimated PVE and GCTA-estimated h2
145

(Fig. 3B, R=0.96). In contrast, when we applied BSLMM to the GTEx data, we found 146

that many genes had measurably larger BSLMM-estimated PVE than GCTA-estimated 147
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h2 (Fig. 4). This is further confirmation of the local sparse architecture of gene 148

expression traits: the underlying assumption in the GCTA (LMM) approach to estimate 149

heritability is that the genetic effect sizes are normally distributed, i.e. most variants 150

have small effect sizes. LMM is quite robust to departure from this assumption, but 151

only when the sample size is rather large. For the relatively small sample sizes in GTEx 152

(n ≤ 361), we found that a model that directly addresses the sparse component such as 153

BSLMM outperforms GCTA for estimating h2. 154

Figure 4. BSLMM vs LMM estimates of heritability in GTEx. This figure
shows the comparison between estimates of heritability using BSLMM vs LMM for
GTEx data. For most genes BSLMM estimates are larger than LMM estimates
reflecting the fact that BSLMM yields better estimates of heritability because of its
ability to account for the sparse component. R = Pearson correlation.
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Orthogonal decomposition of cross-tissue and tissue-specific 155

expression traits 156

Since a substantial portion of local regulation was shown to be common across multiple 157

tissues [23], we sought to decompose the expression levels into a component that is 158

common across all tissues and tissue-specific components. For this we use a linear mixed 159

effects model with a person-level random effect. See details in Methods. We use the 160

posterior mean of this random effect as an estimate of the cross tissue component. We 161

consider the residual component of this model as the tissue specific component. Below 162

we describe the properties of these derived phenotypes. 163

We call this approach orthogonal tissue decomposition (OTD) because the 164

cross-tissue and tissue-specific components are assumed to be independent in the model. 165

The decomposition is applied at the expression trait level so that the downstream 166

genetic regulation analysis is performed separately for each derived trait, cross-tissue 167

and tissue-specific expression, which greatly reduces computational burden. For all the 168

derived phenotypes, one cross-tissue and 40 tissue-specific ones, we computed the local 169

heritability and generated prediction models. 170

Cross-tissue expression phenotype is less noisy and shows 171

higher predictive performance 172

Our estimates of h2 for cross tissue expression traits are larger than the corresponding 173

estimates for each whole tissue expression traits (S3 Fig). This is due to the fact that 174

our OTD approach increases the ratio of genetically regulated component to noise by 175

averaging across multiple tissues. In addition to the increased h2 we observe reduction 176

in standard errors of the estimated h2. This is partly due to the increased h2 – higher 177

h2 are better estimated – but also due to the larger effective sample size for cross tissue 178

phenotypes. There were 450 samples for which cross tissue traits were available whereas 179

the maximum sample size for whole tissue phenotypes was 362. As consequence of this 180

increased h2 and decreased standard errors, the percentage of cross h2 estimates with 181

P < 0.05 was 35.4% whereas for whole tissue expression traits they ranged from 182

8.5-19.0% (Table 1). Similarly, cross-tissue BSLMM PVE estimates had lower error 183

than whole tissue PVE (S4 Fig, S5 Fig). 184
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As for the tissue-specific components, the cross-tissue heritability estimates were also 185

larger and the standard errors were smaller reflecting the fact that a substantial portion 186

of regulation is common across tissues (S6 Fig). The percentage of GCTA h2 estimates 187

with P < 0.05 was much larger for cross-tissue expression (35.4%) than the 188

tissue-specific expressions (7.6-17.7%, S1 Table). Similarly, the percentage of BSLMM 189

PVE estimates with a lower credible set greater than 0.01 was 49% for cross-tissue 190

expression, but ranged from 24-27% for tissue-specific expression (S5 Fig). 191

Cross-tissue predictive performance exceeded that of both tissue-specific and whole 192

tissue expression as indicated by higher cross-validated R2 (S2 Fig, S7 Fig). Like whole 193

tissue expression, cross-tissue and tissue-specific expression showed better predictive 194

performance when using more sparse models. In other words elastic-net models with 195

α ≥ 0.5 predicted better than the ones with α = 0.05 (S7 Fig). 196

Cross Tissue expression phenotype recapitulates published 197

multi-tissue eQTL results 198

To verify that the cross tissue phenotype has the properties we expect, we compared our 199

OTD results to those from a joint multi-tissue eQTL analysis [28], which was previously 200

performed on a subset of the GTEx data [23] covering 9 tissues. In particular, we used 201

the posterior probability of a gene being actively regulated (PPA) in a tissue. These 202

analysis results are available on the GTEx portal. 203

First, we reasoned that genes with high cross tissue h2 would be actively regulated 204

in most tissues so that the PPA of a gene would be roughly uniform across tissues. By 205

contrast, a gene with tissue specific regulation would have concentrated posterior 206

probability in one or a few tissues. Thus we decided to define a measure of uniformity of 207

the posterior probability vector across the 9 tissues using the concept of entropy. More 208

specifically, for each gene we normalized the vector of posterior probabilities so that the 209

sum equaled 1. Then we applied the usual entropy definition (negative of the sum of the 210

log of the posterior probabilities weighted by the same probabilities, see Methods). In 211

other words, we defined a uniformity statistic that combines the nine posterior 212

probabilities into one value such that higher values mean the gene regulation is more 213

uniform across all nine tissues, rather than in just a small subset of the nine. 214
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Thus we expected that genes with high cross tissue heritability, i.e. large cross tissue 215

regulation would show high probability of being active in multiple tissues, thus high 216

uniformity measure. Reassuringly, this is exactly what we find. Figure 5 shows that 217

genes with high cross tissue heritability concentrate on the higher end of the uniformity 218

measure. 219

Figure 5. Measure of uniformity of the posterior probability of active
regulation vs. cross-tissue heritability. This figure shows the distribution of
heritability of the cross-tissue component vs. a measure of uniformity of genetic
regulation across tissues. The measure of uniformity was computed using the posterior
probability of a gene being actively regulated in a tissue, PPA, from the Flutre et
al. [28] multi-tissue eQTL analysis. Genes with PPA concentrated in one tissue were
assigned small values of the uniformity measure whereas genes with PPA uniformly
distributed across tissues were assigned high value of uniformity measure. See Methods
for the entropy-based definition of uniformity.

For the original whole tissue, we expected the whole tissue expression heritability to 220

correlate with the posterior probability of a gene being actively regulated in a tissue. 221

This is confirmed in Figure 6A where PPA in each tissue is correlated with the BSLMM 222

PVE of the expression in that tissue. In the off diagonal elements we observe high 223

correlation between tissues, which was expected given that large portion of the 224

regulation has been shown to be common across tissues. Whole blood has the lowest 225

correlation consistent with whole blood clustering aways from other tissues [23]. In 226

contrast, panel B of Figure 6 shows that the tissue specific expression PVE correlates 227

well with matching tissue PPA but the off diagonal correlations are substantially 228

reduced consistent with these phenotypes representing tissue specific components. 229

Again whole blood shows a negative correlation which could be indicative of some over 230

correction of the cross tissue component. Overall these results indicate that the cross 231
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tissue and tissue-specific phenotypes have properties that are consistent with the 232

intended decomposition. 233

Figure 6. Comparison of heritability of whole tissue or tissue specific
components vs. PPA. Panel (A) of this figure shows the Pearson correlation (R)
between the BSLMM PVE of the original (we are calling whole here) tissue expression
levels vs. the probability of the tissue being actively regulated in a given tissue (PPA).
Matching tissues show, in general, the largest correlation values but most of the off
diagonal correlations are also relatively high consistent with the shared regulation across
tissues. Panel (B) shows the Pearson correlation between the PVE of the tissue-specific
component of expression via orthogonal tissue decomposition (OTD) vs. PPA.
Correlations are in general lower but matching tissues show the largest correlation. Off
diagonal correlations are reduced substantially consistent with properties that are
specific to each tissue. Area of each circle is proportional to the absolute value of R.

Discussion 234

Motivated by the key role that regulatory variation plays in the genetic control of 235

complex traits [1–3], we performed a survey of the heritability and patterns of effect 236

sizes of gene expression traits across a comprehensive set of human tissues. We 237

quantified the local and distal heritability of gene expression in DGN and 40 different 238

tissues from the GTEx consortium. For the DGN dataset, we estimate the relative 239

proportion of mean local and distal genetic contribution to gene expression traits. For 240

GTEx samples it was not possible to estimate the mean distal heritability because of 241

the limited sample size. As the number of GTEx samples grows to near 1000 242

individuals, we expect to be able to estimate these values. 243

In DGN (whole blood), the mean local h2 was 14.3% and the mean distal h2 was 244

3.4% such that the local variation contribution is estimated as 14.3/(3.4+14.3) = 81%. 245

This is much higher than the 37% reported by Price et al. [11] based on blood 246
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expression data from a cohort of Icelandic individuals. This potentially underestimation 247

of the distal component could be due to over-correction of confounders used in the 248

preprocessing of the expression trait data we used. Indeed, PEER [29], SVA [30], and 249

other types of hidden confounder corrections have been shown to increase local eQTL 250

replicability, but their consequences on distal regulation is not well understood. As 251

larger sample sizes become available, we will test this hypothesis in GTEx data by 252

computing the distal h2 without PEER factor correction. 253

We showed that restricting distal variants to known functional variants such as 254

eQTL data from independent studies improves the precision of distal heritability 255

estimates, but also reduces mean distal heritability estimates by half. 256

Using results implied by the improved predictive performance of sparse models and 257

by directly estimating sparsity using BSLMM (Bayesian Sparse Linear Mixed Model), 258

we show evidence that for highly heritable genes, local regulation is sparse across all the 259

tissues analyzed here. For genes with moderate and low heritability the evidence is not 260

as strong, but results are consistent with a sparse local architecture. Better methods to 261

correct for hidden confounders that do not dilute distal signals and larger sample sizes 262

will be needed to determine the properties of distal regulation. 263

Given that a substantial portion of local regulation is shared across tissues, we 264

propose here to decompose the expression traits into cross-tissue and tissue-specific 265

components. This approach, called orthogonal tissue decomposition, aims to decouple 266

the shared regulation from the tissue-specific regulation. We examined the genetic 267

architecture of these derived traits and find that they follow similar patterns to the 268

original whole tissue expression traits. The cross-tissue component benefits from an 269

effectively larger sample size than any individual tissue trait, which is reflected in more 270

accurate heritability estimates and consistently better prediction performance. 271

Encouragingly, we find that genes with high cross tissue heritability tend to be regulated 272

more uniformly across tissues. As for the tissue-specific expression traits, we found that 273

they recapitulate correlation with the vector of probability of tissue-specific regulation. 274

Prediction models of these decoupled expression traits will be useful to interpret the 275

association results from PrediXcan [15]. We expect results from the cross-tissue models 276

to relate to mechanisms that are shared across multiple tissues whereas results from the 277

tissue-specific models will inform us about the context specific mechanisms. 278
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In this paper, we quantitate the genetic architecture of gene expression and develop 279

predictors across tissues. We show that local heritability can be accurately estimated 280

across tissues, but distal heritability cannot be reliably estimated at current sample 281

sizes. Using two different approaches, the elastic net and BSLMM, we show that for 282

local gene regulation, the genetic architecture is mostly sparse rather than polygenic. 283

Using new expression phenotypes generated in our OTD model, we show that 284

cross-tissue predictive performance exceeded that of both tissue-specific and whole 285

tissue expression as indicated by higher elastic net cross-validated R2. Predictors, 286

heritability estimates and cross-validation statistics generated in this study of gene 287

expression architecture have been added to our PredictDB database 288

(https://github.com/hakyimlab/PrediXcan) for use in future studies of complex 289

trait genetics. 290

Materials and Methods 291

Genomic and Transcriptomic Data 292

DGN Dataset. We obtained whole blood RNA-seq and genome-wide genotype data 293

for 922 individuals from the Depression Genes and Networks (DGN) cohort [22], all of 294

European ancestry. For our analyses, we used the HCP (hidden covariates with prior) 295

normalized gene-level expression data used for the trans-eQTL analysis in Battle et 296

al. [22] and downloaded from the NIMH repository. The 922 individuals were unrelated 297

(all pairwise π̂ < 0.05) and thus all included in downstream analyses. Imputation of 298

approximately 650K input SNPs (minor allele frequency [MAF] > 0.05, 299

Hardy-Weinberg Equilibrium [P > 0.05], non-ambiguous strand [no A/T or C/G SNPs]) 300

was performed on the Michigan Imputation Server 301

(https://imputationserver.sph.umich.edu/start.html) [31,32] with the following 302

parameters: 1000G Phase 1 v3 ShapeIt2 (no singletons) reference panel, SHAPEIT 303

phasing, and EUR population. Approximately 1.9M non-ambiguous strand SNPs with 304

MAF > 0.05, imputation R2 > 0.8 and, to reduce computational burden, inclusion in 305

HapMap Phase II were retained for subsequent analyses. 306
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GTEx Dataset. We obtained RNA-seq gene expression levels from 8555 tissue 307

samples (53 unique tissue types) from 544 unique subjects in the GTEx Project [23] 308

data release on 2014-06-13. Of the individuals with gene expression data, genome-wide 309

genotypes (imputed with 1000 Genomes) were available for 450 individuals. While all 310

8555 tissue samples were used in the OTD model (described below) to generate 311

cross-tissue and tissue-specific components of gene expression, we used the 40 tissues 312

with the largest sample sizes when quantifying tissue-specific effects (see Table 1). 313

Approximately 2.6M non-ambiguous strand SNPs included in HapMap Phase II were 314

retained for subsequent analyses. 315

Framingham Expression Dataset. We obtained exon array expression and 316

genotype array data from 5257 individuals from the Framingham Heart Study [26]. The 317

final sample size after QC was 4286. We used the Affymetrix power tools (APT) suite 318

to perform the preprocessing and normalization steps. First the robust multi-array 319

analysis (RMA) protocol was applied which consists of three steps: background 320

correction, quantile normalization, and summarization [33]. The background correction 321

step uses antigenomic probes that do not match known genome sequences to adjust the 322

baseline for detection, and is applied separately to each array. Next, the normalization 323

step utilizes a ’sketch’ quantile normalization technique instead of a memory-intensive 324

full quantile normalization. The benefit is a much lower memory requirement with little 325

accuracy trade-off for large sample sets such as this one. Finally, the adjusted probe 326

values were summarized (by the median polish method) into log-transformed expression 327

values such that one value is derived per exon or gene. Additionally an analysis of the 328

detection of probes above the background noise (DABG) was carried out. It provides 329

further diagnostic information which can be used to filter out poorly performing probes 330

and weakly expressed genes. The summarized expression values were then annotated 331

more fully using the annotation databases contained in the huex10stprobeset.db 332

(exon-level annotations) and huex10sttranscriptcluster.db (gene-level annotations) R 333

packages available from Bioconductor [34,35]. In both cases gene annotations were 334

provided for each feature. 335

Plink [36] was used for data wrangling and cleaning steps. The data wrangling steps 336

included updating probe IDs, unifying data to the positive strand, and updating 337
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locations to GRCh37. The data cleaning steps included a step to filter for variant and 338

subject missingness and minor alleles, one to filter variants with Hardy-Weinberg exact 339

test, and a step to remove unusual heterozygosity. Additionally, we used the 340

HRC-check-bin tool in order to carry out data wrangling steps required to make our 341

data compatible with the Haplotype Reference Consortium (HRC) panel 342

(http://www.well.ox.ac.uk/~wrayner/tools/). Having been prepared thusly, the 343

data were split by chromosome and pre-phased with SHAPEIT [37] using the 1000 344

Genomes phase 3 panel and converted to vcf format. These files were then submitted to 345

the Michigan Imputation Server 346

(https://imputationserver.sph.umich.edu/start.html) [31,32] for imputation 347

with the HRC version 1 panel [38]. We applied Matrix eQTL [39] to the normalized 348

expression and imputed genotype data to generate prior eQTLs for our heritability 349

analysis. 350

Partitioning local and distal heritability of gene expression 351

Motivated by the observed differences in regulatory effect sizes of variants located in the 352

vicinity of the genes and distal to the gene, we partitioned the proportion of gene 353

expression variance explained by SNPs in the DGN cohort into two components: local 354

(SNPs within 1Mb of the gene) and distal (eQTLs on non-gene chromosomes) as defined 355

by the GENCODE [40] version 12 gene annotation. We calculated the proportion of the 356

variance (narrow-sense heritability) explained by each component using the following 357

mixed-effects model: 358

Yg =
∑

k∈local

wlocal
k,g Xk +

∑
k∈distal

wdistal
k,g Xk + ε

where Yg represents the expression of gene g, Xk is the allelic dosage for SNP k, local 359

refers to the set of SNPs located within 1Mb of the gene’s transcription start and end, 360

distal refers to SNPs in other chromosomes, and ε is the error term representing 361

environmental and other unknown factors. We assume that the local and distal 362

components are independent of each other as well as independent of the error term. We 363

assume random effects for wlocal
k,g ∼ N(0, σ2

w,local), w
distal
k,g ∼ N(0, σ2

w,distal), and 364

ε ∼ N(0, σ2
ε In), where In is the identity matrix. We calculated the total variability 365
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explained by local and distal components using restricted maximum likelihood (REML) 366

as implemented in the GCTA software [24]. 367

For the purpose of estimating the mean heritability (see Table 1, Figure 1 and S1 368

Table), we allowed the heritability estimates to take negative values (unconstrained 369

model). Despite the lack of obvious biological interpretation of a negative heritability, it 370

is an accepted procedure used in order to avoid bias in the estimated mean [10,11]. 371

Heritabilities are plotted as point estimates with bars that extend 2 times the estimated 372

standard error up and down. Genes were considered to have heritability significantly 373

different from 0 if the p value from GCTA was less than 0.05. 374

For comparing to BSLMM PVE, we restricted the GCTA heritability estimates to be 375

within the [0,1] interval (constrained model, see Figures 3, 4 and 5). 376

Determining polygenicity versus sparsity using the elastic net 377

We used the glmnet package to fit an elastic net model where the tuning parameter is 378

chosen via 10 fold cross validation to maximize prediction performance measured by 379

Pearson’s R2 [41, 42]. 380

The elastic net penalty is controlled by mixing parameter α, which spans LASSO 381

(α = 1, the default) [16] at one extreme and ridge regression (α = 0) [17] at the other. 382

The ridge penalty shrinks the coefficients of correlated SNPs towards each other, while 383

the LASSO tends to pick one of the correlated SNPs and discard the others. Thus, an 384

optimal prediction R2 for α = 0 means the gene expression trait is highly polygenic, 385

while an optimal prediction R2 for α = 1 means the trait is highly sparse. 386

In the DGN cohort, we tested 21 values of the mixing parameter 387

(α = 0, 0.05, 0.1, ..., 0.90, 0.95, 1) for optimal prediction of gene expression of the 341 388

genes on chromosome 22. For the rest of the autosomes in DGN and for whole tissue, 389

cross-tissue, and tissue-specific expression in the GTEx cohort, we tested 390

α = 0.05, 0.5, 1. 391
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Quantifying sparsity with Bayesian Sparse Linear Mixed 392

Models (BSLMM) 393

We used BSLMM [20] to model the effect of local genetic variation (SNPs within 1 Mb 394

of gene) on the genetic architecture of gene expression. The BSLMM is a linear model 395

with a polygenic component (small effects) and a sparse component (large effects) 396

enforced by sparsity inducing priors on the regression coefficients [20]. We used the 397

software GEMMA [43] to implement BSLMM for each gene with 100K sampling steps 398

per gene. The BSLMM estimates the PVE (the proportion of variance in phenotype 399

explained by the additive genetic model, analogous to the chip heritability in GCTA) 400

and PGE (the proportion of genetic variance explained by the sparse effects terms 401

where 0 means that genetic effect is purely polygenic and 1 means that the effect is 402

purely sparse). From the second half of the sampling iterations for each gene, we report 403

the median and the 95% credible sets of the PVE, PGE, and the |γ| parameter (the 404

number of SNPs with non-zero coefficients). 405

Orthogonal Tissue Decomposition 406

We use a mixed effects model to decompose the expression level of a gene into a subject 407

specific and subject by tissue specific components. The expression of a gene for 408

individual i in tissue t, Yi,t, is modeled as 409

Yi,t = Y CT
i + Y TS

i,t + Ziβ + εi,t

where Y CT
i is the random subject level intercept, Y TS

i,t is the random subject by tissue 410

intercept, Zi represents covariates (for overall intercept, tissue intercept, gender, and 411

PEER factors), and εi,t is the error term. We assume Y CT
i ∼ N(0, σ2

CT), 412

Y TS
i,t ∼ N(0, σ2

TS), ε ∼ N(0, σ2
ε ), and all three independent of each other. 413

For the cross tissue component to be identifiable, multiple replicates of expression is 414

needed for each subject. In the same vein, for the tissue specific component to be 415

identifiable multiple replicates of expression is needed for a given tissue/subject pair. 416

GTEx [23] data consisted of measurement of expression for multiple tissues for each 417

subject, thus multiple replications per subject. However, there were very few replicated 418
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measurement for a given tissue/subject pair. Thus, we fit the reduced model and use 419

the estimates of the residual as the tissue specific component. 420

Yi,t = Y CT
i + Ziβ + εi,t

The mixed effects model parameters were estimated using the lme4 package [44] in 421

R [45]. Batch effects and unmeasured confounders were accounted for using 15 PEER 422

factors computed with the PEER [29] package in R. Posterior modes of the subject level 423

random intercepts were used as estimates of the cross tissue components whereas the 424

residuals of the models were used as tissue specific components. 425

The model included whole tissue gene expression levels in 8555 GTEx tissue samples 426

from 544 unique subjects. A total of 17,647 Protein-coding genes (defined by 427

GENCODE [40] version 18) with a mean gene expression level across tissues greater 428

than 0.1 RPKM (reads per kilobase of transcript per million reads mapped) and RPKM 429

> 0 in at least 3 individuals were included in the model. 430

Comparison of OTD trait heritability with multi-tissue eQTL 431

results 432

To verify that the newly derived cross tissue and tissue specific traits were capturing the 433

expected properties we used the results of the multi-tissue eQTL analysis performed by 434

Flutre et al. [28] on nine tissues from the pilot phase of the GTEx project [23]. In 435

particular, we used the posterior probability of a gene being actively regulated (PPA) in 436

a tissue downloaded from the GTEx portal at 437

http://www.gtexportal.org/static/datasets/gtex_analysis_pilot_v3/multi_ 438

tissue_eqtls/Multi_tissue_eQTL_GTEx_Pilot_Phase_datasets.tar. 439

We reasoned that genes with large cross tissue component (i.e. high cross-tissue h2) 440

would have more uniform PPA across tissues. Thus we defined for each gene a measure 441

of uniformity, Ug, across tissues based on the nine dimensional vector of PPAs using the 442

entropy formula. More specifically, we divided each vector of PPA by their sum across 443
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tissues and computed the measure of uniformity as follows: 444

Ug = −
∑
t

pt,g log pt,g

where pt,g is the normalized PPA for gene g and tissue t. 445
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Supporting Information

S1 Fig

GTEx whole tissue distal heritability (h2) estimation. Distal (SNPs that are

eQTLs in the Framingham Heart Study on other chromosomes [FDR < 0.05]) gene

expression h2 estimates from a joint model in the nine GTEx tissues with the largest

sample sizes are ordered by increasing h2. The 95% confidence interval (CI) of each h2

estimate is in gray and significant genes (P < 0.05) are in blue. Less than 1% of genes

show significant distal h2.

S2 Fig

GTEx whole tissue cross-validated predictive performance across the

elastic net. The difference between the cross validated R2 of the LASSO model and

the elastic net model mixing parameters 0.05 and 0.5 for autosomal protein coding

genes per tissue. Elastic net with α = 0.5 values hover around zero, meaning that it has

similar predictive performance to LASSO. The R2 difference of the more polygenic

model (elastic net with α = 0.05) is mostly above the 0 line, indicating that this model

performs worse than the LASSO model across tissues.

S3 Fig

Cross-tissue and whole tissue comparison of heritability (h2, A) and

standard error (SE, B). Cross-tissue local h2 is estimated using the cross-tissue

component (random effects) of the mixed effects model for gene expression and SNPs

within 1 Mb of each gene. Whole tissue local h2 is estimated using the measured gene

expression for each respective tissue and SNPs within 1 Mb of each gene. Estimates of

h2 for cross-tissue expression traits are larger and their standard errors are smaller than

the corresponding estimates for each whole tissue expression trait.
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S4 Fig

GTEx whole tissue expression Bayesian Sparse Linear Mixed Model.

Comparison of median PGE (proportion of PVE explained by sparse effects) to median

PVE (total proportion of variance explained, the BSLMM equivalent of h2) for

expression of each gene. The 95% credible set of each PGE estimate is in gray and

genes with a lower credible set (LCS) greater than 0.01 are in blue. For highly heritable

genes the sparse component is close to 1, thus for high heritability genes the local

architecture is sparse across tissues. For lower heritability genes, there is not enough

evidence to determine sparsity or polygenicity.

S5 Fig

GTEx orthogonal tissue decomposition cross-tissue and tissue-specific

expression Bayesian Sparse Linear Mixed Model. Comparison of median PGE

(proportion of PVE explained by sparse effects) to median PVE (total proportion of

variance explained, the BSLMM equivalent of h2) for expression of each gene. The 95%

credible set of each PGE estimate is in gray and genes with a lower credible set (LCS)

greater than 0.01 are in blue. For highly heritable genes the sparse component is close

to 1, thus for high heritability genes the local architecture is sparse across tissues.

About twice as many cross-tissue expression traits have significant PGE (LCS > 0.01)

compared to the tissue-specific expression traits.

S6 Fig

Cross-tissue and tissue-specific comparison of heritability (h2, A) and

standard error (SE, B) estimation. Cross-tissue local h2 is estimated using the

cross-tissue component (random effects) of the mixed effects model for gene expression

and SNPs within 1 Mb of each gene. Tissue-specifc local h2 is estimated using the

tissue-specific component (residuals) of the mixed effects model for gene expression for

each respective tissue and SNPs within 1 Mb of each gene. Estimates of h2 for

cross-tissue expression traits are larger and their standard errors are smaller than the

corresponding estimates for each tissue-specific expression trait.
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S7 Fig

GTEx orthogonal tissue decomposition cross-tissue and tissue-specific

expression cross-validated predictive performance across the elastic net.

The difference between the cross validated R2 of the LASSO model and the elastic net

model mixing parameters 0.05 and 0.5 for autosomal protein coding genes per

cross-tissue and tissue-specific gene expression traits. Elastic net with α = 0.5 values

hover around zero, meaning that it has similar predictive performance to LASSO. The

R2 difference of the more polygenic model (elastic net with α = 0.05) is mostly above

the 0 line, indicating that this model performs worse than the LASSO model across

decomposed tissues.

S1 Table

Estimates of cross-tissue and tissue-specific unconstrained local h2.

Expression levels derived by Orthogonal Tissue Decomposition and h2 estimated using

unconstrained REML.
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