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Abstract 
It is generally assumed that the uniqueness of individual identity is reflected in the connective 
architecture of the human brain. Here we introduce local connectome fingerprinting, a 
noninvasive method that uses diffusion MRI to characterize white matter bundles as 
“fingerprints”. Using four independently acquired datasets (total n=213), we show that the local 
connectome fingerprint is highly specific to an individual, achieving 100% accuracy across 
17,398 identification tests with an estimated classification error at 10-6. This uniqueness profile is 
higher than fingerprints derived from local fractional anisotropy or region-to-region connectivity 
patterns. We further illustrate that local connectome fingerprinting allows for quantifying 
similarity between genetically-associated individuals, e.g., monozygotic twins (12% 
connectomic similarity), and neuroplasticity with time, e.g., fingerprint uniqueness decreases 
0.02% per day. This approach opens a new door for probing the influence of pathological, 
genetic, social, or environmental factors on the unique configuration of the human connectome. 
*Keywords: Connectome, Connectomics, Connectome fingerprint, Diffusion MRI 
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Introduction 
The specific personality characteristics that define an individual are encoded by the unique 
pattern of connections between the billions of neurons in the brain1. This complex wiring system, 
termed the connectome 2, 3, reflects the necessary connective architecture for the neural dynamics 
that give rise to nearly all cognitive functions 4, 5. Substantial attention has been paid to the 
mapping of region-to-region connectivity 6, aiming to advance the understanding of what makes 
individuals unique. Recently, it has been shown that functional connections measured by 
functional MRI (fMRI) could be used as the “functional connectome fingerprint”, achieving 
subject identification with accuracy up to 99% 7, 8. Since the hemodynamic signals acquired by 
fMRI are determined by the unique organization of the underlying physical connections between 
neurons, it is likely that structural connectivity may exhibit higher uniqueness to individuals. 
However, a robust method to measure such uniqueness in the white matter architecture remains 
to be developed. 

Diffusion MRI (dMRI) is a noninvasive method that characterizes white matter structure by 
measuring its microscopic diffusion patterns of water molecules 9, 10. dMRI has had some success 
in mapping the trajectories of white matter fascicles in the human brain and define the graph 
structure of region-to-region connectivity11, 12; however the efficiency of tractography 
approaches has recently come into question13, 14.  Instead of mapping region-to-region 
connectivity, the concept of the local connectome has recently been proposed as an alternative 
measure of macroscopic white matter pathways that overcomes the limitations of diffusion MRI 
fiber tracking 13, 14. The local connectome is defined as the degree of connectivity between 
adjacent voxels within a white matter fascicle defined by the density of the diffusing water (see 
Methods). A collection of these density measurements provides a high dimensional feature 
vector that can describe the unique configuration of the brain connectome.  

Here we use this local connectome feature vector as a local connectome fingerprint to represent 
the unique white matter properties within an individual. Using four independently collected 
dMRI datasets (n=11, 25, 60, 118, see Methods) with repeat scans at different time intervals 
(ranging from the same day to a year), we examined whether this local connectome fingerprint is 
a unique identifier of an individual person. This uniqueness was compared with fingerprints 
derived from fractional-anisotropy (FA)15 and conventional region-to-region connectivity 
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methods. Follow-up analysis reveals on how local connectome fingerprints can quantify the 
similarity between genetically-related individuals as well measure longitudinal changes in within 
an individual across time.  

Results 
Uniqueness of local connectome fingerprint 
We first illustrate the uniqueness of local fascicular structure within an individual. Figure 1A 
shows the spin distribution functions (SDFs) 16 estimated from dMRI scans at the mid-sagittal 
section of the corpus callosum. SDF represents the density of water diffusing at any orientation, 
and its magnitudes at the axonal directions can be used as the density-based measurements to 
quantify the local connectome (see Methods). An example of the local connectome quantified at 
the corpus callosum is illustrated for three subjects in Fig. 1B. Here the anterior and posterior 
portion of corpus callosum exhibit substantial diversity between these three subjects. A repeat 
scan several months later reveals a qualitative within-subject consistency. This high individuality 
appears to be specific to diffusion density estimates, as conventional FA measures calculated 
from diffusivity do not yield this qualitative between-subject diversity (Fig. 1C). To sample the 
local density measurements across all major white matter pathways, dMRI data was 
reconstructed into a standard space, and the fiber directions of a common atlas was used to 
sample a SDF value for each fiber direction (see Methods and Fig. 2A). This approach yields, for 
each dMRI scan, a local connectome fingerprint consisting of a high-dimensional feature vector 
with a total of 513,316 density estimates (Fig. 2B). Fig. 2C shows the fingerprints of the same 
three subjects in Fig. 1B and the fingerprints from their repeat scans. Consistent with the 
qualitative measurements in Fig. 1B, each local connectome fingerprint in Fig. 2C shows, at a 
coarse level, a highly similar pattern for within-subject scans and also high variability across 
subjects, suggesting that the local connectome fingerprint may exhibit individuality of the human 
connectome. 

To quantify how well the local connectome fingerprint captures unique individual identity we 
used four independently collected dMRI datasets (n=11, 24, 60, 118) with repeat scans for a 
subset of the subjects (n=11×3, 24×2, 14×2, 44×2, respectively). Euclidian distance (i.e., root-
mean-squared error) was used as a distant estimate between any two fingerprints. For each 
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dataset, we computed within-subject distances (n=33, 24, 14, 44, respectively) and between-
subject distances (n=495, 1104, 2687, and 12,997, respectively). Figure 3 shows the within- and 
between-subject distances of the four datasets. All four datasets show a clear separation between 
the within-subject and between-subject distance distributions, with no single within-subject 
distance pairing being as large as any of the between-subject distances. The d-prime sensitivity 
index also shows high separability between the two distance distributions, with d-prime values of 
14.84, 12.80, 7.21, and 8.12, for dataset I, II, III, and IV respectively.  

This consistency suggests that the local connectome fingerprint could be used as a unique 
identifier of an individual subject. To assess this, we used a linear discriminant analysis (LDA) 
classifier 17 to classify whether two fingerprints came from the same individual using only the 
distance between fingerprints as the classification feature. For each dataset, the classification 
error was estimated using leave-one-out cross-validation. Out of a total of 17,398 cross-
validation rounds from four datasets (17,283 different-subject and 115 same-subject pairings), 
there was not a single misclassification. To estimate the true classification error, we modeled the 
distributions of within-subject and between-subject distances by the generalized extreme value 
distribution 18, a continuous probabilistic function often used to assess the probability of extreme 
values (smallest or largest) appearing in independent identically distributed random samples (last 
row of Fig. 3B). The classification error can be quantified by the probability of a within-subject 
distance greater than a between-subject distance. Our analysis shows that the classification error 
was 4.25×10-6 for dataset I, 9.97×10-7 for dataset II, 5.3×10-3 for dataset III, and 5.5×10-3 for 
dataset IV. The larger error in dataset III and IV could be due to their longer scan interval (6 
months and one year). Thus, the probability of mistaking two samples of the same subject’s local 
connectome fingerprint as coming from two different individuals is low enough so as to consider 
the local connectome fingerprint a highly reliable measure of individual subject uniqueness. 

Uniqueness exhibited by the corpus callosum 
Since the gyral and sucal patterns are also unique to an individual, it is possible that the 
uniqueness we observed reflects an artifact of the normalization process. Therefore we retested 
the uniqueness measure within a restricted white matter mask that only covers the median 
sagittal sections of corpus callosum defined by the JHU white matter atlas. The same analysis 
procedures were applied, and the result showed that the d-prime values were 5.97, 5.85, 3.78, 
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and 4.08, for dataset I, II, III, and IV, respectively. The leave-one-out cross-validation analysis 
showed that classification error was 0%, 0.089%, 1.26%, and 0.63%, for dataset I, II, III, and IV, 
respectively. The classification error modeled by the generalized extreme value distribution was 
9.13×10-4, 5.6×10-3, 6.9×10-3, and 7.2×10-3, for dataset I, II, III, and IV, respectively. The median 
sagittal sections of the corpus callosum itself already can achieve more than 99% accuracy in 
subject identification, suggesting that the high individuality of the local connectome fingerprint 
is not due to the process of normalizing to the unique gyral and sulcal patterns of each subject. 
 
Comparison with FA-based and global connectivity-based fingerprints 
Using the same analysis pipeline as was used for the local connectome fingerprint, we replaced 
the SDF-based measures with FA values of the corresponding voxels. Our analysis showed that 
the d-prime values were 4.84, 4.70, 4.56, and 3.60, for dataset I, II, III, and IV, respectively. All 
values are substantially smaller than those of the local connectome fingerprint. The leave-one-
out cross-validation analysis showed that classification error was 0%, 0.18%, 0.22%, and 0.87%. 
While FA-based fingerprints also have high uniqueness with classification error less than 1%, it 
is clear from these results that the greatest reliability at characterizing connectomic uniqueness 
comes from local connectome measures. 

We further compared the local connectome fingerprint with region-to-region connectivity 
estimates from diffusion MRI fiber tracking. The same analysis pipeline as was used for the local 
connectome fingerprint was used to calculate leave-one-out cross-validation error for the 
traditional connectivity matrix. The d-prime values for the region-to-region connectivity matrices 
in dataset I, II, III, and IV were at 3.44, 2.06, 2.41, and 2.25, respectively. The classification 
error for datasets I, II, III, and IV were 3.6%, 13.65%, 11.81%, and 9.48%, respectively 
(estimated by leave-one-out cross validation). While the classification accuracy for the 
traditional connectivity matrices is still quite high and similar to what has previously been 
observed in resting state functional connectivity estimates 7, it is clear from these results that the 
greatest reliability at characterizing connectomic uniqueness comes from local connectome 
measures. 
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Similarity among genetically-related individuals and repeated scans 
The high uniqueness of the local connectome fingerprint opens the possibility for comparing not 
only differences but also the similarities between individuals. To this end, we used a publicly 
available dMRI dataset of 486 subjects from Human Connectome Project (2014, Q3 release), 
including 49 pairs of monozygotic (MZ) twins, 43 pairs of dizygotic twins (DZ) twins, and 96 
pairs of non-twin siblings. While the local connectome fingerprints of MZ twins show generally 
similar patterns at the coarse level (Fig. 4), there are also substantial individual differences 
between the twins that can still be observed along the fingerprints. Consistent with these 
qualitative comparisons, we found that MZ twins have smaller distances between fingerprints, 
followed by DZ twins, siblings, and unrelated subjects (Fig. 5A). It is noteworthy that all 
distance distributions have large overlapping regions (Fig. 5B), indicating that the distance 
between twins or siblings may often fall within the distribution of distances from genetically-
unrelated subjects. We further compared the similarity between twins and siblings. The similarity 
index of two local connectome fingerprints was calculated as a percentage of the mean distance 
between unrelated subjects (see Methods). On average, MZ twins have a similarity index of 
12.51±1.09%, whereas similarity for DZ twins and siblings is 5.14±1.34% and 4.47±0.59%, 
respectively (Fig. 5C). The difference in similarity index was significant across MZ twins, DZ 
twins, non-twin siblings, and genetically-unrelated subjects (F[3,51224] = 93.64, p < 0.001). 
Post-hoc comparisons using Tukey-Kramer tests showed significant differences between any two 
groups (all p < 0.001), except between DZ twins and non-twin siblings (p = 0.9348). We further 
compared the similarity between genetically related subjects with that of repeat scans. On 
average, the similarity index of repeated scans was 72.43±0.74% in dataset I, 69.82±1.05% in 
dataset II, 67.02±2.75% in dataset III, and 65.85±1.39% in dataset IV (Fig. 5C), suggesting a 
high similarity. Although MZ twins have a higher similarity index compared with DZ twins and 
siblings, the similarity is not as high as what is observed in repeat scans of the same individuals. 

Influence of time interval on the similarity between repeated scans 
Finally, we examined how time impacts the uniqueness of local connectome fingerprints. The 
timeframe between repeat scans varied across the four datasets. The subjects in dataset I (n=11) 
were scanned three times, with all sessions occurring within 16 days. The subjects in dataset II 
(n=24) were scanned twice with 1-3 months apart. In dataset III (n=60), 14 of the subjects were 
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scanned twice about six months apart, and 44 of the subjects in dataset IV (n=118) were scanned 
a second time one year later. Consistent with our hypothesis, the similarity in repeat scans of the 
same individual was strongest within 16 days (72.43% similarity in dataset I), whereas the 
similarity was lower at 1~3 months (69.82% dataset II), six months (67.02% dataset III) and one 
year (65.85% for dataset IV)(Fig. 5C). The similarity index was significantly different across all 
four datasets (F[3,111] = 5.26, p = 0.002). Using linear regression, we next modeled the 
influence of time on connectomic uniqueness (Fig. 5D). As expected, the impact of the interval 
on similarity index was negative (-0.01989, p < 0.001) meaning that within-subject similarity 
dropped at a rate of 0.02% per day or 7.26% per year. The longer intervals between repeat scans 
led to reduced similarity index of the same subject, suggesting that local connectome fingerprint 
may capture structural changes due to life experience. 

Discussion 
Local white matter architecture is so unique and highly consistent within an individual that it can 
be used as a reliable personal identifier or fingerprint. This uniqueness is more salient than what 
is observed when looking at the region-to-region connectivity reported by either dMRI or fMRI, 
as typically done in human connectomic studies 2, 7, 19. In comparison, the region-to-region 
connectivity achieved a classification accuracy around 90~97%. This accuracy is very close to its 
functional counterpart7, that was recently reported to have an accuracy of 92-94% in whole brain 
identification and 98-99% in frontoparietal network. Although both region-to-region connectivity 
approaches have accuracy greater than 90%, the performance remains substantially lower than 
the perfect classification in 17,398 leave-one-out rounds and an estimated error of 10-6 achieved 
by local connectome fingerprint.  

It is important to point out that the local connectome fingerprint reflects different aspects of 
underlying white matter architecture than more popular diffusivity-based metrics such as 
fractional anisotropy, axial diffusivity, and radial diffusivity. Diffusivity quantifies how fast 
water diffuses in tissue 20 and is sensitive to the structural integrity of the underlying fiber 
bundles 15, such as axonal loss and demyelination 21-24. By contrast, SDF quantifies how much 
water diffuses along the fiber pathways16, 25 and is sensitive to density characteristics of white 
matter such as the compactness of the fiber bundles. As illustrated in our qualitative analysis 
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(Fig. 1C), while the density characteristics vary substantially among normal populations, the 
diffusivity measurements do not show obvious differences between subjects. This highlights how 
diffusivity-based metrics may not be as sensitive to individual uniqueness as density-based 
measures, suggesting that our local connectome fingerprint is picking up on very specific 
structural characteristics of underlying white matter systems. 

Local connectome fingerprints also allow us to explore various factors that may have an 
influence on the uniqueness of the connectome. For example, several studies have already shown 
high heritability in cortical connections 26, 27 and white matter integrity 28-31; however, high 
heritability may not necessarily imply that a large portion of the differences or similarity 
observed in phenotypes are due to genetic factors 32. Here local connectome fingerprint can 
provide this complementary information by quantifying the similarity between genetic-related 
subjects. This is illustrated in our twin analysis: monozygotic twins share only 12.51% similarity 
in local white matter architecture while repeat scans for the same subject have a much high 
similarity hovering around 60-70%. A considerable portion of the individuality in local 
connectome could be driven by environmental factors such as life experience and learning, and 
monozygotic twins still exhibit high individuality in their connectome. 

The fact that uniqueness of the local connectome fingerprint decreases at a rate of 0.02% per day, 
or 7.26% per year, raises many questions about which factors (genomic, social, environmental, 
or pathological) sculpt local white matter systems. Of course, white matter integrity also varies 
with normative development 33-35, a portion of which may be determined genetically. This 
warrants more longitudinal and genetic analysis to identify specific contributions of genetic and 
environmental factors on the uniqueness of connectomic structure, with an aim to understand 
how those factors interact with abnormal brain circuits in neurological and psychiatric disorders.  

Methods 
Five independently collected dMRI datasets 
The first dataset included a total of 11 subjects (9 males and 2 females, age 20~42). Each subject 
had three diffusion MRI scans within 16 days on a Siemens Trio 3T system at the University of 
California, Santa Barbara. The diffusion MRI was acquired using a twice-refocused spin-echo 
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EPI sequence. A 257-direction full-sphere grid sampling scheme was used. The maximum b-
value was 5000 s/mm2. TR = 9916 ms, TE = 157 ms, voxel size = 2.4×2.4×2.4 mm, FoV = 
231×231 mm.  

The second set of data included a total of 24 subjects (8 males and 16 females, age 22 ~ 74). All 
participants were scanned on a Siemens Tim Trio 3T system at National Taiwan University, and 
all subjects had their second scan at 1~3 months. The diffusion MRI was also acquired using a 
twice-refocused spin-echo EPI sequence. The diffusion scheme is a 101-direction half-sphere 
grid sampling scheme with b-max = 4000 s/mm2 (b-table available at http://dsi-
studio.labsolver.org). TR = 9600 ms, TE = 130 ms, voxel size = 2.5×2.5×2.5 mm.  

The third set of data included a total of 60 subjects (30 males and 30 females, age 18 ~ 46). All 
participants were scanned on a Siemens Verio 3T system at Carnegie Mellon University, and 14 
of the 60 subjects had their second scan at 6 months. The diffusion MRI was also acquired using 
a twice-refocused spin-echo EPI sequence. A 257-direction full-sphere grid sampling scheme 
was used. The maximum b-value was 5000 s/mm2. TR = 9916 ms, TE = 157 ms, voxel size = 
2.4×2.4×2.4 mm, FoV = 231×231 mm.  

The fourth set of diffusion data included a total of 118 subjects (91 males and 27 females, age 22 
~ 55) scanned on a Siemens Verio 3T system at the University of Pittsburgh. 44 of them had 
another scan after one year. The diffusion images were acquired on a Siemens Verio scanner 
using a 2D EPI diffusion sequence. TE=96 ms, and TR=11100 ms. A total of 50 diffusion 
sampling directions were acquired. The b-value was 2000 s/mm2. The in-plane resolution was 
2.4 mm. The slice thickness was 2.4 mm. 

The fifth dataset was from the Human Connectome Projects (Q3, 2014) acquired by Washington 
University in Saint Louis and University of Minnesota. The diffusion MRI data were acquired on 
a Siemens 3T Skyra scanner using a 2D spin-echo single-shot multiband EPI sequence with a 
multi-band factor of 3 and monopolar gradient pulse. A total of 486 subjects (195 males and 291 
females, age 22 ~ 36) received diffusion scans. The spatial resolution was 1.25 mm isotropic. 
TR=5500 ms, TE=89.50 ms. The b-values were 1000, 2000, and 3000 s/mm2. The total number 
of diffusion sampling directions was 90, 90, and 90 for each of the shells in addition to 6 b0 
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images. The total scanning time was approximately 55 minutes. The scan data included 49 pairs 
of monozygotic twin, 43 pairs of dizygotic twins, and 96 pairs of siblings. 

The procedures for this archival study were approved by the local institutional review board at 
Carnegie Mellon University.  

Local connectome fingerprinting 
As shown in Fig. 2A, the diffusion MRI data of each subject were reconstructed in a common 
stereotaxic space using q-space diffeomorphic reconstruction (QSDR)36, a white matter based 
nonlinear registration approach that directly reconstructed diffusion information in a standard 
space: 

    



 

i
iii J

JDbZJ ur
urgrru ˆ)(
ˆ)(,ˆ6sinc)φ(W)(ˆψ

φ
φ

0φ    (1) 

 
 ûψ  is a spin distribution function (SDF)16 in the standard space, defined as the density of 

diffusing spins that have displacement oriented at direction û . φ is a function that maps a 
coordinate r from the standard space to the subject’s space, whereas φJ  is the Jacobian matrix of 
φ, and φJ  is the Jacobian determinant. iW  is the diffusion signals acquired by a b-value of bi 
with diffusion sensitization gradient oriented at iĝ .   is the diffusion sampling ratio controlling 
the displacement range of the diffusing spins sampled by the SDFs. Lower values allow for 
quantifying more from restricted diffusion. D is the diffusivity of free water diffusion, and Z0 is 
the constant estimated by the diffusion signals of free water diffusion in the brain ventricle36. A 
  of 1.25 was used to calculate the SDFs, and 1 mm resolution was assigned to the output 
resolution of the QSDR reconstruction. 
 
A common axonal directions atlas, derived from the HCP dataset (this HCP-488 atlas is freely 
available at http://dsi-studio.labsolver.org), was used to provide the sampling direction û  to 
sample the magnitude of SDFs along axonal directions in the cerebral white matter. Gray matter 
was excluded using the ICBM-152 white matter mask (MacConnel Brain Imaging Centre, 
McGill University, Canada). The cerebellum was also excluded due to different slice coverage in 
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cerebellum across subjects. Since each voxel in the cerebral white matter may have more than 
one axonal direction, multiple measurements can be extracted from the SDF of the same voxel. 
The density measurements were sampled by the left-posterior-superior voxel order and compiled 
into a sequence of scalar values (Fig. 2B). Since the density measurement has arbitrary units, the 
local connectome fingerprint was scaled to make the variance equal to 1. The computation was 
conducted using DSI Studio (http://dsi-studio.labslover.org), an open-source diffusion MRI 
analysis tool for connectome analysis. The source code and the local connectome fingerprint data 
are publicly available on the same website. 
 
Estimation of classification error 
For each dMRI dataset, the root-mean-squared error between any two connectome fingerprints 
was calculated to obtain a matrix of paired-wise distance. The calculated distance was used as 
the feature to classify whether two connectome fingerprints are from the same or different 
person. The default linear discriminant analysis (LDA) classifier provided in MATLAB 
(MathWorks, Natick, MA) was used, and for each dataset, the classification error was estimated 
using leave-one-out cross-validation. We also used a modeling method to calculate the 
classification error if the leave-one-out cross- validation did not yield any classification error. 
The histograms of the within-subject and between-subject distances were fitted by the 
generalized extreme value distribution using the maximum likelihood estimator (gevfit) provided 
in MATLAB. To consider the non-negativity of the distribution, the estimated k parameter of the 
generalized extreme value distribution was set to be greater than 0. The classification error was 
estimated by the probability of a within-subject distance greater than a between-subject distance 
estimated using the generalized extreme value distribution. 

Comparison with traditional connectivity matrix 
To compare local connectome fingerprint with region-to-region connectivity matrix, 
deterministic fiber tracking37 was applied using a 100,000 uniform white matter seeding points, a 
maximum turning angle of 60 degrees, and a default anisotropy threshold determined using 
Otsu’s threshold38. The cortical regions were defined through a nonlinear registration between 
the subject anisotropy map and the HCP-488 anisotropy map in DSI Studio and parcellated using 
the Automated Anatomical Labeling (AAL) atlas. The matrix entries were quantified by the 
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number of tracks ending in each of the region pairs. The root-mean-squared error can also be 
calculated from any two connectivity matrices. The classification error was also estimated and 
compared with local connectome fingerprint. 

Similarity index 
The similarity index between two local connectome fingerprints was calculated by 100%×(1-
d1/d0), where d1 was the distance between two fingerprints, and d0 was the expected value of the 
distances between unrelated subjects scanned by the same imaging protocol. The similarity 
between MZ twins, DZ twins, non-twin siblings, and repeated scans was calculated and 
compared. To further study the similarity between repeat scans, the similarity indices were 
regressed against their scanning time intervals to study the effect of time interval on the local 
connectome fingerprints. 
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Fig. 1  
The uniqueness of local connectome structure revealed by the density of diffusing water. (A) The 
spin distribution function (SDF) calculated from diffusion MRI quantifies the density of 
diffusing water along axonal fiber bundles. The magnitudes of SDF at axonal directions provide 
density-based measurements to characterize axonal fiber bundles. (B) The density measurements 
obtained from SDF show individuality between-subjects #1, #2, and #3 (intensity scaled between 
[0 0.8]). The density of diffusing water varies substantially across different portions of the corpus 
callosum. The repeat measurements after 238 (subject #1), 191 (subject #2), and 198 (subject #3) 
days still present a consistent pattern that captures individual variability. (C) In contrast to the 
SDF shown in (B), the fractional anisotropy derived from diffusivity shows no obvious 
individuality between the same subjects #1, #2, and #3 (intensity also scaled between [0 0.8]). 
This is due to the fact that diffusivity, which quantifies how fast water diffuses, does not vary a 
lot in normal axonal bundles. 
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Fig. 2  
Local connectome fingerprinting. (A) Local connectome fingerprinting is conducted by first 
reconstructing diffusion MRI data into a standard space to calculate the spin distribution 
functions (SDFs). A common fiber direction atlas is then used to sample the density of diffusing 
water along the principle directions in the cerebral white matter. The sampled measurements are 
compiled in a left-posterior-superior order to form a sequence of characteristic values as the local 
connectome fingerprint. (B) One local connectome fingerprint is shown in different zoom-in 
resolutions. A local connectome fingerprint has a total of 513,316 entries of scalar values 
presenting a unique pattern that can characterize the individuality of the human brain 
connections. (C) The local connectome fingerprint of subject #1, #2, and #3 and their repeat 
measurements (lower row) after 238, 191, and 198 days, respectively. At a coarse level, the local 
connectome fingerprint differs substantially between three subjects, whereas those from the 
repeat scans show a remarkably identical pattern, indicating the uniqueness and reproducibility 
of the local connectome fingerprint. 
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Fig. 3 
Within-subject versus between-subject distance in the local connectome fingerprints calculated 
from four datasets. (A) The first row shows the matrix of pair-wise distance between any two 
local connectome fingerprints is calculated for dataset I, II, III, and IV (column 1, 2, 3, and 4). 
The second row shows the location of the within-subject (blue) and between-subject distance 
(red). The distance matrix shows substantially high between-subject distance and low within-
subject distance. (B) The histograms of within-subject (blue) and between-subject (red) distance 
in the connectome fingerprints calculated from the dataset I, II, III, and IV (column 1, 2, 3, and 
4). The first row shows the histograms, and the second row shows the box plot of their quartiles. 
In these four datasets, within-subject (blue) and between-subject (red) distances have perfect 
separation. In the last row, the histograms are fitted with generalized extreme value distribution 
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(also shown by solid curves in the second row) to estimate the classification error of the 
connectome fingerprint. The estimated classification error was 4.25×10-6, 9.97×10-7, 5.3×10-3, 
and 5.5×10-3 for dataset I, II, III, and IV, respectively. The larger error in dataset III and IV could 
be due to their longer scanning interval (6 months and one year). 
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Fig. 4 
The local connectome fingerprints of monozygotic (MZ) twins, dizygotic (DZ) twins, and non-
twin siblings. 3 pairs of connectome fingerprints are shown for each population group, and each 
pair is annotated by a connecting line. The connectome fingerprints between MZ twins show the 
grossly similar patterns though between-subject difference can still be observed. DZ twins and 
siblings also have a similar pattern, but the between-subject difference becomes more prominent.  
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Fig. 5 
The similarity between genetically related subjects versus similarity between repeat scans. (A) 
The histograms show the distribution of the distance between monozygotic (MZ) twins, 
dizygotic (DZ) twins, non-twin siblings, and genetically unrelated subjects calculated from their 
local connectome fingerprints. In average, MZ twins have the lowest distance between each twin 
pair, followed by DZ twins and siblings. However, the distance still ranges around 1, and there 
are unrelated subjects whose distance is less than several MZ twins. (B) The upper figure shows 
the histograms of the distance fitted with generalized extreme value distribution, whereas lower 
figure shows the box plot of the distribution to facilitate comparison. The four distributions are 
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mostly overlapped, indicating that twins and siblings still have high individuality similar to 
genetically-unrelated subjects. (C) The similarity between genetically related subjects (blue, red, 
orange bars) is substantially lower than the similarity between repeated scans (white bars), 
suggesting that genetically-related subjects still have high uniqueness in their local connectome 
fingerprints. (D) The scatter plot shows the similarity of repeated scans with respect to the scan 
interval. The longer intervals between repeat scans result in lower similarity index, suggesting 
that local connectome fingerprint may capture structural changes due to life experience. 
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