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Abstract 

Suppose that members in a universal set are categorized based on observations, and that categories 

can be stratified based on the average of observations within each category. Two sorting extremes can be 

obtained from the perspective of arbitrariness of an order of observations. The first sorting extreme is an 

increasing order of observations on ascendingly stratified categories. The second sorting extreme is a 

decreasing order of observations on ascendingly stratified categories. Hierarchical association coefficient 

(HA-coefficient) algorithm is based on a principle that any order of observations in stratified categorization 

can be placed between the two sorting extremes. The algorithm produces a proportion of how much an 

order of observations in stratified categorization is close to the first sorting extreme, or how much an order 

of categorized observations is distant from the second sorting extreme. This paper introduces a theory about 

the HA-coefficient algorithm, and shows its applications with example data. In addition, proving a 

reliability of the algorithm is shown through a simulation.  
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Introduction 

Hierarchical association coefficient algorithm (HA-coefficient algorithm) can work with 

observations in stratified categorization based on the average of observations within each category. The 

algorithm is fundamentally based on a concept that any marginal data between observations and categorical 

identifiers is one outcome out of all possible permutations of the observations against the categorical 

identifiers. From any marginal data between observations and categorical identifiers, two sorting extremes 

can be obtained by arranging the observations and categorical identifiers in the following manner: (1) the 

observations are increasingly sorted into ascendingly stratified categories; (2) the observations are 

decreasingly sorted into the same categories. The algorithm produces a proportion for arbitrariness of an 

order of observations given ascendingly stratified categorization between the two sorting extremes, and the 

proportion is called hierarchical association coefficient (HA-coefficient). Thus, the former and latter sorting 

extremes always produce the HA-coefficient = 1 and HA-coefficient = 0, respectively, so that the HA-

coefficient indicates how much the observed order of observations is close to the increasing order of 

observations given ascendingly stratified categories. The algorithm measures the HA-coefficient in a 

physical manner based on distance and area.  

This paper introduces the HA-coefficient algorithm, and shows its applications with three different 

situations. Also, it presents a demonstration that the algorithm produces a consistent result with three 

different simulated data sets that actually share the same pattern across the simulations. This result proves 

that the algorithm is reliable. The development of HA-coefficient algorithm was initially motivated to detect 

single nucleotide polymorphisms (SNPs) of high association with traits of interest in soybean breeding. As 

many disciplines need an analysis of data in stratified categorization, the HA-coefficient algorithm can be 

implemented to a wide spectrum of studies. 
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Theory and method 

Hierarchical association distance metric  

Assume that data satisfy the following conditions:  

(1) Every member has a positive real value as observation.  

(2) Every member has either nominal or ordinal identifier that determines its own category. 

(3) All categorical averages of observations are different. 

Under the above conditions, the observations and categories for every member are marginal. And, multiple 

categories can be stratified based on the average of observations within each category. Based on these 

aspects, Definitions 1 to 4 were established: 

 

Definition 1. “Hierarchical” defines that categorical groups are stratified based on the average of 

observations within each category.  

Definition 2. Suppose that multiple categories are sorted in ascending order based on the average of 

observations within each category. “Top categorization” defines a condition that observations arranged in 

ascending order within each category lead to ascending order across the multiple categories.  

Definition 3. Suppose that multiple categories are sorted according to the top categorization according to 

Definition 2. “Bottom categorization” defines a condition that observations arranged in descending order 

within each category lead to descending order across the multiple categories.  

Definition 4. “Hierarchical association” defines a proportion representing how close the top and observed 

categorizations are, or how distant the bottom and observed categorizations are. 

 

In Definition 1, “hierarchical” attribute is a crucial concept since all computations for the HA-coefficient 

algorithm require categories to be sorted in a hierarchical manner. Note that permutation of observations 

within a category does not affect a calculation associated with the hierarchical association. Suppose that 

multiple categories are hierarchically arranged in a universal set. The set can be divided into two subsets at 

any categorical boundary. For convenience, say that the left and right subsets were obtained, denoted by L 

and R, respectively. If the sum of the L subset in the top categorization is greater than that in the observed 

categorization, say that L is Category 1 and its sum is x1, and that the R subset is Category 2 and its sum is 

x2. Likewise, R and L can be Categories 1 and 2, respectively.  
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Definition 5. Suppose that multiple categories and observations are marginal and hierarchically stratified 

in a universal set. The set can be divided into two subsets (S1 and S2) at any categorical boundary. A sum 

of either S1 or S2 must be greater in the top categorization than in the observed categorization, which is 

defined by Category 1, and its sum is defined as x1. Thus, the other category and its sum are defined by 

Category 2 and x2, respectively.  

 

Definition 5 defines a rule to determine the x1 in Category 1. As a component of HA-coefficient algorithm, 

the hierarchical association distance metric (HADM) calculates a d coefficient. Say that the d coefficient 

given a variable x is denoted by 푑 , where a subscript x on 푑  refers to x1 according to Definition 5. And 

say that g1 and g2 are x1 and x2, respectively, in the top categorization according to Definition 5, and that 

r1 and r2 are x1 and x2, respectively, in the observed categorization according to Definition 5. The 푑  can 

be can be calculated as: 

푑 =
푔1
푔2

·
푦
푥

 –  1  

where x = the variable; 푑  = the d coefficient given x; y = the sum of all observations; g1 = the x1 in the top categorization according 

to Definition 5; g2 = the x2 in the top categorization according to Definition 5.  

 

The Equation 1 can be derived: 

푦 = 푔1 + 푔2 = 푟1 + 푟2 

Substitute r1 by x as a variable, so that r2 = y - x. Note that x is a variable referring to x1. Then, 

 

푑 = 푔1

푟1
· 푟2

푔2
= 푔1

푔2
· 푦−푥

푥
=  푔1

푔2
· (푦

푥
− 1)   

where r1 = the x1 in the observed categorization; r2 = the x2 in the observed categorization; x = the variable; 푑  = the d coefficient 

given x; y = the sum of all observations; g1 = the x1 in the top categorization according to Definition 5; g2 = the x2 in the top 

categorization according to Definition 5.  

 

It is always true that 1 ≤  and 1 ≤ , so that 1 ≤ 푑 . The top categorization according to Definition 2 

always produces 푑  = 1 as a minimum d coefficient, while the bottom categorization according to 

Definition 3 always results in maximum 푑 . The 푑  can be interpreted as a hierarchical association distance 

(Equation 1) 
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given x = x1 from any categorization. In dealing with 푑 , the categories 1 and 2 have to be hierarchical 

according to Definition 1. If they are not hierarchical, 푑  is unsolvable.  

 

 

HA-coefficient algorithm with two categories 

The 푑  against x in the HADM (Equation 1) is shaped into a curve (see Figure 1). An area delimited 

between two x1s corresponding to the bottom and top categorizations refers to cumulative hierarchical 

association distances from all possible permutations of the observations against marginal categorical 

identifiers, and say the area as W. Likewise, an area delimited between two x1s corresponding to the bottom 

and observed categorizations refers to cumulative hierarchical association distances between the two 

categorizations, and say the area as R. The W and R can be calculated as follows:  

W = 푔1
푔2 ∫ 푦

푥  –  1.
. 푑푥 = [푦 ln(푥) − 푥] .

. 

R = 푔1
푔2 ∫ 푦

푥  –  1.
. 푑푥 = [푦 ln(푥) − 푥] .

. 

Ultimately, the HA-coefficient can be obtained as a ratio between R and W as follows:  

HA =
R
W

=
[푦 ln(푥) − 푥] .

.

[푦 ln(푥) − 푥] .
. 

where HA = the HA-coefficient; x = the variable; W = the whole area that x can formulate between two x1s corresponding the 

bottom and top categorizations; R = the realized area that x can formulate between two x1s corresponding the bottom and observed 

categorizations; obs. = the x1 in the observed categorization; top. = the x1 in the top categorization; bot. = the x1 in the bottom 

categorization; y = the sum of all observations; g1 = the x1 in the top categorization; g2 = the x2 in the top categorization. 

 

It is always true that 0 ≤ R ≤ W, so that the HA-coefficient results in a proportion. The HA-coefficient 

represents the hierarchical association according to Definition 4. So far, two categories of data were 

addressed. In reality, it is general that observations can be classified into more than two hierarchical 

categories. The calculation of HA-coefficient can be extended to data with any number of hierarchical 

categories.  

 

 

(Equation 2) 

(Equation 3) 

(Equation 4) 
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HA-coefficient algorithm with any number of categories 

In case that two or more categories have equal averages, it should be carefully considered that the 

categories can be merged into a single category. If the categories cannot be merged due to other attribute, 

푑  is unsolvable because the categories are not hierarchical according to Definition 1. In case that a 

universal set nests n categories, the set can be classified into two subsets of n-1 at each categorical boundary. 

With multiple categories, the HA-coefficient algorithm can be implemented following two procedures: (1) 

computing component HA-coefficients of n-1 by applying Equation 4 to two subsets of n-1 at each 

categorical boundary, and (2) averaging all component HA-coefficients. As averaging method, either of 

harmonic and arithmetic means can be taken. The methods for computing the HA-coefficient can be 

denoted as follows: 

 

(1) HA-coefficient algorithm based on harmonic mean, 

 

 HA = ∏
   [ ( ) ] .[ ]

.[ ]    

 [ ( ) ] .[ ]

.[ ]     
                                    

 

(2) HA-coefficient algorithm based on arithmetic mean, 

HA = 

∑
    [ ( ) ] .[ ]

.[ ]   

   [ ( ) ] .[ ]

.[ ]  

 

where HA = the HA-coefficient; 푥 = the variable; n = the total number of categories; k = the variable referring to an order of 

categorical boundary; y = the sum of all observations; bot.[ ] = the x1 in the bottom categorization given the k’th categorical 

boundary; obs.[ ] = the x1 in the observed categorization given the k’th categorical boundary; top.[ ] = the x1 in the top 

categorization given the k’th categorical boundary. 

  

Both Equations 5 and 6 produce identical results, and are complete forms of the HA-coefficient algorithm. 

In implementing the algorithms, classifying a universal set into two subsets of n-1 at each categorical 

boundary provides the following properties: 

(Equation 5) 

(Equation 6) 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 16, 2016. ; https://doi.org/10.1101/043844doi: bioRxiv preprint 

https://doi.org/10.1101/043844


 

7 
 

   (1) computing the component HA-coefficients at each categorical boundary happens with entire data, 

which allows to obtain an ultimate HA-coefficient by simply averaging;  

   (2) any change of 푑  from permuting observations against categorical identifiers can be captured through 

discovering a change of a ratio between x1 and x2.  

 

 

Independent categories and dependent categories 

 The categorization can be hierarchical in pre-determined (pre-hierarchical) or post-determined 

(post-hierarchical) manner. If categories are determined independent from the observations, categories are 

pre-hierarchical. If categories are determined dependent on the observations, categories are post-

hierarchical. 

  

Definition 6. When categorical hierarchy is determined independent from observations, categories are “pre-

hierarchical”. When categorical hierarchy is determined dependent on observations, categories are “post-

hierarchical”.  

 

It is important to note that Definition 6 determines a feasibility that HA-coefficient = 0. The independent 

categorization makes it feasible that HA-coefficient = 0, while the dependent categorization does not make 

it feasible that HA-coefficient = 0. This will be addressed in detail across the three example situations in 

Results and Discussion.  

 

 

Curve of 풅풙 

Figure 1 shows a part of curve for 푑  = − 1 , which is derived from SNP1 scores 

given soybean yield quantity at the boundary between M0  and (M1, M2)  in Table 1 (see Table 2 also). On 

the graph, x-axis and y-axis represent a scale of x and 푑 , respectively. The 푑  curve can be used to 

determine both the W and R with setups of both area-in and area-out. On the graph, the x can always have 

a value between two x1s responding to the bottom and top categorizations. Note that the x can also be equal 
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to either of x1s responding to the bottom and top categorizations, which will result in HA-coefficient = 0 

or HA-coefficient = 1, respectively. As shown in Figure 1, the 푑  curve can be drawn only in quadrantⅠ, 

which indicates that only positive real numbers are available as observations.  

 

Figure 1. A curve for 푑  = − 1 . This shows a curve of 푑  against x given the first boundary of SNP1 data in Table 1 

(see Table 2 also), in which x- and y-axes represent scales for x and 푑 , respectively. The whole area (W) and realized area (R) 

can be determined with area-in and area-out under the curve delimited. The graph was generated using online graph calculator at 

https://www.desmos.com/calculator. 

 

 

Data generation for simulations 

 Six simulated data sets were generated using R package (R Core Team, 2014). Of these, three were 

used to show an application of the HA-coefficient algorithm, and the other three were used to prove a 

reliability of the algorithm. The first three data sets were manually adjusted after generation.  

 

 

Simulations to prove a reliability of HA-coefficient algorithm  

 In order to see if the HA-coefficient algorithm is robust, three simulated data sets in simple design 

were generated. The simulated data sets have two to four categories. In the simulation, the following two 

questions were focused on, which are: 

푑  

x 
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(1) Do the resulting HA-coefficients gradually increase as categorizations change from arbitrary to 

top? 

(2) Does the HA-coefficient algorithm produce the same result for three different shapes of data that 

are inherently in the same pattern?  

As an example, the simulated data set where three categorical identifiers and observations are marginal was 

made in the following steps: 

1. Create a vector consisted of 1,200 numbers from 3 to 3,600 at an interval of 3 in ascending order. 

These values will be used as observations.  

2. Create a 1,200 by 1,200 matrix filled with categorical identifiers, 0, 1, and 2 generated randomly. 

3. Divide the matrix equally into three areas, vertically. Subsequently, overwrite 0, 1, and 2 on the 

area above the diagonal at each of the third, respectively. 

4. Append the vector for the observations to the right end of the matrix. By doing so, the matrix size 

becomes 1,200 by 1,201.  

5. Create a repository vector that will contain the 1,200 resulting HA-coefficients.  

6. Calculate the HA-coefficient with a pair of columns for identifiers and observations across the 

matrix of identifiers.    

7. Append the resulting HA-coefficients to the repository vector. 

8. Repeat the above steps 100 times, and average the 100 repository vectors.  

 

Above procedures illustrate generating the simulated data that have three categories. The simulated data 

carrying the two and four hierarchical categories were prepared in a manner of dividing the entire matrix 

into two and four sub-areas, respectively. The simulated data sets can be seen in Figure 2. The designs of 

the simulations intend to output gradually increasing HA-coefficients as a column of the matrix changes 

from left to right. In order to draw a smooth plot, the entire cycle of the simulation was repeated 100 times, 

and a plot was obtained through averaging.  
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Results and discussion 

Let us apply the HA-coefficient algorithm to the following three example situations. The three 

examples refer to varying situations based on a dependency between categories and observations according 

to Definition 6. Situation 1 presents that categories are dependent on observations, while Situations 2 and 

3 show that categories are independent from observations. Furthermore, Situation 3 is an example that 

categories are determined by multi-dimensional observations.  

 

Situation 1: Categories fully depending on observations  

Table 1 displays simulated genotypes and phenotypes, which are categorized based on single-

nucleotide polymorphisms (SNPs) and observations for yield (kg/ha), respectively. The SNPs classify 20 

soybean varieties into three categories (0, 1, and 2), and a hierarchical level among categories can be 

determined based on the average of yield within each category. This is a typical post-hierarchical case 

according to Definition 6 since the hierarchical categories are obtained depending on observations. This 

condition makes it impossible to arrange an order of observations to be in the bottom categorization since 

the hierarchical ranking of the categories can be altered with permuting the observations against categorical 

identifiers. Once categories are fixed based on the observations, the bottom and top categories can be 

determined. The scores from each SNP were resorted according to the top and bottom categorizations, 

which are tabulated in Supplementary table 1. By referring to the resorted observations, the x1s and x2s for 

each SNP can be determined according to Definition 5 at each categorical boundary. Table 2 shows a 

summary for both x1s and x2s for the three SNPs in Table 1. Basically, Table 2 shows a division of the total 

sum into two sums at each categorical boundary. Therefore, the total sums are consistent across all 

boundaries, but the divided sums vary depending on the classification.  
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Table 1. Simulated SNP scores and yield quantity (kg / ha) for 20 soybean varieties. At the bottom of table, the rounded mean 

within each category are summarized, and its hierarchical ranking is shown in parentheses.  

ID SNP1 SNP2 SNP3 Yield (kg/ha) 

Soybean.1 0 0 1 3636 

Soybean.2 1 1 1 3866 

Soybean.3 0 0 2 4012 

Soybean.4 0 1 2 3583 

Soybean.5 1 1 0 4075 

Soybean.6 2 2 2 3957 

Soybean.7 1 0 2 4054 

Soybean.8 2 2 1 3927 

Soybean.9 0 2 2 3255 

Soybean.10 2 1 2 3994 

Soybean.11 2 0 2 3904 

Soybean.12 0 1 0 3927 

Soybean.13 2 2 0 3603 

Soybean.14 0 0 0 4196 

Soybean.15 0 1 2 3573 

Soybean.16 1 2 2 3082 

Soybean.17 0 2 0 2711 

Soybean.18 0 0 0 3613 

Soybean.19 2 0 1 3955 

Soybean.20 1 0 2 3998 

Mean 0 (M0) 3612 (1) 3921 (3) 3688 (1) 
Total 

74921 
Mean 1 (M1) 3815 (2) 3836 (2) 3846 (3) 

Mean 2 (M2) 3890 (3) 3423 (1) 3741 (2) 
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Table 2. Summary of x1 and x2 extracted from Table 1. The x1 and x2 were determined at each categorical boundary according to 

Definition 5. By applying the HA-coefficient algorithm to the x1s, the HA-coefficient can be obtained. Hierarchical ranking of 

categories is ascendingly present within parentheses underneath each SNP name in the first column. The second column shows 

classifications of the whole set using a vertical bar and parentheses, and x1 and x2 are marked within square brackets. As all the 

three SNPs have three categories, the whole set can be classified at two different categorical boundaries at a time for each SNP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SNP 
Classification 

of x1 and x2 

Category 

type 
x1 x2 Total 

SNP1 
(M0, M1, M2) 

M0 | (M1, M2) 

[x2 | x1]  

Observed  42415 32506 74921 

Top  43999 30922 74921 

Bottom 38753 36168 74921 

(M0, M1) | M2 

[x2 | x1] 

Observed  23340 51581 74921 

Top  24329 50592 74921 

Bottom  19807 55114 74921 

SNP2 
(M2, M1, M0) 

M2 | (M1, M0) 

[x2 | x1] 

Observed  54386 20535 74921 

Top  55114 19807 74921 

Bottom 50592 24329 74921 

(M2 ,M1) | M0 

[x2 | x1] 

Observed  31368 43553 74921 

Top  32241 42680 74921 

Bottom  27056 47865 74921 

SNP3 
(M0 M2, M1) 

M0 | (M2,M1) 

[x2 | x1] 

Observed  52796 22125 74921 

Top  55114 19807 74921 

Bottom  50592 24329 74921 

(M0,M2) | M1 

[x2 | x1] 

Observed  15384 59537 74921 

Top  16337 58584 74921 

Bottom  12621 62300 74921 
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By applying Equation 5 to the x1s from Table 2, the HA-coefficients for the three SNPs were calculated as 

follows: 

 

HA = [ ( ) ]
[ ( ) ]

· [ ( ) ]
[ ( ) ]

 = 0.765 

HA  = [ ( ) ]
[ ( ) ]

· [ ( ) ]
[ ( ) ]

 = 0.855 

HA = [ ( ) ]
[ ( ) ]

· [ ( ) ]
[ ( ) ]

 = 0.636 

 

where HA = the HA-coefficient for SNP1; HA = the HA-coefficient for SNP2; HA = the HA-

coefficient for SNP3; x = the variable. 

 

From the above results, it was identified that SNP2 has the strongest hierarchical association, followed by 

SNP1 and SNP3. 

 

 

Situation 2: Categories independent from observations 

 When hierarchical ranking of categories is given from an external source, it satisfies a pre-

hierarchical condition that categories and observations are independent according to Definition 6. Table 3 

shows the scores from two Mathematics quizzes for the same 27 students. Based on the scores from Quiz 

1, a teacher classifies all students into three hierarchical categories upon the following criteria: 

   Category 3: 70 ≤ score 

   Category 2: 60 ≤ score < 70 

   Category 1: score < 60 
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If the ranking of scores from Quiz 2 is preserved or exchanged within each category based on Quiz 1, there 

will be no difference on hierarchical association between results from the two quizzes. However, new scores 

from different quiz for the same students are often differently ranked across categories, so that the teacher 

could raise the following questions. Was the categorical stratification based on Quiz 1 maintained in the 

result from Quiz 2? If not, how much of categorical solidity based on Quiz 1 remains in the result from 

Quiz 2? In order for the HA-coefficient algorithm to answer this question, the categorization determined 

based on Quiz 1 has to be fixed, and applied to the result from Quiz 2. The scores from Quiz 2 were resorted 

according to the top and bottom categorizations, which are tabulated in Supplementary table 2. Table 4 

presents the x1s and x2s at each categorical boundary. The HA-coefficient were calculated by applying 

Equation 5 to the x1s from Table 4 as follows: 

HA = [ ( ) ]
[ ( ) ]

· [ ( ) ]
[ ( ) ]

=  0.715 

where HA = the HA-coefficient; x = the variable. 

 

The above result indicates that the result from Quiz 2 keeps 71.5 % of solidity of categorization determined 

by Quiz 1.  
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Table 3. Simulated scores of the two Mathematics quizzes for 27 students. The three categories were 

classified based on the scores from Quiz 1, in which Categories 3, 2, and 1 satisfy conditions: 70 ≤ score, 

60 ≤ score < 70, and score < 60, respectively.  

Category ID 
Mathematics score 

Quiz 1 Quiz 2 

Category 3  

(C3) 

Student.1 88 79 

Student.2 83 82 

Student.3 81 80 

Student.4 87 73 

Student.5 78 70 

Student.6 71 52 

Student.7 71 75 

Student.8 75 61 

Category 2 

(C2) 

Student.9 69 57 

Student.10 68 77 

Student.11 68 67 

Student.12 67 59 

Student.13 66 54 

Student.14 66 46 

Student.15 64 66 

Student.16 62 53 

Student.17 61 85 

Category 1 

(C1) 

Student.18 58 68 

Student.19 58 69 

Student.20 57 51 

Student.21 56 61 

Student.22 55 72 

Student.23 52 61 

Student.24 52 67 

Student.25 48 75 

Student.26 50 68 

Student.27 49 43 
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Table 4. Summary of x1s and x2s extracted from Table 3. The first column shows hierarchical ranking of 

three categories (C1, C2, and C3) and classified sets (x1 and x2), in which a vertical bar is a boundary to 

classify the whole set, and parentheses collapse categories into the same set.  

 

 

 

 

 

 

 

 

Situation 3: Categories determined by multi-dimensional observations 

It is possible that multi-dimensional observations form a categorization. In this case, each 

dimension of observations influences the categorization. Table 5 displays simulated data about results from 

Mathematics and English quizzes. The table includes Mathematics scores, English scores, and average for 

the same 27 students, and the students are hierarchically categorized based on the average. Thus, the 

Mathematics and English scores are related to the categorization. The criteria for the categorization are as 

follows:  

   Category 3: 70 ≤ average 

   Category 2: 60 ≤ average < 70 

   Category 1: average < 60 

The size of each category and categorical classification of each student are determined based on the 

averages, so that this situation is pre-hierarchical. If the ranking from each quiz is preserved or exchanged 

within each category based on the averages, there will be no difference on hierarchical association between 

each quiz and average. However, the scores from the two quizzes were ranked across categories, so that the 

following questions could be raised. Was the categorical stratification based on the averages maintained in 

the result from each quiz? If not, how much of categorical solidity based on the averages remains in the 

Classification of 

x1 and x2 
Category 

type 
x1 x2 Total 

C1 | (C2, C3)  

[x2 | x1] 

Observed  1136 635 1771 

Top  1234 537 1771 

Bottom 1003 768 1771 

(C1, C2) | C3 

[x2 | x1] 

Observed  572 1199 1771 

Top  626 1145 1771 

Bottom  415 1356 1771 
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result from each quiz? To answer the questions using the HA-coefficient algorithm, the given categorization 

has to be fixed, and applied to the scores from each quiz. The scores were resorted according to the top and 

bottom categorizations, which are tabulated in Supplementary table 3. Table 6 shows the x1s and x2s at 

each categorical boundary. By applying Equation 5 to the x1s from Table 6, the HA-coefficients were 

calculated as follows: 

 

HA  = [ ( ) ]
[ ( ) ]

· [ ( ) ]
[ ( ) ]

 = 0.926 

HA  = [ ( ) ]
[ ( ) ]

· [ ( ) ]
[ ( ) ]

 = 0.911 

 

where HA = the HA-coefficient for the Mathematics scores given the averages; 

HA = the HA-coefficient for the English scores given the averages; x = the variable. 

 

The above results explain that the Mathematics and English scores keep 92.6 and 91.1 % of solidities of the 

categorization determined by the averages, respectively.  
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Table 5. Simulated scores of the Mathematics and English quizzes for 27 students. The three categories 

were classified based on the averages, in which Categories 3, 2, and 1 satisfy conditions: 70 ≤ average, 60 

≤ average < 70, and average < 60, respectively.  

Category ID 
Score 

Average 
Mathematics English 

Category 3 

(C3) 

Student.1 88 79 83.5 

Student.2 83 82 82.5 

Student.3 87 73 80.0 

Student.4 68 90 79.0 

Student.5 78 70 74.0 

Student.6 81 66 73.5 

Student.7 61 85 73.0 

Student.8 71 75 73.0 

Student.9 68 77 72.5 

Category 2 

(C2) 

Student.10 58 81 69.5 

Student.11 71 67 69.0 

Student.12 67 71 69.0 

Student.13 69 66 67.5 

Student.14 55 72 63.5 

Student.15 58 68 63.0 

Student.16 75 50 62.5 

Student.17 48 75 61.5 

Student.18 64 57 60.5 

Student.19 66 54 60.0 

Category 1 

(C1) 

Student.20 52 67 59.5 

Student.21 50 68 59.0 

Student.22 56 61 58.5 

Student.23 62 53 57.5 

Student.24 52 61 56.5 

Student.25 66 46 56.0 

Student.26 57 51 54.0 

Student.27 49 43 46.0 
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Table 6. Summary of both x1 and x2 extracted from Table 5. The second column shows hierarchical ranking 

of the three categories (C1, C2, and C3) and sets classified into x1 and x2, in which a vertical bar is a 

boundary to classify the whole set, and parentheses collapse two categories into the same set.  

Subject  
Classification of 

x1 and x2 

Category 

type 
x 1 x 2 Total 

Mathematics 

C1 | (C2,C3) 

[x2 | x1] 

Observed 1316 444 1760 

Top 1341 419 1760 

Bottom 1126 634 1760 

(C1,C2) | C3 

[x2 | x1] 

Observed 685 1075 1760 

Top 703 1057 1760 

Bottom 477 1283 1760 

English 

C1 | (C2,C3) 

[x2 | x1] 

Observed 1358 450 1808 

Top 1393 415 1808 

Bottom 1164 644 1808 

(C1,C2) | C3 

[x2 | x1] 

Observed 697 1111 1808 

Top 717 1091 1808 

Bottom 476 1332 1808 

 

 

Simulation to evaluate a reliability of HA-coefficient algorithm 

In order to verify a reliability of the algorithm, the simulation was conducted with the two following 

questions:  

(1)  As a categorization is getting from arbitrary to top, does the algorithm produce an increasing HA-

coefficient? 

 

(2) Does the HA-coefficient algorithm produce the same result for three different shapes of data that 

are inherently in the same pattern?  

 The above questions are very essential to evaluate the reliability of the algorithm. For the simulation, three 

data sets in square dimension (1,200 by 1,200) were generated. The first, second and third squares have 

two, three and four categorical identifiers within each column, respectively. Each simulated data set was 

vertically partitioned into two to four areas with equal size. And, a vector containing 1,200 numbers from 

3 to 3,600 at regular interval of 3 was appended at the right end of each matrix. Figure 2 visualizes the 
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structures of the simulated data. Within each square, each blue triangle is filled with the same categorical 

identifiers, but different blue triangles have different categorical identifiers. Yellow triangles refer to area 

for arbitrarily mixed categorical identifiers. Meanwhile, each figure has a green triangle with a slope, which 

implies an increasing pattern of observations. Thus, when pairing two columns for categorical identifiers 

and observations, an arrangement of categorical identifiers given the observations gradually transpositions 

from arbitrary to top as the column changes from left to right. A relationship between the categories and 

observations stays dependent to some degree of right column from the left end, but shifts to solid 

independent condition since averages for each category are gradually getting hierarchically solid as a 

column changes from left to right. The implementation of the HA-coefficient algorithm was repeated 100 

times with each simulated data to minimize a noisy fluctuation. Figure 3 shows three outcome plots, 

illustrating a steady increasing pattern. This returns a positive answer to the first question. Meanwhile, the 

shapes of the three plots in Figure 3 seemingly look closely similar, and each plot ranges between around 

0.75 and 1. Since the categorical identifiers and observations are post-hierarchical from the first column to 

some degree of depth to the right, these simulations do not allow to determine the bottom categorization 

same as explained in Situation 1. Therefore, it cannot happen that HA-coefficient = 0 with these simulations. 

Importantly, the three different simulations share two following properties: (1) equal proportions of 

identifiers according to the top categorization in column-wise comparison; (2) the identical observations in 

the same order. These two properties assure that the three different simulated data have the same pattern in 

a fashion of column-wise comparison. Therefore, in order for the HA-coefficient algorithm to be robust, 

the same results have to be obtained from the three simulations. Table 7 shows that the Pearson correlation 

coefficients among the three plots are remarkably close to one another. This returns a positive answer to 

the second question, and indicate that the averaging with n-1, where n is the number of categories, does not 

perturb calculating the HA-coefficient.   
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Figure 2. Three simulated data sets. (a), (b), and (c) are filled with categorical identifiers of two-, three-, 

and four-types, respectively. Each square includes multiple blue triangles. Within each square, the same 

identifiers are filled in each blue triangle, but different blue triangles have different identifiers. Yellow 

triangles contain arbitrary categorical identifiers, and green triangles on the right ends refer to a vector 

containing 1,200 observations from 3 to 3,600 at an interval of 3. If the left and right ends of columns are 

marginal, arbitrary categorization will be obtained, while the top categorization will be obtained if the 

1,200th and the right end columns are marginal.  

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

 

(c) 
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(a) 

 
(b) 

 
(c) 

 
Figure 3. Plots (a), (b), and (c) are drawn based on the HA-coefficients resulted from the simulated data in 

Figure 2 (a), (b), and (c), respectively. Each plot was obtained through averaging 100 repetitions of 

implementing the HA-coefficient algorithm.  
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Table 7. Pearson correlation coefficients among the three plots in Figure 3   

 

 

 

 

 

 

Conclusion 

Above, it was proven that the HA-coefficient algorithm returns a reliable result through the 

simulations. As long as the categories and observations are marginal, and categories are hierarchically 

stratified, the algorithm solves a reasonable proportion for HA-coefficient from data. It is important to note 

that the HA-coefficient is an objective measure rather than a statistical inference. The algorithm is easy to 

computerize, and its implementation does not require high computing power. The HA-coefficient algorithm 

was applied to real agricultural data including 4,312 SNPs and yield quantity for 5,180 soybean lines, its 

computation was done in 34 seconds on a laptop (Dell E6540) using R. This validates that the algorithm 

runs very fast on an ordinary computer. As many disciplines deal with data in hierarchical stratification, the 

algorithm will be useful for a wide spectrum of studies.    
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Supplementary table 1. Simulated data displaying arrangements of SNP scores according to the observed, top, and bottom categorizations against 

decreasingly sorted yield quantity (kg/ha). 

ID 
SNP1 SNP2 SNP3 Yield 

(kg/ha) Observed Top Bottom Observed Top Bottom Observed Top Bottom 

Soybean.14 0 2 0 0 0 2 0 1 0 4196 

Soybean.5 1 2 0 1 0 2 0 1 0 4075 

Soybean.7 1 2 0 0 0 2 2 1 0 4054 

Soybean.3 0 2 0 0 0 2 2 1 0 4012 

Soybean.20 1 2 0 0 0 2 2 2 0 3998 

Soybean.10 2 2 0 1 0 2 2 2 0 3994 

Soybean.6 2 1 0 2 0 1 2 2 2 3957 

Soybean.19 2 1 0 0 0 1 1 2 2 3955 

Soybean.8 2 1 0 2 1 1 1 2 2 3927 

Soybean.12 0 1 1 1 1 1 0 2 2 3927 

Soybean.11 2 1 1 0 1 1 2 2 2 3904 

Soybean.2 1 0 1 1 1 1 1 2 2 3866 

Soybean.1 0 0 1 0 1 0 1 2 2 3636 

Soybean.18 0 0 1 0 1 0 0 2 2 3613 

Soybean.13 2 0 2 2 2 0 0 0 2 3603 

Soybean.4 0 0 2 1 2 0 2 0 2 3583 

Soybean.15 0 0 2 1 2 0 2 0 1 3573 

Soybean.9 0 0 2 2 2 0 2 0 1 3255 

Soybean.16 1 0 2 2 2 0 2 0 1 3082 

Soybean.17 0 0 2 2 2 0 0 0 1 2711 
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Supplementary table 2. Resorted scores from the Mathematics Quiz 2 according to the observed, top, and 

bottom categorizations. Students are hierarchically categorized based on Quiz 1 according to the following 

criteria: 70 ≤ score, 60 ≤ score < 70, and score < 60.  

Category ID 

Mathematics score 

Quiz 1 
Quiz 2 

Observed Top Bottom 

Category 3 

(C3) 

Student.1 88 79 85 43 

Student.2 83 82 82 46 

Student.3 81 80 80 51 

Student.4 87 73 79 52 

Student.5 78 70 77 53 

Student.6 71 52 75 54 

Student.7 71 75 75 57 

Student.8 75 61 73 59 

Category 2 

(C2) 

Student.9 69 57 72 61 

Student.10 68 77 70 61 

Student.11 68 67 69 61 

Student.12 67 59 68 66 

Student.13 66 54 68 67 

Student.14 66 46 67 67 

Student.15 64 66 67 68 

Student.16 62 53 66 68 

Student.17 61 85 61 69 

Category 1 

(C1) 

Student.18 58 68 61 70 

Student.19 58 69 61 72 

Student.20 57 51 59 73 

Student.21 56 61 57 75 

Student.22 55 72 54 75 

Student.23 52 61 53 77 

Student.24 52 67 52 79 

Student.25 48 75 51 80 

Student.26 50 68 46 82 

Student.27 49 43 43 85 
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Supplementary table 3. Resorted scores from the Mathematics and English quizzes according to the 

observed, top, and bottom categorizations. Students are hierarchically categorized based on averages 

according to the following criteria: 70 ≤ average, 60 ≤ average < 70, and average < 60. 

 

Category ID 
Mathematics score English score 

Average 
Observed Top Bottom Observed Top Bottom  

Category 3 
(C3) 

Student.1 88 88 48 79 90 43 83.5 

Student.2 83 87 49 82 85 46 82.5 

Student.3 87 83 50 73 82 50 80.0 

Student.4 68 81 52 90 81 51 79.0 

Student.5 78 78 52 70 79 53 74.0 

Student.6 81 75 55 66 77 54 73.5 

Student.7 61 71 56 85 75 57 73.0 

Student.8 71 71 57 75 75 61 73.0 

Student.9 68 69 58 77 73 61 72.5 

Category 2 
(C2) 

Student.10 58 68 58 81 72 66 69.5 

Student.11 71 68 61 67 71 66 69.0 

Student.12 67 67 62 71 70 67 69.0 

Student.13 69 66 64 66 68 67 67.5 

Student.14 55 66 66 72 68 68 63.5 

Student.15 58 64 66 68 67 68 63.0 

Student.16 75 62 67 50 67 70 62.5 

Student.17 48 61 68 75 66 71 61.5 

Student.18 64 58 68 57 66 72 60.5 

Student.19 66 58 69 54 61 73 60.0 

Category 1 
(C1) 

Student.20 52 57 71 67 61 75 59.5 

Student.21 50 56 71 68 57 75 59.0 

Student.22 56 55 75 61 54 77 58.5 

Student.23 62 52 78 53 53 79 57.5 

Student.24 52 52 81 61 51 81 56.5 

Student.25 66 50 83 46 50 82 56.0 

Student.26 57 49 87 51 46 85 54.0 

Student.27 49 48 88 43 43 90 46.0 
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