Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Divergence of gene regulatory network linkages during specification of ectoderm and mesoderm in early development of sea urchins

View ORCID ProfileEric M. Erkenbrack, Eric H. Davidson
doi: https://doi.org/10.1101/044149
Eric M. Erkenbrack
aDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125, United States of America
1Current address: Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, 06511, United States of America
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Eric M. Erkenbrack
  • For correspondence: erkenbra@caltech.edu eric.erkenbrack@yale.edu
Eric H. Davidson
aDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125, United States of America
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Developmental gene regulatory networks (GRNs) are assemblages of gene regulatory interactions that direct ontogeny of animal body plans. Studies of GRNs operating in early development of euechinoid sea urchins has revealed that little appreciable change has occurred since their divergence approximately 90 million years ago (mya). These observations suggest that strong conservation of GRN architecture has been maintained in early development of the sea urchin lineage. To test whether this is true for all sea urchins, comparative analyses of echinoid taxa that diverged deeper in geological time must be conducted. Recent studies highlighted extensive divergence of skeletogenic mesoderm specification in the sister clade of euechinoids, the cidaroids, suggesting that comparative analyses of cidaroid GRN architecture may confer a greater understanding of the evolutionary dynamics of developmental GRNs. Here, we report spatiotemporal patterning of 55 regulatory genes and perturbation analyses of key regulatory genes involved in euechinoid oral-aboral patterning of non-skeletogenic mesodermal and ectodermal domains in early development of the cidaroid Eucidaris tribuloides. Our results indicate that developmental GRNs directing mesodermal and ectodermal specification have undergone marked alterations since the divergence of cidaroids and euechinoids. Notably, statistical and clustering analyses of echinoid temporal gene expression datasets indicate that regulation of mesodermal genes has diverged more markedly than regulation of ectodermal genes. Although research on indirect-developing euechinoid sea urchins suggests strong conservation of GRN circuitry during early embryogenesis, this study indicates that since the divergence of cidaroids and euechinoids developmental GRNs have undergone significant divergence.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted August 02, 2016.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Divergence of gene regulatory network linkages during specification of ectoderm and mesoderm in early development of sea urchins
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Divergence of gene regulatory network linkages during specification of ectoderm and mesoderm in early development of sea urchins
Eric M. Erkenbrack, Eric H. Davidson
bioRxiv 044149; doi: https://doi.org/10.1101/044149
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Divergence of gene regulatory network linkages during specification of ectoderm and mesoderm in early development of sea urchins
Eric M. Erkenbrack, Eric H. Davidson
bioRxiv 044149; doi: https://doi.org/10.1101/044149

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Developmental Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4237)
  • Biochemistry (9147)
  • Bioengineering (6786)
  • Bioinformatics (24023)
  • Biophysics (12137)
  • Cancer Biology (9545)
  • Cell Biology (13795)
  • Clinical Trials (138)
  • Developmental Biology (7642)
  • Ecology (11716)
  • Epidemiology (2066)
  • Evolutionary Biology (15518)
  • Genetics (10650)
  • Genomics (14332)
  • Immunology (9492)
  • Microbiology (22857)
  • Molecular Biology (9103)
  • Neuroscience (49030)
  • Paleontology (355)
  • Pathology (1484)
  • Pharmacology and Toxicology (2572)
  • Physiology (3848)
  • Plant Biology (8338)
  • Scientific Communication and Education (1472)
  • Synthetic Biology (2296)
  • Systems Biology (6196)
  • Zoology (1302)