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Abstract

A major challenge of data-driven biomedical research lies in the col-
lection and representation of data provenance information to ensure repro-
ducibility of findings. In order to communicate and reproduce multi-step
analysis workflows executed on datasets that contain data for dozens or hun-
dreds of samples, it is crucial to be able to visualize the provenance graph at
different levels of aggregation. Most existing approaches are based on node-
link diagrams, which do not scale to the complexity of typical data prove-
nance graphs. In our proposed approach we reduce the complexity of the
graph using hierarchical and motif-based aggregation. Based on user action
and graph attributes a modular degree-of-interest (DoI) function is applied to
expand parts of the graph that are relevant to the user. This interest-driven
adaptive provenance visualization approach allows users to review and com-
municate complex multi-step analyses, which can be based on hundreds of
files that are processed by numerous workflows. We integrate our approach
into an analysis platform that captures extensive data provenance information
and demonstrate its effectiveness by means of a biomedical usage scenario.

1 Introduction

Recent advances in biomedical research enable the rapid acquisition of data from
biomedical samples for clinical and pre-clinical studies. The bioinformatics work-
flows employed to analyze such data incorporate many distinct steps and tools that
often result in long workflows. Moreover, the complexity increases with repeated

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2016. ; https://doi.org/10.1101/044164doi: bioRxiv preprint 

https://doi.org/10.1101/044164
http://creativecommons.org/licenses/by/4.0/


Toolbarc

Provenance Graph

File Tool

Layer

Change Indicator

Analysis

DOI Components

Analysis Timeline a

Workflow Instance

Analysis Input Group

Info Panelb

Figure 1: The provenance graph (a) is aggregated and filtered based on the se-
lected analysis execution time and the weighted degree-of-interest (DoI) compo-
nents (b). In the top center of the graph, two horizontally aligned workflows show
a compound layer node, where the top node represents the layer itself while two
workflows are extracted based on their specific DoI value exceeding a predefined
threshold. The toolbar (c) allows users to switch between node type specific views
(layer, analysis, analysis input group, workflow instance) and to change the at-
tribute mapping onto nodes.

workflow execution and number of processed samples. In the long run, the anal-
yses associated with a biomedical study become hard to maintain, compare, and
reproduce. To address this issue, all parameter modifications and workflow exe-
cutions need to be captured as provenance information. Workflows may also be
modified or executed multiple times with different parameters, or use a different
dataset as input—resulting in a complex data provenance graph. Most existing
visualization approaches are based on node-link diagrams, which usually do not
scale well to large provenance graphs of dozens to hundreds of nodes. Hence, a
major challenge is to effectively visualize such graphs in order to allow analysts
understand the dependencies between different files in a dataset.

In recent work by Ragan et al. [RESC15], provenance is characterized by the
supported provenance type and purpose. According to their organizational frame-
work for provenance, our approach operates on data provenance containing all exe-
cuted workflows together with their parametrization as well as their in- and output
files. The purpose of our visualization is to recall the analysis history, enabling
analysts to better understand complex analyses, and to present the information to
both colleagues who are involved in project and others that are not part of the team,
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such as the general public. Replication and action recovery (undo/redo), however,
are not direct goals of our visualization as this is typically handled by the tools that
capture and manage data provenance information.

The primary contribution of this paper is AVOCADO (Adaptive Visualization
of Comprehensive Analytical Data Origins), an interactive provenance graph visu-
alization approach that visually aggregates the data provenance graph by exploiting
the inherent topological structure of the graph. Based on the aggregation, we then
expand relevant parts of the graph interactively using a multi-attribute degree-of-
interest (DoI) function. As a secondary contribution, we integrate the visualization
approach into the Refinery Platform [Ref15a] that captures, manages, and allows
users to operate on data provenance information of bioinformatics workflows. We
demonstrate the effectiveness of our visualization by means of a usage scenario.

2 Background

In the past decade, biomedical research has transitioned from being primarily hypo-
thesis-driven to a data-driven endeavor. This has been the result of the availability
of large amounts of heterogeneous data from genomics studies, electronic health
records, imaging data, and other modalities. To analyze such data, complex bioin-
formatics workflows are employed that usually operate on files that are run through
a series of specialized tools. In particular the analysis of genomic data, e.g., from
studies that aim to identify driving mutations in cancer or to pinpoint genetic vari-
ants that are causing rare diseases, several multi-step workflows are commonly
employed for quality control, preprocessing and data normalization, identification
of statistically significant differences between cases and controls, identification of
correlations, and other higher-level analyses, e.g., to identify changes in gene ex-
pression levels associated with a particular genomic mutation.

The failure to reproduce the results of a large number of such studies has raised
major concerns in the biomedical research community and triggered several efforts
to address this issue [BE12, HG13, BI15, Buc15]. The reasons why such studies
fail to reproduce are diverse and range from inadequate statistical power, publi-
cation of incomplete or wrong study protocols, to unavailability of experimental
raw data [Kai15]. In particular the failure to record and share data provenance
information for published data frequently prevent results of computational anal-
yses from being reproduced. Even when such information is published, it can
be extremely challenging to reproduce a study [GBLZ∗15]. A number of bioin-
formatics data analysis systems have been developed in recent years that aim to
track data provenance automatically and comprehensively (e.g., Kepler [ABJF06],
Taverna [WHe13], Galaxy [GNT10], VisTrails [BCS∗05]). However, they lack ad-
equate visualization tools to review and communicate this provenance information,
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Figure 2: A workflow provenance graph consists of multiple workflow executions
over time. (a) Each execution requires one or more input files and applies a work-
flow template, containing a sequence of tools and files. (b) The provenance graph
can be visualized at multiple aggregation levels (AL) exploiting the hierarchical
structure of the graph. AL0 shows the connected workflow instances that are first
aggregated to analysis input groups at AL1 and further aggregated to analyses at
AL2. The aggregation methods are explained in Section 5.1.

which severely limits its value for reproducibility purposes.
A comprehensive effort to facilitate collaborative and reproducible biomed-

ical research is the open source Refinery Platform, which integrates data man-
agement and analysis. Refinery handles data at the file level and facilitates the
execution of workflows on one or more input files in the Galaxy bioinformatics
workbench [Gal15]. For each of these analyses, Refinery automatically tracks
comprehensive data provenance, including workflow templates applied, workflow
parameters, tool versions, input files, the user executing the analysis, and others.
Every analysis consists of one or more analysis input groups, which correspond
to the execution of a Galaxy workflow on a set of input files (see Figure 2). The
raw data sets are imported into Refinery as Investigation-Study-Assay (ISA-Tab)
files [RSBM∗10], which provide meta data and information about the generated
raw data. For example, if a user selects 10 files to be processed by a workflow
that takes one input file and produces one output file per input file, then the cor-
responding analysis would have 10 inputs and 10 outputs and would consist of 10
analysis input groups. Every analysis uses only exactly one workflow template.
Along with the meta data attributes that users can assign to files in Refinery, the
data provenance information represents a richly annotated graph that contains all
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information necessary to reproduce the findings of a study performed with the help
of the system.

Data provenance graphs like those generated by Refinery and similar tools are
DAGs. They contain different types of nodes, primarily file nodes and tool nodes.
The latter represent the software that is used to process the files in a particular
workflow. As illustrated in Figure 2, tools and files in workflow templates, analysis
input groups, and analyses form a hierarchy that can be exploited to aggregate
parts of the graph, as discussed in Section 5. Furthermore, data provenance graphs
are often very broad, because each raw input file is run through the same set of
workflows, either with the same or different tool parameter settings. The length of
the path from a raw input file to a highly processed output file can include a dozen
steps or more, making the graph not only broad but often also deep.

3 User Tasks

In close collaboration with bioinformatics experts and with the input from biomedi-
cal researchers, we refined Lee’s et al. task taxonomy for graph visualization [LPP∗06]
to identify a series of tasks that need to be supported by an effective data prove-
nance graph visualization. The experts that we worked with are leading the de-
velopment of the Refinery Platform and related projects. They include one of the
authors of this publication. One of the authors who is a visualization expert worked
very closely with the Refinery Platform team for more than 12 months.

Task I: High-Level Overview Users want to start the exploration by inspecting
an aggregated version of the data provenance graph, to get an overview of which
workflows were run and how often, in which configuration, and at which point in
time. While further details should be hidden and summarized, an indication of the
actual graph’s depth and breadth is desired.
Task II: Attribute Encoding Analyses are annotated with a series of attributes
such as date and time of execution, in- and output files, and others. This informa-
tion should be accessible through the provenance visualization.
Task III: Drill-Down on Demand Due to the space constraints, the graph should
be presented as reduced as possible, but users still need to be able to view infor-
mation at the highest level of detail. The visualization should enable drill-down
operations into sub-graphs that are of current interest, while the rest of the graph
should be kept in a compact representation as context.
Task IV: Investigate Differences in Aggregates The precondition for aggregat-
ing analyses is a common workflow template. However, tool parameters, input
files, and the number of analysis input groups might be different, e.g., when an
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analysis was re-run with additional inputs or parameters. The data provenance vi-
sualization needs to provide users with the means to identify and investigate such
differences.
Task V: Investigate Causality A crucial task in the exploration of data prove-
nance graphs is to let users investigate the chain of files and transformations that
contributed to a certain analysis result.
Task VI: Search and Filter Users should be able to focus on certain aspects of
the graph, e.g., a specific workflow type, provenance data changes, or execution
time range, by triggering filter and search actions.

Although these tasks were developed with the input of experts who are working
in the biomedical domain, we expect that these tasks are also relevant to other
application domains in which similar analysis pipelines are employed for data-
driven research.

4 Related Work

Data provenance graphs are directed acyclic graphs (DAGs), which can lead to
the conclusion that much of the graph visualization literature might be relevant.
Two characteristics, however, make data provenance graphs special: (1) by design
they include a hierarchy, and, (2) they have an inherent temporal aspect. We first
summarize how suitable node-link diagrams and matrix representations—the fun-
damental graph visualization techniques—are for addressing the tasks introduced
above. We then discuss different graph aggregation strategies and techniques suit-
able for visualizing dynamic graphs. We end our review with an overview of the
state-of-the-art in provenance graph visualization.

Graph Representation The two fundamental techniques to visualize graphs are
node-link diagrams and matrix representations. Which technique works better, de-
pends on the graph type, graph size, and user tasks. Visualizing a graph as a matrix
is well suited for attribute-based tasks performed on weighted edges, where each
edge has an associated value [SS06]. However, for path-related tasks, such as fol-
lowing a path to address causality tasks (Task V), node-link diagrams are more
effective. Therefore, node-link representations are better suited to the characteris-
tics of data provenance graphs and for fulfilling the user tasks defined in Section 3.

Graph Aggregation Strategies The scalability of node-link diagrams is a well
studied area of research with a large body of existing work. To improve the scala-
bility for visualizing provenance graphs, we can utilize the hierarchy for aggrega-
tion [NJ04,EF10]—allowing users to explore the graph using drill-down (Task III)
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and roll-up (Task I) operations. In combination with semantic zooming [PF93], the
information shown can be adjusted to various levels of detail, avoiding visual clut-
ter. Further visualization techniques for group structures in graphs, as they appear
through aggregation, were surveyed recently [VBW15]. An alternative aggregation
method is motif discovery and compression [MSOI∗02, AS06] which reduces the
visual complexity through topology-based aggregation while preserving the basic
structure of the graph [MRSS∗13]. Instead of introducing new aggregations, large
graphs can also be decomposed in multiple hierarchies [SGKS15] and visualized
separately. Inlays shown on demand reintroduce the lost relationship between the
hierarchies.

A different approach is to distort the visual space, as typically done in lens-
based approaches [TAHS06]. Furnas [Fur86] visualized the nodes with differ-
ent level of detail, determining the degree-of-interest (DoI) based on the selected
node. The DOITree approach by Heer et al. [HC04] applies a multi-focal version
of that DoI function to visualize tree structures more effectively. Van Ham and
Perer [vHP09] extended the DoI approach to expand parts of a large static graph
showing the context, preserving the overall graph structure around a selected node.
Abello et al. [AHSS14] presented a DoI function that is divided into multiple com-
ponents to investigate large dynamic networks. Vehlow et al. [VKB∗15] use a
combination of continuous and/or discrete DoI functions to filter dense biological
networks and compare the extracted subnetworks subsequently. In this paper we
propose to combine hierarchical and motif-based aggregation with a user-driven
DoI to increase the scalability for exploration of large data provenance graphs.

Dynamic Graph Visualization In visualization, temporal aspects of data are
particularly challenging because of the unique characteristics of time, such as the
presence of hierarchical levels of granularity with irregular divisions, the occur-
rence of cyclic patterns, or the fact that time cannot be perceived by humans di-
rectly [AMST11] Researchers studied the temporal aspect also in the context of
graphs [KKC14, HSS15]. When dealing with data provenance graphs, the user
wants to investigate the differences between two or more analyses executed at dif-
ferent time points (Task IV). These differences can be visualized either by map-
ping time to time (animation) or time to position (juxtaposition and superimpo-
sition) [BBDW14]. Archambault [Arc09] uses superimposition of different snap-
shots in combination with hierarchical aggregation of adjacent nodes and path-
preserving coarsening. Similarly, a recent approach by van den Elzen et al. [vdE-
HBvW15] allows users to explore the evolution of networks by reducing snapshots
of the dynamic graph to points, forming a separate derived graph as an abstrac-
tion layer. These approaches visualize differences of large graphs well, however,
they are not suitable for the data provenance graph problem, as they do not support
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path-related causality tasks (Task V).

Provenance Graph Visualization Over the past years, workflow and prove-
nance management systems (e.g., VisTrails [BCS∗05]) have become more effec-
tive at capturing and storing provenance information. However, these systems pro-
vide no or only a basic visual representation of this information. For example,
Synapse [OEY∗13] tracks data provenance information to ensure reproducibility in
cancer genomics and other biomedical research and visualizes the data provenance
graph as node-link diagram. However, this approach does not scale to large graphs,
due to heavy usage of labels and icons, lack of visual glyph encoding, and missing
aggregation techniques, which is in conflict with Task I. In contrast, Provenance
Map Orbiter [MS11] uses aggregation techniques that compress the provenance
graph to a high-level overview. Additionally, it uses semantic zoom and supports
drill-down to show details on demand. However, the graph layout does not adapt
well to dynamic aggregation, resulting in additional edge crossings—hampering
Task V.

Overall, none of the discussed solutions is able to address all of the tasks for-
mulated above. The challenge is therefore to design an effective combination of
existing techniques and strategies for visualizing large data provenance graphs with
hundreds of nodes.

5 AVOCADO Visualization Concept

In AVOCADO we reduce the complexity of the data provenance graph through a
combination of graph aggregation and expansion strategies. Parts of the aggregated
graph that are relevant to the user are expanded on demand by applying a modular
degree-of-interest (DoI) function. This interest-driven adaptive approach allows
us to handle complex multi-step analyses that can be based on hundreds of files
processed by multiple workflows (see Section 2). Figure 1 illustrates our visual-
ization using a data provenance graph with 13 analyses containing 927 nodes from
different workflows.

5.1 Graph Aggregation Strategies

The first part of our approach reduces the data provenance graph through a combi-
nation of hierarchical and motif-based aggregation chosen to provide a meaningful
overview that preserves the overall graph structure (Task I).

Hierarchical Aggregation Hierarchical aggregation reduces the size of a dataset
by grouping related data items into aggregates based on the result of a recursive
clustering operation. In our case we make use of the inherent hierarchy contained in
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Figure 3: AL2 corresponds to AL2 in Figure 2(b). The additional aggregation
level AL3 groups similar analyses into layers using motif-based aggregation.

the data provenance graph. We aggregate workflow instances (AL0) into analysis
input groups (AL1) and further into analyses (AL2) (see Figure 2(b)). Analyses
contain all analysis input groups that share the same workflow execution time. In
AVOCADO we render all aggregation levels from top (AL2) to bottom (AL0) with
the result that analyses, analysis input groups and workflow instances are stacked
on top of each other. Each aggregation level is traversed in a breadth-first approach,
placing the nodes in a column-based layout.

Motif-Based Aggregation A motif compresses a graph or parts of it while pre-
serving the basic graph structure. Traditional motif discovery algorithms search
for all permutations of a fixed amount of nodes.In AVOCADO motifs visualize the
overall structure of the study. We aggregate analyses that use the same workflow
template into a combined layer node. Although the analyses use the same work-
flow template, they may vary in the number of incoming and outgoing files and the
number of contained analysis input groups. We describe these variations—called
layer delta—in the analyses by computing the similarity of all analyses within
one layer based on the number of incoming and outgoing files and the number
of contained analysis input groups. To make them comparable, we calculate the
difference of each analysis to the analysis with the earliest execution time (within
the same layer). Figure 3 illustrates the result of the motif-based aggregation from
analysis nodes (AL2) to the layer aggregation level (AL3), resulting in an even
higher compression.

5.2 User-Interest Driven Expansion

Based on a modular degree-of-interest (DoI), we expand regions that are of particu-
lar interest to the user. Our interest-driven expansion corresponds to an unbalanced
drill-down [EF10] and enables the user to investigate nodes on lower aggregation
levels, while keeping the overall graph as a context to analyze the driving changes
in the development of a study (e.g., workflow executions, recurring executions, and
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node is selected, which determines the compression or expansion of the node.

changes).
Each node has a DoI value assigned that reflects the current level of interest and

controls its aggregation. We identified and implemented five components that con-
tribute to the DoI of a node, grouped into user actions and analysis attributes. The
components filter part of the facet-browsing interface (see Section 5.4), highlight
when hovering over a node, and selected when clicking a node are driven by the
user, whereas workflow execution time and layer delta are based on node attributes
(see Figure 4). Each component consists of a weight, configured in a user interface
and the value provided by the node itself. The modular DoI function integrates all
DoI components into a single DoI value using the following equation:

doi(node) =
n

∑
i=1

wi × vi

∣∣∣ n

∑
i=1

wi = 1.

The DoI value for a given node is equal to the sum of all component weights
times the component values. The applied weights can be defined freely by the
user, where n is the total number of DoI components, w are the weights of the
components, which sum up to one, and vi is the attribute value. The values for the
user actions are binary, meaning the corresponding DoI component value is set to
1 (active = highlighted, selected, or passing a filter) or 0 (inactive). For the values
of analysis attributes we use a continuous and normalized scale ranging from 0 to
1.

In the next step, the DoI value drives the selection of the aggregation level of the
node (see Figure 4). We partition the DoI range into increasing aggregation levels.
When nodes switch aggregation levels due to user interaction, we use animated
expand and collapse transitions, preserving the mental map of the user. Note that
we can also extract analyses (AL2) with a high DoI value from a layer node (AL3)
without expanding them, as shown in the layer far right in Figure 1. With this
extraction technique analysis paths can be hidden that are currently not of interest
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to the user, while still showing interesting ones attached to the layer.
We visualize all DoI components as a stacked bar chart (see Figure 1(b)), which

allows the user to manipulate the weight of each component interactively [SGAS16].
When adjusting the weights, the other components adapt their weights proportion-
ally to ensure a sum of 1. Moreover, we allow the user to work with only a single
DoI component by activating or deactivating them individually. Applying a modi-
fied DoI function results in an update of the provenance graph representation.

5.3 Visual Encoding

The data provenance graph contains a series of node attributes that need to be
effectively encoded (Task II). Depending on the aggregation level, we create a
different node glyph.

Node Type Figure 5(a) illustrates the different node types. Nodes in AL0 are
visualized as primitive shapes, e.g, diamonds for tools, squares for raw input data,
and circles for files. We visually group the workflow using a bounding box with
a semi-transparent background that corresponds to the node of higher aggregation
levels. Nodes at the level between AL1 and AL3 are drawn as rectangles including
a unique icon representing the aggregation level (e.g., a cogwheel for analysis input
groups) and the number of aggregated child nodes. In case of layers (AL3) we
add the total number of child nodes to indicate possible expansions. For a better
distinction between analyses (AL2) and layers (AL3), we add a dashed outline to
the layer bounding box to indicate the aggregation.

Age We vary the brightness of the nodes to encode execution date and time of
analyses at all aggregation levels (see Figure 6), addressing Task IV. White rep-
resents the earliest and black the most recent analysis execution time. As layers
contain analyses that were created at different time steps, we use a black-to-white
gradient to encode the distribution of execution times within the layer node.

Change We present the layer delta as defined in Section 5.1 to address Task IV
by adding an asterisk—as shown in Figure 1(a)—to the layer node (AL3), in which
the similarity value is greater than zero.

Attribute Information By applying semantic zooming, we reduce the amount
of text labels based on available space. For the aggregated nodes of AL1 to AL3,
we show the workflow name next to the bounding box, together with the number
of child nodes and the number of incoming and outgoing edges. For workflow
instances in AL0, the displayed attribute value (e.g., tissue, factor, or file name) is
selectable by the user.

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2016. ; https://doi.org/10.1101/044164doi: bioRxiv preprint 

https://doi.org/10.1101/044164
http://creativecommons.org/licenses/by/4.0/


5.4 Interaction Techniques

In AVOCADO the user can navigate between the aggregation levels—drill-down
(Task III) and roll-up (Task I)—for each node individually or use the buttons in
the toolbar (see Figure 2(b)) that directly set all nodes to the selected aggregation
level. In addition, the user can search or filter nodes and highlight specific paths
to understand causality. We use animated transitions for all operations to provide
visual continuity and maintain the mental map of the user.

Filtering We provide two user interfaces for filtering nodes by attribute value and
time (Task VI). A facet-browsing interface limits the number of nodes based on the
contained attribute, such as tissue, drug, or cell type. In addition to the attribute-
based filter, analyses can be filtered by analysis execution time using an interactive
timeline, as illustrated in Figure 6. The date and time is mapped to the x-axis of
the timeline, while the analysis input group count is mapped to the y-axis. The
background corresponds to the time gradient (see Section 5.3). The user can move
filtering sliders to adjust the time range. Hovering over an analysis highlights the
corresponding node in the provenance graph view.

All filter operations result in more available screen space for regions with high
interest. Nodes that are affected by a filter can either be shown with reduced opacity
or hidden, i.e., removed from the graph, as shown in Figure 6(b) and (c). Hide
operations require a recomputation of the whole layout. We apply animations to
transition to the new layout.

Path Highlighting Enabling the user to investigate the steps that led to an anal-
ysis result is an important task (Task V). For each graph node we provide the se-
lection of the predecessors, i.e. the path leading to the selected node, and the
successors, i.e. all nodes derived from the selection. The path is highlighted by
changing the color of the edges (see Figure 1). Additionally, the user can apply
the DoI function to expand all nodes along the highlighted path, while keeping the
remaining nodes aggregated.

Note that the primary purpose of our interactive AVOCADO visualization is
to enable analysts to recall already executed multi-step analysis workflows. Al-
though, the presentation of findings is not a primary goal of AVOCADO, it is indi-
rectly supported via static screenshots that can be shared with others.
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6 Implementation

AVOCADO is implemented in JavaScript, jQuery, and D3 [BOH11] and handles
initialization, layout computation, motif-based compression, and rendering. We
use the Dagre [pet15] JavaScript library for the computation of layered graph lay-
outs for data provenance graphs with hundreds of nodes. Dagre implements the
2-layer crossing minimization [JM97] to reduce the number of edge crossings. Ad-
ditionally, we compute the order of analysis input groups (AL1) using a barycentric
heuristic. We also employ horizontal coordinate assignment [BK02] to balance the
speed of computation with layout aesthetics. The layout adapts dynamically to
user actions (e.g., filtering, collapse/expand) and DoI changes on a per node ba-
sis. Changing the DoI of any node recomputes the weighted sum, resulting in an
automatic adjustment of the aggregation level of the corresponding analysis. Our
motif-based compression algorithm uses a single breadth-first traversal to discover
motifs in the topology-sorted graph, as explained in Section 5.1. Analyses are
added in a repeated traversal to layers, based on their preceding motif sequence
and the motif itself. With this additional aggregation constraint, we avoid layering
analyses solely based on their workflow template without considering provenance
in preceding layers. We then calculate and normalize the numeric change metrics
of every layer. The assembled data provenance graph is stored in a hierarchical data
model where all aggregation levels inherit from a generic node object. Finally, the
graph and the filter components (i.e., timeline and DoI view) are rendered in SVG
using D3 [BOH11].

The data provenance graph visualization, multiple support views, and the user
interface are integrated into the dataset browser of Refinery. Our visualization ac-
quires datasets and their provenance graph over an internal RESTful API in JSON
format.

7 Usage Scenario

We demonstrate the functionality and effectiveness of the AVOCADO approach by
describing how it can be applied in a typical scenario in which an analyst needs to
recall, review, and interpret data provenance for a study that was conducted by a
collaborator (see Supplementary Video).

7.1 Data

Here we are using data provenance information from a simulated epigenomics
study. Epigenomics is the study of naturally occuring biochemical modifications
of the genome that influence gene regulation as well as many other essential cel-
lular processes. The prevalent technology to study these modifications is called
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Figure 5: Overview of the data provenance graph of the analysis. Colors represent
workflow instances QC (orange), Mapping (green), MACS2 (red), SPP (purple),
and Pileup (brown). (a) Fully expanded graph showing tool and file nodes. (b)
Graph aggregated to level AL3.
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a b c

Figure 6: Attribute mapping and time-based filtering. Darker nodes were created
more recently. (a) Data provenance graph aggregated to level AL3 with node color
representing time. No filtering applied. (b) Time filter applied in blend mode. (c)
Time filter applied in hide mode.

Figure 7: The filtered subgraph from Figure 6(c) is expanded to the workflow in-
stance level (AL0) with the tissue attribute mapped to the output nodes (“kidney”).

ChIP-seq (Chromatin Immuno-Precipitation sequencing) [Par09], which is based
on high-throughput sequencing. In our example, several workflows were applied
to raw ChIP-seq data in order to identify differences in the distribution of two mod-
ifications called H3K27ac and H3K4me3 along the mouse genome in two different
tissues (kidney and liver) after treatment with one of three different drugs (Alpha,
Beta, Mock). This results in a total of 12 combinations of experimental factors (2
modifications × 2 tissues × 3 treatments) and for each combination data from two
replicates was obtained, resulting in a total of 24 input files for this study.

We applied five different state-of-the-art workflows in this study (see Supple-
mentary Figures S4-S8), implementing a typical ChIP-seq analysis approach as
described by Park [Par09]. The specific workflows are (1) QC: a quality control
workflow to evaluate the quality of the input data. The output is a report. (2) Map-
ping: a workflow that maps the sequencing reads in the input data to the genome
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sequence. (3) MACS2 and (4) SPP: are peak calling tools that identify locations
within the genome to which a larger number of sequencing reads have been mapped
than elsewhere in the genome. (5) Pileup: This is a workflow that prepares the data
for visualization in a genome browser tool.

Due to the computational effort and cost that would be required to execute these
workflows on real data, we modified the workflows as follows: (1) We replaced
each tool in the workflows with corresponding dummy tools that only pass through
any input files that they receive. (2) Instead of real data, we used small text files.
All tools and workflows (see Figure 7) are available on Github [Ref15c] as well as
the meta data and data files used to run the analyses in Refinery [Ref15b].

Although these analyses were simulated at the tool level, the simulation has
no effect on the size and properties of the data provenance, which allows us to
demonstrate the capabilities of AVOCADO using the resulting graph.

7.2 Data Provenance Exploration

As a first step (see Supplementary Video), the analyst wants to gain an understand-
ing of the structure of the study (Task I). While the fully expanded data provenance
graph (Figure 5(a)) only provides a hint at the structure of the study, AVOCADO
provides a more compact and task-appropriate representation at the highest aggre-
gation level (AL3) (Figure 5(b)). Based on the colors of the aggregate nodes and
their labels, the analyst can quickly review which workflows were used and how
often. Furthermore, the aggregation of all redundancies in the graph used in level
AL3 still provides information about the order in which workflows were chained
together. Next, the analyst wants to understand in which order the collaborator
ran the analyses and switches the color mapping to the time encoding that maps
analysis execution time stamps (Task II) to a unidirectional linear color map (see
Figure 6(a)). In this view, the analyst discovers that a part of the analysis was
conducted very recently, while the rest was performed much earlier. The analyst
then applies the timeline filter (Task VI, see Figure 6(b)) to limit the graph visu-
alization to the most recent analyses and switches filtering into “hide” mode (see
Figure 6(c)). Next, the analyst drills down into the most recent set of analyses to
the workflow instance level (Task III, see Figure 7). Using the attribute mapper,
the analyst maps the tissue attribute onto the output files (Task II) and observes
that the most recent analyses were conducted only on kidney samples. By hover-
ing over the output nodes of the MACS2 and SPP workflows, the analyst reviews
additional attributes of those nodes and observes that both the narrow peak and the
region peak files of these tools were compressed with the Pileup workflow. The
analyst returns to the AL3 level and decides to investigate a layer node that has a
change indicator (Task IV) and contains analyses that were executed at different
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time points (see Figure S1(a)). After drill-down into the analyses (see Figure S1(b)
and (c)), the investigator finds that the collaborator re-ran the MACS2 workflow on
a pair of files but that the results were not processed any further. Following this ob-
servation, the analyst decides to investigate what the raw data associated with those
files is, in order to understand why these files were not processed. By switching
the DoI function to always expand selected paths to the highest level of detail, the
analyst selects the inputs of the MACS2 workflow and traces them back to the raw
data (Task V, see Figure S2(a) and (b)). Once the raw data files are identified, the
analyst then applies the reverse functionality and traces all results generated from
one of the raw data files. The analyst observes that this file was processed by both
the MACS2 and SPP workflows and that results of both tools were also processed
with the Pileup workflow (see Figure S3).

This usage scenario illustrates how AVOCADO can be applied in a typical
analysis session to address the tasks that we defined with domain experts and based
on the literature (see Section 3). In order to evaluate the AVOCADO approach for
a wider spectrum of scenarios and to refine it to also handle more extreme cases, a
comprehensive user study will have to be conducted as outlined in Section 9.

8 Discussion

Graph Layout The choice of layout algorithm is a crucial factor in the per-
ception of a graph visualization. We use a grid-based approach as described in
Section 5. The largest node (e.g., an expanded workflow) defines—similar to a
spreadsheet—the width for the remaining cells in the same column, which results
in long edges to nodes in adjacent columns. Other layout approaches might create
a more compact layout (e.g., [YDG∗15]), but must also consider the characteristics
of the data provenance graph (see Section 2) and the interactive requirements to
ensure fluid transitions when changing hierarchy levels. Another issue is the num-
ber of edge crossings, which decreases the readability of the graph. To minimize
the number of edge crossings, we re-order the nodes in a post-processing step after
creating the initial layout. A further aspect is the layout stability. In AVOCADO we
initially compute a stable layout, as explained in Section 6. However, interactions
such as drill-down/roll-up and DoI expansion change the size of one or multiple
nodes and therefore trigger a re-computation of the whole layout. This is neither
resource nor time efficient. In future work, this can be improved by recomputing
only parts of the graph that have changed together with their neighboring context
to make space in the layout.
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Scalability The AVOCADO approach relies on the hierarchical structure of the
provenance graph to achieve compression across the three aggregation levels AL1
through AL3. In order to scale, AVOCADO requires that each level has fewer
nodes than the level below, which is generally the case for biomedical workflows.
For each aggregation level the same scalability considerations as for general node
link diagrams apply. The current implementation performs well on typical biomed-
ical workflows that have around 1,000 nodes on AL0, but technical limitations lead
to decreased response times when the provenance graph grows beyond that size.

Degree-of-Interest Function The effect of a multi-component DoI value can be
hard to interpret. In practice, we observe that users tend to distribute the weights
equally or select only a single component at a time. A set of predefined configu-
rations for different tasks (auto-expand selected paths, fully expand clicked nodes,
etc.) would simplify the DoI interface but requires further user testing.

9 Conclusion and Future Work

In this paper we presented AVOCADO—an approach for visualizing workflow-
derived data provenance graphs. We visualize the multi-attribute time-dependent
graph as a node-link diagram. To reduce the size of the graph, we apply a combi-
nation of hierarchical and motif-based graph aggregation. We interactively expand
parts of the graph based on a modular DoI function that is based on graph attributes
and user-driven actions. In a usage scenario we demonstrate how our technique can
help analysts to gain a deeper understanding of complex multi-step analyses.

In the future we plan to conduct a user study to investigate how to balance mul-
tiple competing aggregation strategies effectively. In addition, we want to refine
our technique to support a wide range of use cases and scale the visualization to
thousands of nodes.

A deeper integration of AVOCADO into tools that capture and manage data
provenance information, such as the Refinery Platform, will be a step closer to-
wards actionable provenance. This will enable analysts to replicate previous anal-
yses results and also to relaunch particular analyses with a new or a different dataset
or parameters directly from the visualization. Analysts will not only be able to ex-
plore provenance information but also create new data provenance in a single visual
interface.
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