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Abstract

Culture independent techniques, such as shotgun metagenomics and 16S rRNA amplicon sequencing have
dramatically changed the way we can examine microbial communities. Recently, changes in microbial
community structure and dynamics have been associated with a growing list of human diseases. The
identification and comparison of bacteria driving those changes requires the development of sound statistical
tools, especially if microbial biomarkers are to be used in a clinical setting.

We present mizMC, a novel multivariate data analysis framework for metagenomic biomarker discovery.
mizMC accounts for the compositional nature of 16S data and enables detection of subtle differences when
high inter-subject variability is present due to microbial sampling performed repeatedly on the same
subjects but in multiple habitats. Through data dimension reduction the multivariate methods provide
insightful graphical visualisations to characterise each type of environment in a detailed manner.

We applied mizMC to 16S microbiome studies focusing on multiple body sites in healthy individuals,
compared our results with existing statistical tools and illustrated added value of using multivariate
methodologies to fully characterise and compare microbial communities.

I. INTRODUCTION

The human gut microbiome contains a dynamic and vast array of microbes that are essential
to health and provide important metabolic capabilities. Until recently, studying these complex
communities has been difficult and generally limited to classical phenotypic techniques Clarridge
(2004); Huse et al. (2010). With the improvement of high-throughput sequencing technology,
the ability to profile complex microbial communities without the need to individually culture
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organisms has increased dramatically. These sequencing methods range from RNA sequencing
(RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), metagenomic and 165 rRNA
gene amplification analysis of microbial populations. 16S rRNA sequencing in particular has
substantially changed our understanding of phylogeny and microbial diversity. The analysis of
this commonly used ribosomal RNA gene is quickly becoming a staple for profiling of micro-
bial communities from soil to humans. With this sequencing technique, hypervariable regions
within the gene are amplified, sequenced, and clustered into operational taxonomic units (OTU).
Taxonomic classification of representative sequences from each cluster is then aligned against a
database of previously characterised 16S ribosomal DNA (rDNA) reference sequences to indicate
the ‘species’ or unit of interest.

With the rapid development of sequencing technologies, drop in price and increase in sam-
ple size, more than ever is being asked of 165 data than just what microbes are present and
their abundances. Which microbial communities differ and why is the question at the centre
of understanding the contribution of the microbiome to human health White et al. (2009), as
alterations and changes in microbiomes have been associated with a range of diseases including
obesity Turnbaugh et al. (2008, 2009); Duncan et al. (2008), Crohn’s disease Gevers et al. (2014) or
ankylosing spondylitis Costello et al. (2015).

A number of statistical analysis tools have been proposed to examine differences between
microbial communities as well as identify features that are key to driving the differences. Many
tools were originally developed for digital count data (SAGE, RNA-sequencing), such as EdgeR,
DESeq, and DESeq2 Robinson and Smyth (2008); Anders and Huber (2010); Love et al. (2014),
which model the entity counts from a Negative Binomial distribution. In their thorough simulation
study, McMurdie and Holmes (2014) showed that the DESeq2 model performed well in simulated
microbiome data compared to other statistical methods developed for RNA-Seq differential abun-
dance analysis. Specific methods were also developed for microbiome data to accommodate for
their specific sparse nature. Originally, White et al. (2009) proposed Metastat, a non parametric
t-test based on permutation or a Fisher’s exact test when data are sparsely sampled. Their ap-
proach was a first step towards identifying organisms whose differential abundance correlated
with disease. Recently, Paulson et al. (2013) developed a zero-inflated Gaussian (ZIG) distribution
mixture model to account for biases due to undersampling of the microbial community.

Another characteristic of microbiome data is their underlying compositional structure due to
the varying sampling/sequencing depths between samples from the high-throughput sequencing
technologies. After identifying OTU in a sample, it is therefore common to convert each OTU
count into relative abundance (proportion) by dividing its count by the total number of counts
in each sample. However, as underlined by Aitchinson and colleagues Aitchison (1982), those
compositional data reside in a simplex sample space rather than the Euclidian space. Conventional
statistical methods such as correlation coefficients Lovell et al. (2015); Ban et al. (2015) or univariate
methods may therefore lead to spurious results as the independence assumption between predictor
variables is not met. The microbiome data analysis field is showing a growing list of references
which mention the limitation of such methods for compositional data Mandal et al. (2015);
Fernandes et al. (2014). Therefore, for co-expression analysis, the use of inverse covariance or
regularised inverse covariance matrices have recently been proposed for microbiome analysis
Kurtz et al. (2015); Ban et al. (2015). Since statistical data analysis is usually carried out in the
Euclidean geometry and not in the Aitchison geometry, Aitchison (1982) proposed to transform
compositional data into the Euclidian space using centered log ratio (CLR). CLR consists in
dividing each sample by the geometric mean of its values and taking the logarithm. Standard
univariate and multivariate methods can then be applied on the CLR data Mandal et al. (2015);
Kalivodova et al. (2015).
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One major drawback of univariate statistical approaches commonly used for 165 rRNA data
is that they test each OTU feature individually Robinson and Smyth (2008); Anders and Huber
(2010); Paulson et al. (2013), therefore disregarding interactions or correlations between features.
On the contrary, multivariate methods treat the entire subset of microbial abundances as a whole,
and enable insights into how microbial communities modulate and influence biological pathways.
Only a few multivariate approaches have been proposed for 165 analysis, including the Bayesian
framework ALDex2 Fernandes et al. (2014) for compositional data, and LEfSe Segata et al. (2011).
However those approaches still use univariate tests (Welch’s t- or Wilcoxon rank test) to assess the
significance of each OTU.

Most multivariate approaches are used to visualise diversity patterns only. Amongst those,
Principal Coordinate Analysis (PCoA, a.k.a multidimensional scaling) is an unsupervised approach
based on sample-wise distance/dissimilarity matrices such as Bray-Curtis Bray and Curtis (1957),
unweighted Lozupone and Knight (2005) or weighted Unifrac Lozupone et al. (2007) to scale
for species abundance Gower (1998). Between-class analysis Dolédec and Chessel (1987) is a
supervised approach combining PCoA in a supervised framework to segregate sample groups.
Those exploratory multivariate approaches give a first insight into similarities between samples,
body sites or habitats, but they cannot help identifying key indicator species that discriminate the
different groups of samples.

Another critical issue in microbiome data analysis is high inter-subject variability Turnbaugh
et al. (2009), which is often reduced with an appropriate experimental repeated-measures design
where each subject acts as its own control. Thus, microbial sampling is performed repeatedly on
the same subjects over different habitats. Such experimental design has been widely adopted by
community profiling studies such as the Human Microbiome Project (HMP, Human Microbiome
Project Consortium (2012a,b)) which aims are to define a ‘healthy’ microbiome community by
characterising different body sites in the same subjects. However, very few statistical approaches
have taken advantage of this design and accommodate for inter-subject variability.

We introduce mixMC, a multivariate analysis framework or 16S compositional data to identify
OTU features discriminating multiple groups of samples mixMC addresses the limitations of
existing multivariate methods for microbiome studies and proposes unique analytical capabilities
compared to existing statistical methodologies: it can handle repeated-measures experiments and
multiclass problems; it provides an internal feature selection procedure to highlight important
discriminative features, and friendly interpretable graphical outputs to better understand how
microbial communities contribute to each habitat. We applied our approach to multiple body site
studies in healthy individuals from HMP and the study from Koren et al. (2011), compared it with
existing statistical approaches for microbiome analysis and provide thorough interpretations of
the microbial communities unraveled during the multivariate analysis process.

II. METHODS

We analysed publicly available 165 data from the NIH Human Microbiome Project and cross-
compared our results with the microbiome study from Koren et al. (2011). The data were processed
by the open-source bioinformatics software QIIME Caporaso et al. (2010) for the 16S variable
region 1-3. We first describe the different processing, and normalisation steps, and the statistical
methods applied in this study, summarised in Figure 1A.
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Figure 1: Comparison between multivariate and univariate statistical analysis frameworks for 16S mi-
crobiome data.(A) Multivariate mizHC framework including processing/mormalisation, optional repeated
measures design, unsupervised and supervised analyses, (B) Univariate framework, including normalisation
and optional repeated measures design analysis
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Data processing and normalisation

One of the characteristics of taxonomic data is that features are often absent from most samples
(zero counts), which makes preprocessing and normalisation steps crucial when the aim is to
describe microbial communities.

Prefiltering. Work by Bokulich et al. (2013) demonstrated that strict quality filtering of reads
greatly improves taxonomy assignment and alpha diversity measures for microbial community
profiling. After removing samples with a very low number of total OTU counts (less than 10), our
prefiltering step consisted in removing lowly abundant OTU as these OTU may not be informative
to fully characterise microbial environments. OTU were removed if their average abundance across
all samples was below 0.01%. While this prefiltering step may result in a very small number of
remaining OTU to analyse, it avoids spurious results in the downstream statistical analysis and
counteracts sequencing error. The threshold is the default value proposed in QIIME and also used
in other microbiome studies (Knights et al. (2011); Arumugam et al. (2011) to cite a few).

Normalisation. The issue of sparse counts also needs to be accounted for during normalisation
Paulson et al. (2013). Thus, the normalisation technique needs to be chosen carefully as it can
have strong repercussions in the statistical results. So far, two types of normalisations have been
proposed for microbiome studies.

The Total Sum Scaling normalisation (TSS) is the most commonly used approach which divides
each OTU count by the total number of counts in each individual sample to account for uneven
sequencing depths across samples. However, this normalisation measures relative information (i.e.
proportions) and results in data residing in a simplex rather than the Euclidian space Aitchison
(1982). Therefore, statistical methods are not directly applicable on TSS data and can lead to
spurious false discoveries. The solution is to transform TSS data to project them to an Euclidian
space using log ratio transformations. The Centered Log Ratio transformation (CLR) has been
recently applied in several compositional data studies Fernandes et al. (2014); Mandal et al. (2015);
Kalivodova et al. (2015). Let x = (x1,...,xp)" denote a composition on the p TSS normalised OTU
counts, then the CLR transformation is defined as

X1 Xp )/

y=n-yp) = (log———,..., log———
7 H?:l Xi m

In mixMC CLR transformation is applied on TSS normalised data (Fig. 1A).

The Cumulative Sum Scaling normalisation (CSS, Paulson et al. (2013)) has been developed to
prevent TSS bias in differential abundance when few measurements are sampled preferentially.
CSS can be considered as an extension of the quantile normalisation approach and consists of TSS
scaling raw counts that are relatively invariant across samples, up to a percentile determined using
a data-driven approach. Therefore, CSS combines both TSS and quantile-type normalisations.
According to the authors, CSS partially accounts for compositional data. Consequently, and
as proposed in the metagenomeSeq package Paulson et al. (2015) the raw OTU counts were log
transformed and CSS normalised prior to the statistical analysis in our framework (Fig. 1A).

Methods

One of the main objectives of our study is to extend and apply multivariate statistical analysis
methods for microbiome compositional data. The mixMC framework (Fig. 1A) includes unsu-
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pervised analyses to visualise diversity patterns with Principal Component Analysis (PCA) and
supervised analyses to identify indicator species or determinant microbiota members characteris-
ing differences between habitats or body sites (sparse Partial Least Square Discriminant Analysis,
sPLS-DA). In addition, our framework addresses a commonly encountered experimental design
called repeated-measures design, where microbial sampling is performed on the same individuals
but in different body sites to detect differences between habitats. This design leads to analytical
challenges in order to be able to discern subtle differences between body sites from the large
variation between individuals within the same body site.

Unsupervised multivariate analysis and ILR transformation. PCA variants, such as Principal
Coordinate Analysis (PCoA, a.k.a multidimensional scaling) allows for dimension reduction
of the data and visualisation of diversity patterns in microbiome study. PCoA is commonly
applied to non Euclidian sample-wise dissimilarity matrices (e.g. Bray-Curtis) or phylogenetic
distances between sets of taxa in a phylogenetic tree (weighted or unweighted Unifrac distance,
Lozupone and Knight (2005); Lozupone et al. (2007)). Alternatively, PCA can be applied on
log ratio compositional data using the Isometric Log Ratio transformation (ILR). According to
Filzmoser et al. (2009), the ILR transformation is preferable to the CLR transformation that may
result in singular variance-covariance matrix. ILR transformed data (z1,...,z,1)" are spanned by
(p — 1) new coordinates with respect to the orthonormal basis V, such that

i/
z; = v; * log =17

1 1 xl+1

with the orthonormal basis vector v; = \/Hzl (i=1,...,p—1) Egozcue et al. (2003). However,
ILR transformed data are not easily interpretable as they are of dimension p — 1, i.e. there is not
a one-to-one transformation of all features. Therefore, Filzmoser et al. (2009) proposed to back
transform the PCA results to the CLR space using the linear relationship between CLR and ILR
transformations: y = Vz, where V = (vy,...,0,_1) is a p x (p — 1) matrix with orthonormal basis
vectors v; as defined above. We applied PCA on ILR transformed data using customised R scripts
from the robCompositions package Templ et al. (2011).

Multilevel variance decomposition. One way to account for repeated measurements designs is
to separate the body site variation (termed ‘within variation’) from the individual variation (termed
‘between subject variation”) via variance decomposition. In univariate analyses, this step refers to
repeated measures ANOVA (also called within-subjects ANOVA). In multivariate analysis we
refer to a multilevel approach as proposed by Westerhuis et al. (2010). The within subject variation
is obtained by calculating the net differences between repeated observations, i.e. between each
body site within each individual. Since the within subject variation assesses the difference in the
body sites within each subject and disregards the possibly large individual variation, the within
variation can then be used as input data in the subsequent multivariate statistical analysis as was
proposed by Liquet et al. (2012). In mixMC, the multilevel variance decomposition is applied on the
log ratio transformed data described above, prior to the multivariate analyses (Fig. 1A). Note that
the variance decomposition in the multilevel approach does not take into account the correlation
structure or order between the measurements and is not appropriate for a time course experiment
where the objective is to examine the effect of time in a study (see for example applications of
linear mixed model splines for those cases Straube et al. (2015); Paulson et al. (2015)).
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Supervised multivariate analysis. The multivariate approach sparse Partial Least Squares Dis-
criminant Analysis (sSPLS-DA, Lé Cao et al. (2011)) is an extension of the PLS algorithm from
Wold et al. (2001) to perform feature selection with multilevel decomposition Liquet et al. (2012).
In mixMC we further extended the multilevel sPLS-DA for microbiome data using either CSS
normalised data, or CLR transformed TSS data. For the latter, we restricted the log transformation
to CLR as the sPLS-DA framework can only be applied to p dimensional data to identify and
select indicator species internally in the statistical model.

Principle of PLS-DA. PLS-Discriminant Analysis is a multivariate regression model which
maximises the covariance between linear combinations of the OTU counts and the outcome (a
dummy matrix indicating the body sites for each sample). Covariance maximisation is achieved
in a sequential manner via the use of latent component scores. Each component is a linear
combination of OTU counts and characterises a particular source of co-variation between the
OTU and the body sites. As a consequence, the final number of components summarising most
of the information from the data must be specified. The sparse version of PLS-DA uses Lasso
penalisation Tibshirani (1996) to select the most discriminative features in the PLS-DA model. The
penalisation is applied componentwise and the resulting selected features reflect the particular
source of covariance in the data highlighted by each PLS component Lé Cao et al. (2011).

Parameters and performance evaluation. The number of features to select per component must
be specified in sPLS-DA and is usually optimised using cross-validation. In this study we used
10-fold cross-validation repeated 100 times. For varying features selected by the sPLS-DA model,
the classification error rate resulting from the cross-validation process was then recorded. The
optimal number of selected features was chosen so as to achieve the lowest error rate on each
component. This procedure was concurrently used to choose the total number of components.
Once these parameters were chosen, the final sPLS-DA model was run on all samples to obtain
the final lists of discriminative OTU features on each component.

Graphical and numerical outputs. We further characterised each selected OTU by calculating

its median normalised count in each body site. An OTU was defined as ‘contributing to a body
site’ if the median count in that specific body site is higher than in any other body site. We
graphically represented the contribution of each selected OTU with a barplot where each OTU bar
length corresponds to the importance of the feature in the multivariate model (i.e. the multivariate
regression coefficient with either a positive or negative sign of that particular feature on each
component) and the colour corresponds to the body site in which it was the most abundant.
The contribution plot displays bacterial taxonomy at the family level. Another type of graphical
output used GraPhlAn Asnicar et al. (2015) to produce circular representations of taxonomic trees.
The results from sPLS-DA were directly included in GraPhlAn to complement the contribution
plot with taxonomy information. Other insightful outputs included sample plots where each
individual is projected on the sPLS-DA components, the list of OTU features selected on each
component, the cross-validation error rate per component and the number of features contributing
to each body site and each component.
The multilevel sPLS-DA framework is implemented in the R package mixOmics L& Cao et al. using
the multilevel module Liquet et al. (2012). The cladogram was generated using the GraPhlAn
Python code Asnicar et al. (2015). All R codes and tutorials are available on our website www.
mixOmics.org/mixMC.
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Univariate analysis. We considered univariate statistical approaches capable of handling repeated-
measures experiments. Unlike the supervised multivariate approach presented above, the uni-
variate methods output a p-value for each OTU testing for differential abundance between body
sites. P-values were adjusted for multiple testing using the False Discovery rate Benjamini and
Hochberg (1995) at a significance level of 5%. We considered two univariate approaches, DESeq?2
and ZIG (Fig. 1 B).

DESeq2 was developed for DNA sequencing read count data where mean and variance for
the binomial distribution is estimated for each feature Anders and Huber (2010). The OTU
counts are normalised internally to the method with respect to a library size factor estimation.
DESeq2 can be adapted for microbiome analysis and often serves as a basis of comparison to novel
methodological developments Paulson et al. (2013); McMurdie and Holmes (2014); Fernandes
et al. (2014). We compared DESeq?2 differentially abundant OTU to those selected with mixMC.
However, the reader must keep in mind that the normalisation in DESeq2 does not address the
issue of compositional data, but the generalised linear model interface in DESeq2 enables repeated
measurements experimental designs. We used mean dispersion estimates as implemented in the R
package DESeq2 Love et al. (2014).

ZIG is a mixture model with a Zero-Inflated Gaussian distribution that was recently proposed
by Paulson et al. (2013) to account for varying depths of coverage that is typical for microbial
community undersampling. In the ZIG model, OTU counts are first log transformed and then
CSS normalised.

ZIG uses a linear model framework which can include a repeated-measures design and is
implemented in the R package metagenomeSeq Paulson et al. (2015).

Case studies

HMP case studies. We analysed subsets of the NIH HMP16S data downloaded from http:
//hmpdacc.org/HMQCP/all/ for the V1-3 variable region. The original data contained 43 146 OTU
counts for 2 911 samples measured from 18 different body sites. We focused on the first visit of
each healthy individual and further divided the data into two data subsets. For both data sets a
preliminary exploratory PCoA confirmed that there was no confounding covariate effect due to
run center or gender (see Suppl. Material 54).

Most diverse body sites dataset. Understanding microbial community diversity across body
habitats is fundamental to study the human microbiome. In their extensive HMP data statistical
analysis, Li et al. (2012) quantified intra-sample diversity based on Shannon index. Based on
their results we chose three main types of habitats which were the most diverse in terms of all
genera-based and OTU-based taxonomic units (Tables 1 and 2 in Li et al. (2012)). Those body
sites were Subgingival plaque (Oral), Antecubital fossa (Skin) and Stool sampled from 54 unique
individuals for a total of 162 samples. The prefiltered dataset included 1 674 OTU counts (Table S1).
Oral body sites dataset. While many published analyses have focused on the main microbial habitats
(gut, oral cavity, skin and vagina from the Human Microbiome Project Consortium (2012b,c)), little
has been done to comprehensively characterise multiple sites within a single habitat. In this data
set we solely considered samples from oral cavity, which has been found to be as diverse as the
stool microbiome Li et al. (2012). The nine oral sites were Attached Keratinising Gingiva, Buccal
Mucosa, Hard Palate, Palatine Tonsils, Saliva, Subgingival Plaque, Supragingival Plaque, Throat
and Tongue Dorsum. After prefiltering, the data included 1 562 OTU for 73 unique patients and a
total of 657 sample (Table S1).
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Koren dataset. Koren and colleague Koren et al. (2011) examined the link between oral, gut
and plaque microbial communities in patients with atherosclerosis and controls. To compare
our results with the HMP most diverse study, only the healthy individuals were retained in
the analysis. This study contained partially repeated measures from multiple sites including 15
unique patients samples from saliva and stool, and 13 unique patients only sampled from arterial
plaque samples. The data were downloaded from the Qiita database (http://qiita.microbio.
me/study/description/349) and included 5 138 OTU. After prefiltering, the data included 973
OTU for 43 samples.

III. REsuULTS

Unsupervised analyses on Most Diverse body sites dataset

Unsupervised analyses such as PCoA or PCA on ILR transformed data are useful to visualise
diversity patterns between microbial communities. We compared the PCoA and PCA sample
visualisation for different types of normalisations (TSS-ILR, CSS) followed by a multilevel variance
decomposition for repeated measures.

PCoA. A PCoA performed on the filtered OTU counts (with no normalisation) showed that the
unweighted Unifrac distance could highlight diversity patterns between each body site better than
weighted Unifrac (Fig. 2). As this study focuses on the most diverse body site, the presence or
absence of microbial communities is to be expected. Applying PCoA on the unfiltered count data
led to the same interpretation (Suppl. Fig. S1), but we observed a lower amount of explained
variance of the first and second coordinate as more ‘noisy’ OTU are present in the data (unweighted
Unifrac: 11.28% and 8.95% for the unfiltered data vs. 17.37% and 14.48% for the filtered data).

(a) (b)

PCoA2: 7.65 %
0.0
Il
PCoA2: 14.48 %

-0.2
L

-0.4
L

T T T T T T T T T
-1.0 -0.5 0.0 0.5 -0.4 -0.2 0.0 0.2 0.4

PCoA1:22.14 % PCoA1:17.34 %

HMP Most Diverse body sites
Antecubital_fossa Stool Subgingival_plaque

Figure 2: Most diverse data, PCoA sample plots. Sample plot on the first two coordinates with (a) weighted
Unifrac (b) unweighted Unifrac calculated on the filtered OTU count table (based on 1,674 OTU).
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PCA. We then assessed the effect of the different normalisation strategies as well as the multilevel
variance decomposition. Each type of transformation (TSS, TSS + ILR OTU count, CSS) seemed to
cluster samples similarly according to the body sites (Fig. 3 (a) (c) (e)). The differences arose when
we added the multilevel decomposition, leading to a smaller variability within body sites and a
greater variability between body sites (Fig. 3 (b) (d) (f)). Consequently, the explained variance per
component was larger than previously observed. The use of the normalisations TSS-ILR or CSS
also increased the explained variance, with a maximal cumulative explained variance attained
with TSS-ILR of 44.6% for the first two components (33.5% for CSS).

Supervised analysis on Most Diverse body sites dataset and OTU selection

Our preliminary exploration using unsupervised multivariate analyses indicated that the abun-
dance of microbial communities could characterise each body site quite clearly. The multilevel
decomposition enabled better separation of the body site clusters, in particular when applied to
the TSS-ILR or CSS normalised data.

The next step was to perform a supervised analysis with multilevel sSPLS-DA in order to identify a
microbiome signature characterising each body site. We compared the different normalisation
strategies (TSS-CLR or CSS) in our multivariate method to DESeq2 and ZIG univariate methods.

The impact of normalization to identify discriminative features with sPLS-DA. The sPLS-DA
classification performance was similar in both TSS-CLR or CSS normalised data, and a minimum
classification error rate was reached for two components in the multivariate model (0.7% for
TSS-CLR and 0.3 % for CSS, Table S4). For both normalizations the first component consistently
misclassified antecubical fossa on the first component but correctly classified the two other body
sites. The addition of the second component enabled a better classification of all body sites (Fig.
4). The optimal number of selected OTU and number of components were chosen so as to achieve
a lowest overall classification error rate componentwise using 10-fold cross-validation repeated
100 times. The final selected list include 160 (130) OTU with TSS-CLR (CSS), see Table S5. Since
the sPLS-DA is fitted in a sequential manner with one component at a time, we can also assess the
contribution of the selected OTU selected on each component (Table S5).

We found that both normalizations identified very similar bacterial families. Component 1 was
found to characterise the subgingival plaque including Micrococcaceae, Neisseriaceae, Streptococcaceae,
Flavobacteriaceae and Campylobacteraceae. In addition, CSS also identified the Burkholderiaceae
family. Component 2 characterised stool and anticubital fossa. For the latter body site, TSS+CLR
normalization identified Propionibacteriaceae, Staphylococcaceae and Corynebacteriaceae while CSS also
identified Propionibacteriaceae, Staphylococcaceae but failed to identify Corynebacteriaceae. Bacterial
families characterising stool included Bacteroidaceae, Ruminococcaceae, Lachnospiraceae, Rikenellaceae
and Porphyromonadaceae. Across the three body sites, we found that both normalizations led to very
similar families of bacteria - 5 families for component 1, 10 (TSS-CLR) or 8 (CSS) for component
2 with a difference of 1 or 2 families on each component between TSS-CLR and CSS, see Table
S5. Interestingly, we observed that increasing the number of selected OTU did not add more
relevant bacteria families for that CSS normalisation. Rather, the proportion of number of OTU
corresponding to the families varied (Fig. 4 (d)).

Comparisons with no multilevel approach. In order to understand the impact and benefits of
the proposed multilevel approach, we examined the OTU selected by sPLS-DA multilevel on either
the TSS or CSS normalised counts without multilevel transformation. The classification error rate
was substantially greater than with the previous multilevel analysis, (6% for TSS-CLR and 3% for
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Figure 3: Most diverse data, PCA sample plots. (a) TSS and (b) TSS multilevel OTU log counts, (c) TSS-ILR
and (d) TSS-ILR multilevel normalised counts, (e) CSS and (f) CSS multilevel log counts. Colours indicate
body sites and the percentage of explained variance for each principal component is indicated in the axes
labels.

CCS for two components) with a larger number of OTU selected (400 OTU selected for TSS-CLR
and 240 for CSS).

With the TSS-CLR normalisation, we identified similar families characterising subgingival
plaque on the first component, including Burkholderiaceae, Fusobacteriaceae, Gemellaceae, Veillonel-
laceae. The families selected on the second component characterised antecubital fossa similarly
to the multilevel approach, however the notable omission was the entire Ruminococcus family
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Figure 4: Most diverse TSS-CLR data, sPLS-DA sample, contribution and cladogram plots. (a) sample plot
on the first two components with 95% confidence level ellipse plots, (b) and (c) represent the contribution of
each OTU feature selected on the first (10) and second component (120) respectively, with OTU contribution
ranked from bottom (important) to top. Colours in the contribution plot indicate the body site with the
highest median for each selected OTU labelled at the family level. The negative (resp. positive) sign on the
x-axis represents the regression coefficient weight of each feature in the linear combination of the sSPLS-DA
component. (d) Cladogram generated from the sPLS-DA result using GraphlAn: background colour indicates
the body sites where the OTU is most present, the node size represent the median OTU count for that
contributing body site and the node colour indicates a negative (black) or positive (yellow) weight from the
sPLS-DA weight vector as shown in (b) and (c).

characterising stool in the multilevel approach that was not identified in the non multilevel ap-
proach. These observations led us to the conclusion that a classical multivariate analysis ignoring
the repeated-measures design tended to identify differential features driving the overall signature
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and disregarded subtleties between microbial communities in environments sampled on the same
individuals.

Comparison with univariate analysis. We then compared the univariate approaches DESeq?2
and ZIG for assessing differential abundance with a repeated measures design. The total number
of OTU selected differed slightly between those two approaches (Supp. Table S2). We compared
the differentially abundant OTU selected by either DESeq?2 or ZIG to the discriminative OTU
selected by sPLS-DA with either TSS-CLR or CSS normalization (Supp. Fig. S2). We observed
strong differences between the univariate approaches at both OTU and family levels. Interestingly,
the sPLS-DA selections were all included in the ZIG and DESEq?2 selections (Fig. 52).

DESeq?2 identified relevant features in common with sPLS-DA selections, such as Propioni-
bacteriaceae, Staphylococcaceae and Corynebacteriaceae with the addition of Burkholderiaceae as a
defining feature characterising Antecubital fossa. It also characterised the Subgingival plaque
microbial community with OTU from Streptococcaceae, Neisseriaceae, Gemellaceae and Micrococcaceae
families, which were also identified in the sPLS-DA analyses. The only drawback of DESeq2
was the lack of Stool characterization. Indeed, very few bacterial families, including Bacteroides
and Lachnospiraceae, were identified. Such low bacterial diversity was not consistent with the
sPLS-DA nor with the literature. Similar to DESeq2 and sPLS-DA, ZIG identified features of the
Antecubital fossa with OTU belonging to Propionibacteriaceae, Staphylococcaceae, Burkholderiaceae
and Corynebacteriaceae. Like DESeq2, ZIG described the Subgingival plaque microbiome with
OTU belonging to Streptococcaceae, Neisseriaceae, Micrococcaceae and Gemellaceae. However, the
ZIG analysis also identified OTU belonging to Fusobacteriaceae, Burkholderiaceae, Flavobacteriaceae,
Campylobacteraceae, Veillonellaceae and Actinomycetaceae. In contrast to DESeq2, ZIG identified
and described the Stool microbiome well, with OTU belonging to the families of Bacteroidaceae,
Porphyromonadaceae, Rikenellaceae, Lachnospiraceae and Ruminococcaceae.

Analysis of the oral body site dataset with mixMC

Similar to the Most Diverse data set, unsupervised data analyses showed that unweighted Unifrac
better discriminated the different body sites (plaque, gingiva) compared to weighted Unifrac in
the PCoA sample plots (Fig. S3 (a-b)). When comparing TSS-ILR with CSS normalised counts,
TSS-ILR explained greater variance (21.35% on the first component) than CSS (13.63%), with
clearer clusters corresponding to the body sites (Fig. S3 (c), (e)). The explained variance further
increased with a multilevel variance decomposition (25.37% vs. 18.22%, Fig. S3 (d), (f)).

sPLS-DA performance and choice of parameters. We observed similar classification perfor-
mances between sPLS-DA on either TSS-CLR or CSS, with a slightly lower classification error
rate for TSS-CLR (Fig. S5). sPLS-DA is a model that builds on successive components that are
progressively added. For each component, an optimal list of OTU features was selected using-
cross validation (Table 1). The final sSPLS-DA model included 8 components that led to optimal
performance, with a classification error rate that substantially decreased from 78% (component
1) to 26% for TSS-CLR and 30% for CSS (component 8). The classification error rate was still
quite high as similar body sites were consistently misclassified across components (Table S3). For
example, Tonsils retained the highest error rate as no OTU was able to characterise that particular
body site (Table 1).

We observed that the TSS-CLR normalisation was better at characterising tonsil and plaque (com-
ponent 1), buccal mucosa (component 2) and gingiva (component 3) than the CSS normalisation.
The CSS normalisation also led to a substantial number of ties when assessing the body site
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contribution of the selected OTU (not shown). Therefore, the detailed analysis that follows solely
focuses on a multilevel sSPLS-DA model with TSS-CLR normalisation.

Table 1: Oral data. Top: Number of selected features at the OTU (family) level and mean classification error rate per
component. Bottom: Number of features at the OTU (family) contributing to each body site for each sPLS-DA
component. An OTU is defined as contributing to a body site if the median count in that specific site is higher
than in any other site. The median counts were calculated from the multilevel normalised data. Note that we
can observe some overlap between families across the different body sites.

Compl Comp2 Comp3 Comp4 Comp5 Comp6 Comp7 Comp 8

# features selected 60 (13) 40 (2) 190 (18) 200 (14) 40 (8) 200 (26) 180 (23) 190 (22)
mean classification error rate 0.778 0.584 0.501 0.410 0.336 0.316 0.279 0.262
sd classification error rate 0.000 0.002 0.003 0.003 0.003 0.005 0.004 0.004

Attached Keratinized gingiva 0 35(2) 123 (12) 9 (6) 1(1) 73 (16) 34 (11) 47 (15)
Buccal mucosa 0 5(1) 4 (1) 1(1) 0 31 (4) 3(1) 3(1)

Hard palate 2(1) 0 1(1) 3(1) 0 3(2) 5(3) 9 (3)

Palatine Tonsils 1) 0 0 5(3) 0 2(2) 4(2) 6 (4)

Saliva 5(@3) 0 2(2) 28 (5) 0 4(2) 11 (5) 7 (2)

Subgingival plaque 0 0 7(7) 15 (5) 39 (7) 14 (11) 6(5) 21(10)
Supragingival plaque 11 (4) 0 53 (8) 23 (6) 0 31(9) 15 (8) 31 (6)

Throat 11 (5) 0 0 16 (4) 0 5(@3) 42 (5) 9 4)

Tongue dorsum 30 (9) 0 0 100 (8) 0 37(11) 60(13) 57(12)

Body sites characterisation. Figure 5 displays the sPLS-DA sample representations for the first
three components (see Figure S6 for the remaining 5 components). Each of these components
seemed to characterise specific subsets of the body sites. For example component 1 discriminated
sub and supra gingival plaque against the other body sites, component 2 clustered attached
keratinised gingiva and buccal mucosa, but with no clear cut separations from the body sites
(Fig. 5 (a)), while component 3 seemed to separate attached keratinised gingiva (Fig. 5 (c)).
Supplemental Figure S6 shows that similar conclusions could be drawn for the other components.
The interpretation of these sample plots can be subjective, however, they reflect the close anatomical
proximity of the different sample sites in the mouth, such as the tongue coming in contact with the
hard palate, teeth, saliva and gums. More insight on the microbial communities can be gleaned as
sPLS-DA selects specific sets of features which are linearly combined to determine each component.
Given the proximity of some of these body sites, we expect a substantial overlap in some of the
bacterial families represented, but we also observed interesting differences which are presented
below.

Features contribution. In addition to Figure 6, Table 1 shows the number of features contributing
to each oral site per component at the OTU and family levels. Those outputs combined with the
interpretation from the sample plots in Fig. 5 enable a better insight into bacteria contributing
to body sites that are contiguous. For some cases we observed similar contributions of microbial
communities in close body sites, for example Throat and Tongue appeared to be characterised by
the same family of bacteria. The closeness of those selected bacteria in terms of their taxonomy
can be visualised in the cladogram in Figure 6 (d).

We examined the ability of sPLS-DA to highlight subtle differences and characterise different
sites in close proximity within the oral microbiome. We list below the relevant families selected on
the first three sSPLS-DA components, which appear to characterise particular body sites (Table 1,
11I).
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Figure 5: Oral data, sPLS-DA sample plot for the different sPLS-DA components. (a) Component 1 vs.
Component 2, (b) Component 2 vs Component 3. Colours indicate the different body sites, 95% confidence
ellipses are displayed.

The bacteria families selected on component 1 strongly characterised hard palate (members of the
Streptococcaceae family), saliva (Prevotellaceae, Lachnospiraceae as well as the phylum TM7 recently
described in He et al. (2015) and found prevalent in oral cavity), supragingival plaque as well as
throat and tongue. The throat microbiome was characterized by Prevotellaceae, Lachnospiraceae, Veil-
lonellaceae, Streptococcaceae and Erysipelotrichaceae. The tongue was found to be more diverse with
eight families of bacteria found to be characterising the site. These include the order Clostridiales
families Coriobacteriaceae, Gemellaceae, Carnobacteriaceae, Lachnospiraceae, Prevotellaceae, Micrococcaceae,
Streptococcaceae and Veillonellaceae. Component 2 was able to separate attached keratinized gingiva
from buccal mucosa with the families Gemellaceae and Streptococcaceae. Component 3 discrimi-
nated multiple sites, in particular attached keratinized gingiva (Prevotellaceae, Porphyromonadaceae,
Flavobacteriaceae, Carnobacteriaceae, Streptococcaceae, Fusobacteriaceae, Campylobacteraceae, Pasteurel-
laceae, Neisseriaceae, Moraxellaceae and TM7), buccal mucosa and hard palate (Streptococcaceae for
both). Interestingly, component 3 was able to discriminate subgingival plaque (Burkholderiaceae,
Flavobacteriaceae, Gemellaceae, Micrococcaceae, Neisseriaceae, Prevotellaceae and Streptococcaceae) from
supragingival plaque (Actinomycetaceae, Burkholderiaceae, Flavobacteriaceae, Fusobacteriaceae, Micrococ-
caceae, Neisseriaceae and Streptococcaceae) with some overlap between the families.

Applying the mixMC framework on the oral case study, demonstrated that the resulting graphical
and numerical outputs help identifying relevant bacteria families characterising subtle differences
in the oral environment while deciphering particular characteristics in each body site.

Comparison with the Koren data set

o further validate the relevance of our multivariate method to discriminate and identify microbial
features describing microbial communities, we applied our sPLS-DA to the study from Koren
et al. Koren et al. (2011). Since the dataset only contained partially repeated measures from
multiple sites (individual patients samples in plaque were not sampled in other body sites), we
applied a non multilevel sPLS-DA on the TSS-CLR data, resulting in a selection of 30+100 OTU
on two components (Fig. S7, III). We found that sPLS-DA was able to clearly and distinctly
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Figure 6: Oral data, contribution and cladogram plots of the features selected for each sPLS-DA component.
(a) Component 1, (b) Component 2, (c) Component 3. Colours in the contribution plot indicate the body
site with the highest median for each selected OTU labelled at the family level. The negative (resp. positive)
sign on the x-axis represents the regression coefficient weight of each feature in the linear combination of
the sPLS-DA component. In (c) only the top 150 OTU are represented. (d) Cladogram generated from the
SPLS-DA results for components 1 and 2 using GraphlAn: background colour indicates the body sites where
the OTU is most present, the node size represents the median OTU count for that contributing body site and
the node colour indicates a negative (black) or positive (yellow) weight from the sPLS-DA weight vector as

shown in (a) and (b).
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discriminate the three body sites saliva, plaque and stool. Component 1 best characterised stool
identifying families of bacteria such as Lachnospiraceae, Ruminococcaceae and Bacteroidaceae; similar
to what was observed in the HMP dataset. Component 2 best discriminated arterial plaque and
saliva. Arterial plaque was characterised by families including Burkholderiaceae, Propionibacteriaceae,
Pseudomonadaceae and Staphylococcaceae, which was consistent with what the authors reported to
as the ‘core microbiome’ for arterial plaque samples. Our analysis also identified Alcaligenaceae,
Enterobacteriaceae, Moraxellaceae and Comamonadaceae as bacterial families describing arterial plaque.
Saliva was also characterised on component 2 by the same families of bacteria both reported by
the Koren et al. (2011) and our microbiome signature in the HMP data set.

Our comparative analysis demonstrates that sSPLS-DA not only produces reliable and consistent
results across different sequencing platforms and datasets but is also able to identify key members
of the microbial community.

DiscussioN

Traditionally, unsupervised dimension reduction multivariate approaches for microbiome data
such as PCoA use pairwise distances or dissimilarities calculated on count data to scale microbial
community abundances. However, the output of such method is limited to the visualisation of
patterns in the data only. Our framework did not propose such distances for various reasons.
From a theoretical point of view and as discussed by Warton et al. (2012), distance-based analyses
make implicit assumptions on the mean-variance relationship in count data that may not hold,
with the consequence of possible misleading results. From a practical point of view, a multivariate
projection based method applied on a n x n similarity matrix does not allow us to identify bacteria
driving differences between habitats. We therefore proposed to directly handle abundance data to
achieve that goal.

In our study, we acknowledged that there was no clear consensus on the normalisation technique
to apply for 16S OTU count data. The TSS normalisation is a popular approach to accommodate
for varying sampling and sequencing depth White et al. (2009); Segata et al. (2011); Costello et al.
(2015) but TSS produces compositional data which may lead to spurious results when applying tra-
ditional statistical methods Fernandes et al. (2014); Kurtz et al. (2015). Transforming compositional
data using log ratios beforehand allows to circumvent this issue with either Isometric Log Ratio
(ILR) or Centered Log Ratio transformation (CLR) Aitchison (1982); Filzmoser et al. (2009). We
included those transformations as part of our framework to visualise diversity patterns (PCA) or
to perform discriminant analysis and identify indicator species explaining abundance differences
between samples (sPLS-DA). The multivariate projection-based methods that we propose to apply
have the unique advantage of producing insightful graphical outputs for data interpretation but
require appropriate log ratio transformation when dealing with compositional data. We applied
the ILR transformation for PCA, as proposed by Filzmoser et al. (2009); Kalivodova et al. (2015) to
overcome the CLR limitation that may lead to singular covariance matrices. For sPLS-DA however,
the feature selection process requires n X p input matrix in order to identify indicator species. The
advantage of using PLS methods and variants is their ability to reduce the dimension of the data,
leading to non-singular matrix Boulesteix and Strimmer (2007). We therefore resorted to a CLR
one-to-one transformation and showed that sPLS-DA delivered relevant results in our two case
studies using TSS-CLR transformed data.

Our study also assessed the impact of normalisation using either TSS or the CSS normalisation
recently proposed by Paulson et al. (2013) as an attractive method to account for sparse counts.
In the Most Diverse case study we showed that both normalisations identified the same bacteria
families. In the more complex Oral case study we observed differences as TSS-CLR identified
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more families than CSS. The data analyst must therefore keep in mind that normalisation is data
specific and needs to be carefully chosen prior to statistical analysis.

Our framework proposes to handle repeated-measures design with a multilevel variance
decomposition. This additional transformation step can also be seen as a scaling transformation
to extract subtle differences between body sites or habitats within the same individuals. We
anticipate that such experimental designs will become widely adopted in microbiome studies.
Note however that our framework can also be used in a more general case with non repeated
measures experiments.

As shown in Figure 1, mixMC proposes more extensive analytical features than univariate
methods. When we compared the univariate and multivariate methods, we we found that the
overall structure of the signatures were similar at the family level. However, dimension reduction
multivariate approaches provide intuitive plots and numerical outputs for a better understanding
of the discriminative ability of the OTU features identified.

Recently, a number of studies have investigated the link between gut and oral microbial
communities Franzosa et al. (2014); Koren et al. (2011). In particular, Franzosa et al. (2014)
showed that a subset of abundant oral microbes that are surviving transit to the gut are being
linked with disease markers of atherosclerosis such as cholesterol Koren et al. (2011). From
our detailed analyses, we reached similar conclusions identifying bacteria such as Fusobacterium,
Propionibacterium, Veillonella in both the oral body sites from both HMP data sets (including plaque,
tongue and gingiva) and stool microbiomes as underlined by Koren et al. (2011). Our comparative
study with the Koren data set demonstrated that our multivariate method was able to identify a
microbiome signature consistent across different individual cohorts and sequencing platforms. In
addition, the results obtained by Koren et al. (2011) and our microbiome signatures identified from
the most diverse HMP data set highlighted that microbial communities can not be considered
discrete environments, but are, in fact, fluid environments.

CONCLUSIONS

mixMC is a statistical analysis framework enabling holistic understanding of microbial commu-
nities. In this paper, we demonstrated the advantages of using multivariate methodologies for
the statistical analysis of 165 compositional data, to summarise and reduce the dimension of
possibly large data sets; to obtain a better understanding of the microbial communities through
insightful graphical outputs; and to highlight features characterising and discriminating different
environments. While our study has particularly focused on repeated-measures designs, the
multivariate approach that we propose is not restricted to such designs only. Similar analyses can
be performed on non-repeated designs to highlight relevant microbial features.

The multivariate approach sPLS-DA is a specific case of a larger family of projection-based multi-
variate approaches, some of which also allow integration of different types of data. Our proposed
analysis framework therefore paves the transition towards a ‘microbiome system biology” approach
by integrating large scale multi-‘'omics studies such as metatranscriptomics, metabolomics or
metaproteomics currently being collected by the integrative HMP project (Human Microbiome
Project Consortium, 2014), therefore enabling the improvement of our understanding of the
biomolecular activities and regulatory systems of human microbiota.
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SUPPLEMENTARY MATERIAL

Table S1: Description of the two HMP data sets through the preprocessing and normalization steps.

Most Diverse body sites Oral body sites

# initial OTU 43,140 43,140
# raw OTU after pre-filtering 1,674 1,562
# samples 162 657
# unique individuals 54 73
# body sites 3 9

ELECTRONIC SUPPORTING INFORMATION LEGENDS

Diverse, Oral and Koren TSS-CLR data: selected OTU. Contribution of selected OTU for each
sPLS-DA component available electronically.
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Table S2: Most diverse data, number of features selected by the different univariate and multivariate ap-
proaches at the OTU or family level. The OTU features selection is based on either 5% significance level
(adjusted FDR p-values) for DESeq2 and ZIG or the best classification performance with mean error rate
across 10-fold cross-validation repeated 100 times (standard deviation) for sSPLS-DA with two components.

Feature selection method DESeq2 ZIG TSS-CLR + sPLS-DA CSS + sPLS-DA
# OTU level 883 742 160 130
# family level 39 34 15 14

Criterion adj. p-val <0.05 adj. p-val <0.05 mean error: 0.007 (sd: 0.003) mean error: 0.003 (sd: 0.005)

Table S3: Oral data, performance of sPLS-DA per component and body site (ISS-CLR data). The mean
classification error rate across 10-fold cross validation performed 100 times is indicated.

compl comp2 comp3 comp4 compb5 comp6 comp?7 comp 8

Attached Keratinized Gingiva 1.00000 0.02603 0.09041 0.10164 0.10630 0.10795 0.11205 0.08411
Buccal Mucosa 1.00000 1.00000 0.19151 0.19973 0.21753 0.24685 0.23397 0.27151

Hard Palate 1.00000 0.24795 0.21397 0.32767 0.34740 0.10877 0.15370 0.14301

Palatine Tonsils 1.00000 1.00000 1.00000 1.00000 0.70959 0.70356 0.73890 0.53315

Saliva 1.00000 1.00000 1.00000 0.04493 0.04712 0.06137 0.06877 0.08603

Subgingival Plaque 1.00000 1.00000 0.99836 0.99123 0.38740 0.38466 0.39260 0.39288
Supragingival Plaque 0.00000 0.01370 0.01507 0.01945 0.20301 0.20384 0.19836 0.19315

Throat 1.00000 0.97425 0.99562 0.99644 0.99973 0.99808 0.53671 0.54630

Tongue Dorsum 0.00000 0.00055 0.00712 0.00000 0.01397 0.01425 0.09205 0.08904

Table S4: Most diverse data, performance of sPLS-DA per body site. Componentwise 100* 10-fold cross-
validation classification error rate for sSPLS-DA applied to either TSS-CLR or CSS normalised counts with
respect to each body site class leading to the optimal microbiome signature.

Normalisation Component Antecubital Fossa Stool Subgingival Plaque Overall
TSS-CLR 1 1.000 0.000 0.000 0.335 (0.000)
2 0.000 0.000 0.020 0.007 (0.004)
3 0.000 0.000 0.015 0.005 (0.004)
Css 1 0.996 0.004 0.004 0.335 (0.008)
2 0.002 0.000 0.008 0.003 (0.005)
3 0.000 0.000 0.023 0.008 (0.003)

Table S5: Most diverse data, number of features contributing to each body site for each sPLS-DA compo-
nent. The sPLS-DA model was applied to either TSS-CLR or CSS normalised counts. Contribution is
defined as the body site for which the maximum median normalised OTU abundance is achieved at the OTU
(family) level.

Normalisation | Component | Antecubital Fossa Stool Subgingival Plaque Total
TSS-CLR 1 0 0 10 (5) 10 (5)

2 121 (5) 29 (5) 0 150 (10)

CSS 1 0 0 10 (6) 10 (6)

2 60 (3) 60 (5) 0 120 (8)
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Figure S1: Most diverse data, PCoA sample plots. Sample plot on the first two coordinates with (a) weighted
Unifrac (b) unweighted Unifrac calculated on the unfiltered OTU count table (based on 43,146 OTU).
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Figure S2: Most diverse data, comparison between univariate OTU selections and multivariate sPLS-DA
selection. Comparison of the most differentially abundant features identified by DESeq2 and ZIG (FDR <
0.05) and the most discriminative features identified by TSS-CLR+sPLS-DA or CSS+sPLS-DA (lowest
mean classification error rate achieved when performing 100 * 10—fold cross-validation). (a): selection size
at OTU level, (b): at the family level.
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Figure S3: Oral data, PCoA and PCA sample plots. Sample plot on the first two coordinates with (a) weighted
Unifrac (b) unweighted Unifrac calculated on the filtered OTU count table and on the first components

26 for (c) TSS-ILR and (d) TSS-ILR multilevel normalised OTU counts, and (e) CSS and (f) CSS multilevel
normalised OTU counts. Colours indicate body sites and the percentage of explained variance for each
principal component is indicated in the axes labels.
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Figure S4: Oral data, PCoA sample plots with colors indicating gender or run centers. Sample plot on the
first two coordinates with colors indicating gender in (a) weighted Unifrac or (b) unweighted Unifrac, or
colors indicating run centers in(c) weighted Unifrac or (d) unweighted Unifrac calculated on the filtered
OTU count table .
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Figure S5: Oral data, sPLS-DA performance. Mean classification performance using 100 * 10 -fold cross-validation.
Each component is based on an optimal selection of OTU features that leads to the best classification
performance. The sPLS-DA classifier was applied on (a) TSS-CLR or (b) CSS normalised data.
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Figure S6: Oral data, sPLS-DA sample representation for the different components of the model. (d) Com-
ponent 4 vs Component 5, (e) Component 5 vs Component 6, (f) Component 6 vs Component 7, (g)
Component 7 vs Component 8. Colours indicate the different body sites, 95% confidence ellipses are
displayed.
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Figure S7: Koren data. Sample plot on the first two components with (a) PCA-ILR (b) sPLS-DA on selected OTU.
Contribution plots on the (c) first component (30 OTU selected) and on the (d) second component (100
OTU selected). Colors indicate the body sites.
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