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TWO METHODS FOR ACTION PREDICTION 2

Abstract

Recent theoretical and empirical work has suggested an important role for the motor system in

generating predictions about the timing of external events. We tested the hypothesis that motor

experience with an observed action changes how observers generated predictions about these

actions by comparing the performance of naïve and experienced observers on a task that

required participants to predict the timing of particular critical points in a ongoing observed

action. Crucially, we employed action and non-action stimuli with identical temporal

dynamics, and we predicted that motor experience would enhance prediction accuracy

specifically for actions and would have a reduced or negligible effect on enhancing prediction

accuracy for non-action stimuli. Our results showed that motor experience did modulate

prediction accuracy for action stimuli relative to non-action stimuli. No difference between

conditions was observed for the naïve observers.

Keywords: action prediction, perception–action

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 11, 2016. ; https://doi.org/10.1101/044438doi: bioRxiv preprint 

https://doi.org/10.1101/044438
http://creativecommons.org/licenses/by-nc-nd/4.0/


TWO METHODS FOR ACTION PREDICTION 3

Mechanisms for action prediction operate differently in observers with motor experience

Introduction1

Many types of joint action require two actors to coordinate their actions in time. For2

example, in joint actions such as ensemble music and dance performance, successful3

completion of the joint action might require the actions of two people to be precisely4

temporally aligned, or synchronised. If people were to observe and then react to the actions of5

their co-actors this would introduce disruptive delays. Instead, individuals must anticipate the6

actions of their co-actors so that they can plan actions early. Consequently, researchers have7

emphasised the role of prediction in recent theoretical accounts of joint action coordination8

(Colling & Williamson, 2014; Csibra, 2008; Wilson & Knoblich, 2005; Knoblich, Butterfill,9

& Sebanz, 2011; Colling, Knoblich, & Sebanz, 2013). Furthermore, as many cases of joint10

action, such as music, dance, or sport performance, also involve cases of expert performance,11

researchers have also turned their attention to how these predictive processes might be12

modulated by motor experience (e.g., Sebanz & Shiffrar, 2009; Aglioti, Cesari, Romani, &13

Urgesi, 2008). It is the influence of motor experience on action prediction that is the primary14

concern of the present study.15

Neural mechanisms for action observation and prediction16

There is a rich literature examining the influence of motor experience on neural17

networks that are preferentially activated during action observation (for seminal examples, see18

Calvo-Merino, Glaser, Grézes, Passingham, & Haggard, 2005; Calvo-Merino, Grézes, Glaser,19

Passingham, & Haggard, 2006; Cross, Hamilton, & Grafton, 2006). The initial work on this20

action observation network began with the discovery of mirror neurons in premotor regions of21

the monkey brain. Mirror neurons are active when the monkey performs an action and also22

when the monkey observes the same, or a similar, action performed by another (Rizzolatti,23

Fadiga, Gallese, and Fogassi, 1996; Gallese, Fadiga, Fogassi, and Rizzolatti, 1996; and for a24

recent review see Giese and Rizzolatti, 2015). The literature on mirror neurons, or more25

precisely, the mirror system, provide a rich trove of data linking various manipulations to26

changes in the pattern of activity in these neural systems. The seminal work of Calvo-Merino27

and colleagues (e.g., Calvo-Merino et al., 2005; Calvo-Merino et al., 2006) and Cross and28
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TWO METHODS FOR ACTION PREDICTION 4

colleagues (e.g., Cross et al., 2006) are particularly relevant to the present study. To take just29

one example, Calvo-Merino et al. (2006) examined activity in the action observation network30

when dancers viewed dance moves that they either had experience performing themselves or31

dance moves that they did not have experience performing. This was done by showing male32

and female expert ballet dancers examples of dance moves that were either specific to their33

gender (and thus were part of their repertoire), specific to the opposite gender (which they34

would be visually familiar with but have no experience performing), or gender common. The35

results showed that neural regions that responded to observed actions were sensitive to motor36

familiarity, being more responsive to dance moves that fell within the observer’s repertoire.37

While this work provides important insights into how responses in the mirror system can be38

changed by the observers’ motor experience they don’t provide much information about the39

functional consequences of these changes.40

Many theories about the functional role of the mirror system have focused on how the41

mirror system might play a role in action recognition or action understanding (e.g., Sartori &42

Betti, 2015; Giese & Rizzolatti, 2015). Other accounts, however, suggest that this system43

might also, or even primarily, be involved in generating predictions about ongoing observed44

actions (e.g., Wilson and Knoblich, 2005; Csibra, 2008; Colling et al., 2013; and see Kilner,45

Friston, and Frith, 2007, for an account of the role of the mirror system in action prediction in46

the context of action understanding). Accounts linking the mirror system to action prediction47

have relied on the fact that the mirror system is partially co-extensive with the action control48

system and, therefore, observed actions might be processed by some of the same neural49

machinery involved in planning and executing actions. This link to planning and executing50

actions is important, because work on computational models of action control highlight a51

fundamental role for prediction in action control (Wolpert, 1997).52

Computational models of action control53

Concepts borrowed from control theory have been particularly useful for understanding54

how prediction, during both action observation and action control, might be achieved (for an55

introduction to control theory, see Golnaraghi, 2010). Specifically, inverse models and56

forward models have proven theoretically useful. Inverse models perform an inverse mapping57
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TWO METHODS FOR ACTION PREDICTION 5

from an output or goal state to the sequence of control commands necessary to produce that58

output. And forward models perform a forward mapping from the control commands to the59

output. That is, they model the dynamics of the system being controlled.60

Inverse and forward models—together known as internal models—have a central role in61

theoretical accounts of action control (for example, see Wolpert, Miall, & Kawato, 1998).62

Inverse models act as controllers that transform a desired limb trajectory into the motor63

commands that would produce that trajectory. And forward models replicate the dynamics of64

the limb and can, therefore, be used to predict how the limb will respond to motor commands65

(Wolpert & Kawato, 1998). Running the forward model offline—that is, without producing66

any actual motor output—can be used to internally simulate limb movements. Grush (1997;67

2004) refers to this process as emulation and to the forward model as an emulator.68

Predicting observed actions69

Grush’s (1997; 2004) ideas about emulation have been developed into an account of70

action prediction that has been termed the emulator theory of action prediction (Colling &71

Williamson, 2014; Colling, Thompson, & Sutton, 2014). While many slightly varying72

formulations exist (see also Colling et al., 2013; Csibra, 2008; Keller, 2012; Wilson &73

Knoblich, 2005; Wolpert, Doya, & Kawato, 2003; Vesper, Butterfill, Knoblich, & Sebanz,74

2010), the basic idea is that prediction of observed actions relies on the same internal75

mechanisms that support action production. The basic claim is that the observer’s action76

control system acts as an emulator enabling the observed action to be internally simulated in77

real-time. These real-time simulations can then be used as the basis for anticipatory action78

planning. However, in order to internally simulate the observed action using an emulator, a79

motor command, which ordinarily drives the forward model during action production, is80

needed. One way to generate this motor command might be to formulate a conjecture about81

what action the observed agent is producing (Kilner et al., 2007) or by visual analysis of the82

observed action (Csibra, 2008). Visual analysis can be coupled with an inverse model to83

simulate the motor commands driving the observed action.84

Prediction and motor experience. A key claim of the emulator theory of action85

prediction, at least as formulated by Wilson and Knoblich (2005) and Colling and colleagues86
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TWO METHODS FOR ACTION PREDICTION 6

(Colling et al., 2013; Colling & Williamson, 2014), is that the observed action is mapped onto87

the observer’s body in a part-by-part manner. That is, prediction occurs by internally88

simulating the action as if the observer was performing it. Because prediction is tied to the89

observer’s own action control system, predictions should carry traces of this system.90

One way to test this claim is to compare action prediction in experts and novices1. For91

example, Aglioti et al. (2008) employed a basketball free throw prediction task to compare the92

performance of novice and expert basketball players. The general finding from these93

paradigms is that experts generate more accurate predictions than novices (Abernethy, 1990;94

Isaacs & Finch, 1983; Aglioti et al., 2008; Sebanz & Shiffrar, 2009). Although studies95

comparing action prediction in experts and novices appear to demonstrate that predictive96

processes are enhanced by motor experience at least one concern can be raised. Specifically,97

the causal relationship between expertise and prediction is not clear. It may be the case that98

expertise causes superior predictive abilities; however, it is also possible that those who99

become experts do so because they already possess superior predictive abilities. To uncover100

the direction of causality it may be preferable to train people on an action rather than use101

experts. This approach was adopted by Casile and Giese (2006). However, this study only102

examined whether motor training led to enhanced performance on a visual action103

discrimination task, and it did not examine the question of action prediction.104

In addition to concerns about the direction of causality, a second concern can also be105

raised about previous studies. In previous work by, for example, Aglioti et al. (2008), Sebanz106

and Shiffrar (2009), Ikegami and Ganesh (2014), Mulligan and Hodges (2013), and others2,107

participants were asked to generate a prediction about the outcome of an action. For example,108

whether a basketball free-throw would be successful or not. While these tasks do test109

predictive mechanisms, it is not clear whether they test the same predictive mechanisms that110

underlie joint performance in music, dance, and sport. The predictive mechanisms that111

underlie joint action must have two features, neither of which are tested by these kinds of112

1Related to these studies are those that examine expertise-related changes in motor cortex activity during
action observation tasks (e.g., see Calvo-Merino et al., 2005; Calvo-Merino et al., 2006). While the results of
these studies are consistent with the emulator hypothesis, they do not provide a test of the theory because they do
not involve prediction tasks.

2For neuroimaging studies that involve outcome prediction see, for example, Abreu et al. (2012) and Diersch
et al. (2013).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 11, 2016. ; https://doi.org/10.1101/044438doi: bioRxiv preprint 

https://doi.org/10.1101/044438
http://creativecommons.org/licenses/by-nc-nd/4.0/


TWO METHODS FOR ACTION PREDICTION 7

tasks. First, predictions must be generated rapidly and in real-time and, second, it must be113

possible to use these predictions as the basis for anticipatory action planning. This second114

concern is highlighted by recent work from Mann, Abernethy, and Farrow (2010). In this115

study, participants were required to generate a prediction about an action and then report their116

prediction in different ways. This could either be by verbal report or by producing the117

appropriate action in response to the prediction (in this case, performing the correct cricket118

shot in response to the predicted trajectory of a ball delivered by a bowler). The results119

showed that the accuracy of predictions was modulated by response modality, suggesting that120

predictions generated for verbal report and action planning might reside in different121

(sub)systems. Therefore, in order to examine the action prediction mechanisms that might122

underlie joint action, it is necessary to employ tasks that replicate (at least some) of the123

coordination demands found in joint action. One example of this can be found in temporal124

alignment tasks.125

Temporal alignment tasks. Temporal alignment tasks are tasks requiring observers to126

perform an action on the basis of their prediction, rather than make a decision. Performing an127

action on the basis of a prediction is indeed the response modality chosen by Cross, Stadler,128

Parkinson, Schütz-Bosbach, and Prinz (2013). In this study, participants were asked to129

generate a prediction about when a gymnast or a toy, which was moving across the screen,130

would reappear after moving behind an occluder. Participants were required to press a button131

at the point in time that they believed the person or toy would reappear. The primary finding132

of this study was that repeated visual exposure to the stimuli resulted in more accurate133

predictions about when the gymnast or toy would reappear. Importantly, however, it is not134

clear whether this task actually taps into action prediction mechanisms. Rather, this task could135

be performed using mechanisms that allow people to judge the duration of intervals. As the136

gymnast or toy moves across the screen, accurate perception of how long it takes to move a137

fixed distance would allow the observer to accurately predict when it will reappear from138

behind the occluder.139

A different task, developed by Colling et al. (2014)3, was designed to tap into140

3See Keller, Knoblich, and Repp (2007) and Flach, Knoblich, and Prinz (2003) for similar tasks.
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TWO METHODS FOR ACTION PREDICTION 8

mechanisms specifically related to action prediction, and to test the claim of the emulator141

hypothesis that traces of the observer’s action control system should be evident in the142

predictions that they generate. In this temporal alignment task, participants viewed143

mannequins performing up-and-down arm movements while attempting to align a button press144

with the apex of each upward movement (when it changed from upward to downward).145

Importantly, the spacing between the points of direction change was irregular thus preventing146

the observer from relying on interval timing mechanisms (see Colling et al., 2014, Experiment147

2–3). Mannequins were viewed under two conditions. In the self condition, participants148

viewed mannequins created from motion capture recordings of their own movements149

produced at an earlier time. In the other condition, participants viewed mannequins created150

from recordings of another person’s movements. The logic of this manipulation was that if151

people generate predictions using their own action control system, with forward models that152

replicate their own action dynamics, then predictions in the self condition should be more153

accurate, because in the self condition the dynamics of the predictor and the dynamics of the154

predicted action are matched.155

The results confirmed this and people were significantly more accurate at aligning156

button press responses with recordings of their own actions. Importantly, these tasks require157

participants to not only generate predictions quickly and in real-time but also to plan and158

execute actions on the basis of these predictions. By employing a paradigm such as this, it159

should be possible to examine the influence of motor experience on prediction in tasks that160

more closely match the coordination demands found in joint action.161

How does motor experience modify action prediction?162

While we have highlighted some concerns about the previous literature, there is a more163

fundamental concern about this work that motivates the present study. The studies cited above164

(e.g., Aglioti et al., 2008) suggest that motor experience enables more accurate predictions (at165

least for action outcome tasks); however, these studies do not answer the question of how the166

prediction process changes in order to achieve this. For instance, it might just be that experts167

and novices employ the same strategy 4 or mechanisms and that experts are just able to168

4The word strategy is not meant to imply a high-level cognitive function or something that is conscious or
deliberative.
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TWO METHODS FOR ACTION PREDICTION 9

employ this strategy with greater efficiency or accuracy. However, it might also be the case169

that novices and experts employ distinct mechanisms, or use distinct strategies, with the170

consequence of this being superior prediction accuracy for the experts. The suggestion that171

distinct processes or strategies might underlie action prediction in experienced and naïve172

observers is found in an extension of the emulator hypothesis, developed by Schubotz (2007).173

Based on results from fMRI (e.g., Schubotz & von Cramon, 2004) and lesion studies (e.g.,174

Schubotz, Sakreida, Tittgemeyer, & von Cramon, 2004), which implicate premotor regions in175

sequence prediction, Schubotz (2007) suggests that motor simulation is a general purpose176

predictive mechanism for predicting not only human actions but all manner of external events.177

In the case of reproducible events (e.g., human actions) it is possible to internally simulate the178

observed action using the same mechanisms used to produced them, as claimed by the179

emulator theory (e.g., see Colling et al., 2013; Wilson & Knoblich, 2005; Colling &180

Williamson, 2014). In the terminology of Schubotz (2007, p. 213), observers use their “motor181

memories to run a simulation of the observed movement”. In the absence of these motor182

memories, Schubotz (2007) suggests that predictions might be generated by mapping the183

observed event onto an effector that best matches the general dynamics of the observed184

stimuli. This suggests that experienced and naïve observers might actually engage different185

mechanisms or employ distinct strategies during action prediction, with experienced observers186

internally replicating the observed action as it was performed and naïve observers just187

replicating the stimulus dynamics with whatever effector does the best job. This generic188

simulation (as opposed to action specific simulation) might not only occur in the absence of189

motor experience. It might also occur when the observed stimuli cannot be easily mapped onto190

the observer’s body. For example, when the action stimuli are impoverished so that it is not191

clear how the action is being produced—that is, when the observed actions are not amenable to192

visual analysis (Csibra, 2008)—it might not be clear which action, out of all possible actions,193

to internally simulate. In this case, observers might again internally replicate the dynamics of194

the stimulus using whatever effector does the best job rather than simulating the actual action.195
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TWO METHODS FOR ACTION PREDICTION 10

Aims of the present study196

The aim of the present study is to investigate how predictive processes change when197

observers have experience producing observed actions. Previous studies have reported that198

action prediction becomes more accurate when observers possess motor experience; however,199

it is not clear how the process changes to enable this. Indeed, measuring prediction accuracy200

alone may not be sufficient to do this. Furthermore, previous studies on action prediction have201

generally tended to focus on predicting action outcomes, with relatively few studies (e.g.,202

Colling et al., 2014; Keller et al., 2007; Flach et al., 2003) employing the kind of tasks that203

replicate the temporal demands found in joint action.204

The work of Schubotz (2007) suggests that experienced and naïve observers employ205

distinct mechanisms for action prediction. It might be possible to test whether experienced206

and naïve observers engage distinct predictive mechanisms, or employ different predictive207

strategies, by designing a manipulation that should effect only one strategy and not the other.208

Schubotz (2007) suggests that generic, non-action specific, simulation should occur not only209

when observers have little or no experience producing the observed action, but it should also210

occur when the stimulus is impoverished, so that is cannot easily be mapped on to the body in211

a part-by-part manner or when the stimulus does not clearly depict an action. Therefore, we212

can expect these two factors—the motor experience of the observer and the nature of the213

stimulus—to interact. That is, if an observer is engaged in generic, or approximate, simulation214

of the observed action, such as when they have no experience producing the action, then215

diminishing stimulus detail, so that the stimulus cannot be mapped onto the body, should be of216

little consequence, because generic simulation does not require the stimulus to be mapped217

onto the body. However, if the observer is engaged in a detailed part-by-part simulation then218

decreasing the stimulus detail, so that it is not clear how the action is being produced, should219

interfere with the predictive process. That is, changing the nature of the stimulus, so that220

action specific but not the critical dynamic information is reduced, should only have an effect221

on experienced observers.222

To test this hypothesis, we examined the influence of motor experience on prediction223

during a temporal alignment task similar to that used by Colling et al. (2014). Two groups of224
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TWO METHODS FOR ACTION PREDICTION 11

participants, those with experience producing the observed action and naïve participants,225

viewed actions under two conditions. In the full information condition, the stimuli depicted226

the actions in full, including information about the arrangement of the limbs and joints during227

the production of the action. In the point information condition, participants were required to228

align a response with the same dynamic information; however, the displays were impoverished229

so that they did not depict an action. We predict that naïve observers, who only engage an230

approximate, rather than an action specific, predictive solution, which replicates the dynamic231

information of the stimulus but without internally replicating the action itself, should display232

little, or no, difference between the two conditions. In experienced observers, however,233

decreasing stimulus information should hamper the process of internal replication. This234

should result in a difference in prediction accuracy between stimulus conditions as a function235

of motor experience—that is stimulus condition and motor experience should interact. Using236

this procedure has an advantage over simply comparing prediction accuracy for a single237

stimulus type (e.g., as typically done in studies of sports expertise such as, for example,238

Aglioti et al., 2008) because the stimulus manipulation is predicted to have a different effect239

on alignment accuracy depending on the strategy employed by the observer. Thus it may be240

possible to examine whether the naïve and experienced group employ distinct strategies.241

Typical sports expertise studies are blind to whether experts employ a different, more accurate,242

strategy relative to novices or whether experts just employ the same strategy as novices but243

with greater precision. It is important to note here that, unlike previous studies, our prediction244

is not that experienced observers will be more accurate. Indeed, we are agnostic about whether245

experienced or naïve observers will be more accurate. We only aim to test whether naïve and246

experienced observes rely on distinct strategies, and our stimulus manipulation is designed to247

influence one strategy and not the other. Therefore, the key comparison is whether the effect248

of stimulus is different between the two groups (that is, whether group and stimulus interact).249

It may be the case the the experienced observers’ strategy will be more accurate—for250

example, as shown in previous work. However, it does not follow from this work that this will251

necessarily be the case. This is because whether a one strategy or another is more successful,252
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TWO METHODS FOR ACTION PREDICTION 12

less successful or equally successful is dependent on the context in which they are employed 5.253

Methods254

Participants255

There were 13 participants (11 females, mean age of 27.5 years) in the experienced256

group, and 12 participants (8 females, mean age of 20.1 years) in the naïve group. All257

participants were right-handed (Oldfield, 1971), and all procedures were approved by the258

Macquarie University Human Subjects Ethics committee.259

Stimuli260

To create the stimuli for the test session, five right-handed females (mean age of 24.8261

years) performed a movement task while their movements were recorded with motion capture.262

The movement task involved tracing out wave and zigzag patterns as if drawing them on a263

blackboard (the patterns measured 0.584 m × 0.841 m; see Figure 1). Each pattern contained264

five peaks, alternating in height from large to small; however, they differed in the nature of the265

direction change at the apex of the peaks. The zigzag pattern contained an abrupt change266

while the wave pattern had a smooth direction change. We had no predictions about how267

pattern would influence performance; therefore, the data were collapsed over pattern during268

data analysis.269

Figure 1. The zigzag (left) and wave (right) patterns used as stimuli during the movement task

Movements were recorded using an 8-camera 3-D passive optical motion capture system270

(Vicon MX with 4 MX-F20 and 4 MX13+ cameras; 200 Hz sampling rate). To define the limb271

5If this claim seems initially implausible consider the, admittedly extreme, example in which somebody could
employ two strategies to catch a ball. The expert strategy involves moving just so and so in response to the
movement of the ball and anticipating the flight of the ball. The dumb strategy involves simply placing ones
hand in a particular spot. In a context where the ball, with a high degree of regularity, can be expected to land
in a specific spot, the dumb strategy will be just as good as, and possibly even better than, the expert strategy.
However, in a context with more variability, only the expert strategy will be successful. Therefore, paradigms
that rely solely on gross accuracy or success differences between groups cannot fully answer the question of how
action prediction is modulated by experience.
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TWO METHODS FOR ACTION PREDICTION 13

segments, and the position of the torso, markers were placed on the shoulders, the right elbow,272

wrist, waist, and the top of the right hand (See Figure 2). For the full information condition,273

the motion capture data was rendered as an animated character consisting of an upper torso,274

right arm and right hand. For the point information condition, only a single point tracking the275

movement of the RFIN marker was displayed (See Figure 3). Mannequins were preferred over276

point-light displays because they preserve occlusion.277

RLSH

RSHO LSHO

RUPA

RLEL RMEL
RFIN

RFWT

LFWT

RMWR
RLWR

Figure 2. Marker positions for the 11 reflective markers used during the movement task

Procedure278

Participants in the experienced group undertook a movement session that was identical279

to the task employed during stimulus creation. Participants performed 3 blocks containing 5280

repetitions of each pattern (in random order) with their eyes closed to limit visual experience.281

The movement session and the test session were on average separated by 16.69 days (7 to 28282

days).283

The task in the test session, which was conducted in a different lab to the movement284

task, was to press the response button when the hand of the mannequin, or the marker tracking285

the hand, reached the apex of each upward movement. That is, on each trial participants were286

required to press the button five times. They were instructed to synchronise the button-press287

with the display as accurately as possible and were told that this may require them to288

anticipate when the peak will occur. Each participant performed 4 blocks containing 40 unique289

stimuli (composed of 20 trials for the full information condition and 20 trials for the point290
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Figure 3. Example stimuli from the full information condition (left) and the point information
condition (right)

information condition) with equal numbers of wave and zigzag stimuli. Participants that did291

not undergo the movement session were given a brief verbal description of the movement task.292

Statistical analyses293

To measure alignment accuracy, we calculated the absolute timing difference between294

the occurrence of the peak in the motion capture trajectory and the occurrence of the button295

presses performed by the participant. Only the last four button presses were analysed because296

several stimuli contained missing frames leading up to the first peak. Absolute timing error297

was analysed by means of a 2 × 2 mixed ANOVA with the factors stimulus condition (full298

information, point information) and group (experienced, naïve). The primary comparison of299

interest was the interaction term— that is, whether the difference between the stimulus300

conditions was different between the two groups. Therefore, we report the effect size in the301

form of Hedges g (with bootstrapped confidence intervals), because our predictions, and thus302

our interpretation of the data, are focused on the magnitude of the difference between the303

groups and conditions. Conventional interpretations of the Hedges g, a unbiased estimate of304

Cohens d, places the boundaries for small, medium, large effects at 0.2, 0.5, and 0.8 (Cohen,305

1969).306

In addition to the standard null hypothesis significant tests, we also include confidence307

intervals, as recommended by Cumming (2013). Furthermore, we provide bayesian parameter308

estimates for all the comparisons reported in the primary analysis. We adopt the approach309
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outlined by Kruschke (2013), which involves fitting a t-distribution to the data by estimating310

the three parameters of the t-distribution: a mean (µ), a standard deviation (σ), and a shape311

parameter (ν)—the addition of the shape parameter (ν) allows the model to account for312

outliers in the data6. We report the 95% highest density intervals (HDI) for the parameter µ, as313

well as the 95% HDI for the effect size estimates, designated as d, which are calculated as µ/σ314

for the one sample comparisons and as (µ1 − µ2)/(
√

(σ2
1N1 − 1 + σ2

2N2 − 1)/(N1 + N2 − 2)315

for two sample comparisons. These effect sizes can be interpreted using the same conventions316

as for Hedges g.317

In an exploratory follow-up analysis, we report the effect size η2
G, which provides a318

measure of the proportion of variance in the measured variable that is explained by the level of319

the factor (see Olejnik & Algina, 2003). The boundaries for small, medium, and large effects320

are usually placed at 0.01, 0.06, 0.14 (Cohen, 1969)7. For violations of sphericity we report321

Greenhouse-Geisser ϵ, uncorrected df s, and corrected ps.322

Results323

The results showed that there were no systematic differences in alignment accuracy324

between the experienced group (M = 126.42, SD = 48.40) and the naïve group (M = 114.46,325

SD = 33.22), F1,23 = 0.51, p = .482, Hedges g = 0.28, 95% CI [-0.52, 1.02], MD = 11.11, 95%326

HDI [-26.45, 49.89], d = 0.26, 95% HDI [-0.56, 1.06]. The group main effect, and 95%327

confidence intervals, are shown in Figure 4A.328

Furthermore, there were no systematic differences in the alignment accuracy between329

the point information condition (M = 121.84, SD = 40.83) and the full information condition330

(M = 119.52, SD = 42.44), F1,23 = 1.867, p = .185, Hedges g = 0.25, 95% CI [-0.11, 0.63],331

MD = 2.19, 95% HDI [-1.54, 5.98], d = 0.25, 95% HDI [-0.16, 0.67]. The condition main332

effect, and 95% confidence intervals, are shown in Figure 4B.333

Our primary comparison of interest was whether the effect of stimulus condition was334

modulated by group. This is examined by the interaction in the ANOVA, which compares the335

difference in alignment accuracy between the Point information and the Full information336

6For more details on the prior distributions for each parameter, see Kruschke (2013).
7Note, however, that Cohen (1969) provides definitions for small, medium, and large effects in terms of f .

Here we have converted from f to the equivalent values of η2
G.
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Figure 4. (A) Plot of the Group main effect. Black bars show the two group means and 95%
confidence interval, while the grey bars show the cell means and the within-subject confidence
intervals. (B) Plot of the Condition main effect. Black bars show the two condition means and
the 95% confidence intervals, while the grey bars show the cell means and the between subject
confidence intervals. (C) Plot of the Group × Condition interaction, showing the full
information advantage for each group together with the difference between the two groups.
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condition in the experienced group with this difference in the naïve group. This difference,337

which we term the full information advantage was larger in the experienced group (M = 6.15,338

95% HDI [1.22, 11.28], d = 0.77, 95% HDI [0.12, 1.44]) than in the naïve group (M = -2.26,339

95% HDI [-7.58, 3.18], d = -0.28, 95% HDI [-0.91, 0.36]), F1,23 = 7.135, p = .014, Hedges g =340

1.03, 95% CI [0.22, 1.87], MD = 8.41, 95% HDI [1.24, 15.76], d = 0.94, 95% HDI [0.09,341

1.88]. This interaction is shown in Figure 4C.342

Sample data

Synchronisation
point Button-

press

Timing
errror

A

B

Peak timing and button-presses

Peak position

Peak position

Figure 5. (A) Evenly spaced button-presses results in timing errors that vary as a function of
peak number. (B) Button presses that vary according to peak position results in timing errors
that do not vary according to peak position

Exploratory analysis of group differences343

A further attempt was made to explore differences in task performance between the344

experienced and naïve group. To do this, we examined whether there were any differences in345

task performance related to whether participants primarily responded to the local or the global346

dynamics of the stimulus. In the stimulus, the duration of each upward movement alternated347

from long to short leading to local variations in the timing of the peaks. That is, the timing of348

the peaks was not evenly spaced across the trial with peaks being separated by alternating long349

and short gaps. If participants based their responses on the global dynamics of the350
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stimulus—for example, the average inter-peak interval—and produced evenly spaced button351

presses that matched these global dynamics then the magnitude of the timing error would352

fluctuate from peak to peak. That is, if participants just tapped at a regular isochronous rhythm353

then timing error would vary as a function of peak position because the stimulus itself is not354

isochronous. If, on the other hand, participants adjusted their responses according to the local355

variations in the stimulus—that is, the local peak to peak timing variations—then timing error356

should be relatively constant across the trial. (The logic of this analysis is shown in Figure 5).357

In order to examine which of the two strategies was adopted by each of the groups, we358

analysed timing error as a function of peak position using two seperate one-way ANOVAs. If359

participants adopted the strategy of responding to the global dynamics of the stimulus, then360

this should be evident as a significant effect of peak position on timing error. However, if361

participants adopted the strategy of responding to the local dynamics of the stimulus then we362

should not find a significant effect of peak position ofntiming error. The results of the analysis363

showed a significant effect of peak position on timing error for the naïve group, F3,33 =364

11.148, p = .005, η2
G = 0.216, ϵ = 0.369, but not for the experienced group, F3,36 = 2.745, p =365

.117, η2
G = 0.036, ϵ = 0.386. This is consistent with the experienced group and the naïve group366

adopting different strategies, with the naïve group responding to the global dynamics of the367

stimulus and the experienced group responding to the local dynamics. These data are shown in368

Figure 6.369

Discussion370

The primary aim of the present study was to investigate how online prediction of action371

is changed by motor experience. Previous studies have shown that observers who have372

experience performing an action are able to generate more accurate predictions about that373

action (e.g., Aglioti et al., 2008; Sebanz & Shiffrar, 2009). This increase in prediction374

accuracy could be achieved in at least two ways. It might be that increased accuracy is375

achieved through motor experience fine-tuning or otherwise enhancing the operation of a376

predictive mechanism that is common to both naïve and experience observers. However, it377

might also be the case that motor experience allows observers to engage different predictive378

mechanisms or apply distinct predictive strategies to the problem of action prediction,379
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Figure 6. Timing error as a function of peak position for the experienced and naïve group.
Error bars show the within-subjects 95% confidence intervals.

strategies or mechanisms that naïve observers are not able to call upon. By only measuring380

overall prediction accuracy, these studies only show that prediction is altered by motor381

experience but not how it is altered. Addressing this question was the aim of the present study.382

Based on work by Schubotz (2007), we hypothesised that motor experience may allow383

observers to engage in a different kind of prediction to naïve observers. Specifically, we384

predicted that observers with motor experience would be capable of reactivating “motor385

memories” from previous performances, which would enable them to internally simulate the386

same action that was being observed. Naïve observers, on the other hand, would only be able387

to engage in a non-specific simulation of the stimulus dynamics using the motor dynamics of388

the effector that most closely replicated the dynamics of the stimulus.389

To test this hypothesis, we compared prediction accuracy for experienced and naïve390

participants under two stimulus conditions, which were designed to have an differential effect391

depending on whether the observer performed a non-specific or action specific simulation of392

the observed action. In the full information condition, participants viewed stimuli that fully393

depicted the action being performed, including information about the limbs and joints used to394
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produce the action. In the point information condition, participants viewed stimuli that did not395

depict an action but did replicate the stimulus dynamics of the full information condition. The396

logic of this manipulation is that if observers are engaged in a non-specific simulation of the397

stimulus dynamics then altering the action-related properties of the stimulus—for example,398

the depiction of which effectors were used to produce the action—while holding the critical399

dynamic properties of the stimulus constant should have little or no effect on prediction400

accuracy, because the critical information—the stimulus dynamics—do not change between401

conditions. If, however, observers engaged in an action-specific simulation of the stimulus402

then changing action-related properties should have an effect on prediction accuracy.403

Therefore, by comparing the difference between the two conditions between the experienced404

and naïve observers it should be possible to examine whether the underlying predictive405

process is different between the two groups.406

The effect of stimulus condition407

The results showed that overall there was no difference in alignment accuracy between408

the full information and the point information condition. This result may initially appear409

surprising. However, the stimulus manipulation was designed to only affect one prediction410

strategy—namely, the strategy that involves mapping the observed action onto the body and411

simulating the action as it was produced; therefore, this finding is consistent with our412

prediction that stimulus information should only increase alignment accuracy in participants413

with motor experience.414

The effect of motor experience415

The primary aim of the present study was to examine the influence of motor experience416

on action prediction. Contrary to previous work by, for example, Aglioti et al. (2008) and417

Sebanz and Shiffrar (2009), the results of the present study did not show that motor experience418

results in an overall increase in prediction accuracy. This may initially appear strange or419

counterintuitive; however, this finding is consistent with our hypothesis that naïve and420

experienced observers employ different predictive strategies or engage distinct mechanisms421

for action prediction. This is agnostic to the question of whether one or the other predictive422

strategy results in superior prediction. While a null finding is difficult to interpret, it may be423
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the case that, within the context of our experiment, overall performance accuracy is no424

different; furthermore, if our hypothesis is correct, then our results are not in conflict with425

other findings that show that in other contexts, such as those examined by Aglioti et al. (2008)426

and Sebanz and Shiffrar (2009), motor experience results in superior prediction. Indeed, we427

might even expect to find that in some contexts experienced observers perform worse than428

naïve observers. This is because prediction accuracy alone cannot distinguish one prediction429

strategy from the other. This can only be done by manipulations designed to have an influence430

on one prediction strategy and not another, such as, for example, our stimulus manipulation.431

Although not part of our initial hypothesis, we did conduct an exploratory secondary432

analysis to examine whether there was any information in the pattern of alignment accuracy433

data that would suggest that experienced and naïve observers were performing the task in434

different ways. In particular, if naïve participants generated their predictions by means of a435

generic, non-specific, simulation then we might expect these predictions to be less sensitive to436

fine-grained timing changes in the stimulus relative to the full-blown internal action437

replication that we hypothesised would be performed by the experienced observers.438

To test this possibility we compared the intra-trial differences in alignment accuracy for439

the two groups. The results showed that for the naïve group, alignment accuracy differed440

significantly as a function of peak position. This was not the case for the experienced group.441

This result could be produced by naïve participants merely responding to the global dynamics442

of the stimulus instead of responding to the fine-grained timing variations in the stimulus, as443

seen in the experienced participants. This result is consistent with the notion that experienced444

observers generate predictions about observed actions by employing an internal model of that445

action that is acquired through motor experience. By mapping the observed action onto their446

internal model for that action they are better able to capture the fine-grained timing variations447

in the stimulus because their predictive model more completely captures the constraints448

specific to the effectors used to produce the action. If naïve observers do not internally449

simulate the observed action then this generic model may be less capable of capturing these450

fine-grained details while still being able to capture the global dynamics.451

Recent work using transcranial magnetic stimulation may also be relevant to the current452
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work. Agosta, Battelli, and Casile (2016) examined cortico-spinal excitability during453

observation of action and non-action motion stimuli. While Agosta et al. (2016) found no454

difference in overall motor evoked potential (MEP) amplitude between the action and the455

non-action condition, with mean MEP amplitude only being sensitive to stimulus kinematics456

rather than stimulus form, differences in the temporal dynamics of cortico-spinal excitability457

were observed. In particular, it was found that the amplitude of the MEP correlated with the458

instantaneous velocity of the movement stimulus but not the abstract stimulus. This suggests459

that while non-action stimuli might, via mirror neurons, activate the motor system (consistent460

with the claims of Schubotz et al. (2004)), this activation might be different in nature to the461

activation produced by action stimuli. Indeed, Agosta et al. (2016, p. 190) suggest that462

“observation of abstract motion [produce] a ‘coarser’ activation of the observer’s motor463

system”. This “coarser” activation, which less accurately tracks the fine-grained dynamics of464

the stimulus, might underlie the difference in prediction accuracy between the full information465

stimuli and point information stimuli reported in the present work. However, since Agosta466

et al. (2016) did not examine action prediction all that can be said is that their finding is467

consistent with the claims advanced here and not that they support our claims. An interesting468

avenue for future work, which may allow a further bridge to be built between the mirror469

neuron system and action prediction literatures, would be to examine how the difference in the470

temporal dynamics of MEPs (reported by Agosta et al., 2016) are modulated by motor471

experience, perhaps using a task similar to the present or on an outcome prediction task such472

as that used by Aglioti et al. (2008).473

Motor experience modulates stimulus effects474

The key to testing our hypothesis that experienced and naïve observers engage distinct475

predictive mechanisms was our examination of how motor experience modulated the effect of476

stimulus condition. This is because our stimulus manipulation was designed to only have an477

influence on one predictive strategy—mapping the observed stimulus onto the body—and not478

the other—simulating the observed action by non-action-specific means. We hypothesised that479

motor experience would allow participants to engage in a different type of action prediction480

compared with naïve participants. In particular, we hypothesised that experienced participants481
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would be able to activate an internal representation of the observed action that had been laid482

down by earlier performance of the action while naïve participants would just engage general483

purpose predictive mechanisms that are not specific to the action. This difference in the nature484

of prediction between the two groups should result in differences in how the two groups485

respond under the two stimulus conditions. For the experienced group, the full information486

condition should allow observers to more accurately select the correct internal action487

representation that corresponds to the observed action and this should result in an488

enhancement in alignment accuracy relative to the case where this information is absent. In489

the naïve group, however, the observers do not activate an internal representation of the490

observed action and, therefore, the addition of information that helps select the appropriate491

internal action representation should be of no benefit. As hypothesised, we found that492

alignment accuracy was enhanced in response to the full information stimuli only for493

participants who had experience producing the observed action.494

Two mechanisms for action prediction in experience and naïve observers495

While previous studies have been able to demonstrate that motor experience changes496

processes involved in action prediction by, for example, enhancing prediction accuracy497

(Aglioti et al., 2008), the results presented here go further to demonstrate how these predictive498

processes are changed. Specifically, these results are consistent with the idea that experienced499

and naïve participants rely on different mechanisms or strategies for action prediction. This500

distinction between internally replicating the action itself and merely simulating the stimulus501

dynamics with in the motor system is similar to the distinction between emulation and502

simulation, respectively, put forward by Grush (2004). By internally replicating the action503

itself, observers might not only (in certain circumstances) generate more accurate predictions504

but may also generate predictions that more accurately replicate the fine-grained timing details505

of the observed action. These differences in fine-grained details may not appear in tests of506

gross performance, such as predicting binary action outcomes (e.g., Aglioti et al., 2008;507

Sebanz & Shiffrar, 2009).508

The findings of the present study are also consistent with recent TMS work by509

Novembre, Ticini, Schütz-Bosbach, and Keller (2014) and Hadley, Novembre, Keller, and510
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Pickering (2015). Both these studies involved applying TMS over motor regions while511

participants’ were engaged in temporal coordination with stimuli that they either did or did not512

have experience with. For example, Novembre et al. (2014) had pianists play a duet along513

with a recording of a piece that they had also be trained to perform or with a untrained piece.514

The results showed the TMS was able to disrupt temporal coordination only when participants515

were playing along with a piece on which they had been trained. Similarly, in a musical516

turn-taking task, Hadley et al. (2015) found that TMS was able to disrupt the temporal517

precision of the participants’ entry into a joint performance only in trained but not untrained518

contexts. Taken together, these studies, as well as the results of the present study, show that519

temporal coordination with unfamiliar stimuli relies on different mechanisms or brain520

networks compared with temporal coordination with familiar stimuli.521

Conclusions522

Taken together, the results presented here suggest that observers with and without523

experience performing an action rely on different mechanisms or strategies when asked to524

generate predictions about that action. Observers who have experience actually performing525

the observed action generate predictions by internally replicating the actual observed action,526

possibly through reactivating motor representations laid down by earlier performance.527

Observers without this experience, however, engage general purpose predictive mechanisms528

that do not necessarily replicate the actual action nor the fine-grained details of the observed529

action. Furthermore, when stimulus dynamics are held constant, only experienced observers530

are able to take advantage of action-related information (information about the limbs and531

joints used to produce the action) while this action-related information has no influence on the532

predictions generated by naïve observers. Thus, the findings of this study show not only that533

motor experience changes action prediction but also how motor experience changes the534

operation of these predictive processes. Furthermore, the results of the present study suggest535

the future work examining how experience modulates action prediction should, rather than536

employing a single task that cannot distinguish between different strategies for action537

prediction, employ manipulations that specifically tap into the predictive strategy of observers538

so that any differences in predictive strategy between experienced and naïve observers is539
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evident.540
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