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Abstract 

Motivation: In 2014, Oxford Nanopore Technologies (ONT) announced a new 

sequencing platform called MinION. The particular features of MinION reads – longer 

read lengths and single-molecule sequencing in particular – show potential for genome 

characterization. As of yet, the pre-commercial technology is exclusively available 

through early-access, and only a few datasets are publically available for testing. 

Further, no software exists that simulates MinION platform reads with genuine ONT 

characteristics. 

Results: In this article, we introduce NanoSim, a fast and scalable read simulator that 

captures the technology-specific features of ONT data, and allows for adjustments upon 

improvement of nanopore sequencing technology. 

Availability: NanoSim is written in Python and R. The source files and manual are 

available at the Genome Sciences Centre website:  

http://www.bcgsc.ca/platform/bioinfo/software/nanosim 

Contact: cheny@bcgsc.ca  

Supplementary information: Supplementary data are available at BioRxiv.org 

  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2016. ; https://doi.org/10.1101/044545doi: bioRxiv preprint 

https://doi.org/10.1101/044545
http://creativecommons.org/licenses/by-nd/4.0/


1 Introduction  

DNA sequencing is dominated by sequencing-by-synthesis technologies, and mature 

second generation systems such as those from Illumina Inc. are amongst the most 

widely adopted. In recent years, third generation single molecule sequencing using 

nanopore-based technologies have emerged, with promises of longer reads and lower 

cost. Launched by Oxford Nanopore Technologies (ONT) in April 2014, the MinION 

sequencer, which is currently in pre-release testing, stands out among existing third 

generation sequencing technologies due to its ability to generate ultra-long reads, albeit 

with high error rates. For example, the S. cerevisiae dataset has an average read length 

of 5,473 bp, and maximum reaching 147 kbp, whereas the sequence identity is 64% for 

1D reads and 75% for 2D reads (Goodwin et al., 2015), 1D and 2D referring to 

interrogation of a DNA molecule template once or twice, respectively. 

Long nanopore reads hold great potential for de novo assembly and transcriptome 

analysis as they can span more repetitive regions and multiple exon junctions, or even 

entire transcripts. However, the error-prone reads pose new challenges to algorithm 

design (Jain et al., 2015). As it is the case for other sequencing platforms (Hu et al., 

2012), a read simulator designed specifically for ONT reads is desirable in order to 

develop and benchmark new algorithms, with the aim to harness the full potential of this 

new sequencing platform. Currently, however, no state-of-the art DNA sequence 

simulator emulates the properties of ONT reads.  

Here, we introduce NanoSim, a nanopore sequence read analysis and simulation 

pipeline. The tool analyzes ONT reads from experimental data to model read features, 

such as error profiles and length distributions, and uses these features to generate in 

silico reads for an input reference. We show that the statistical models NanoSim uses 

remain valid as the nanopore sequencing technology evolves. 

2 Methods 

NanoSim is implemented using R for error model fitting, and Python for read length 

analysis and simulation (Supplementary Fig. S1). The first step of NanoSim is read 

characterization, which provides a comprehensive alignment-based analysis, and 
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generates a set of read profiles serving as the input to the next step, the simulation 

stage. The simulation tool uses the model built in the previous step to produce in silico 

reads for a given reference genome. It also outputs a list of introduced errors, consisting 

of the position on each read, error type and reference bases. 

The modeling stage of NanoSim takes a reference and a training read set in FASTA 

format as input. The reads are aligned to the reference genome using LAST with tuned 

parameters (‘-r 1 -q 1 -a 1 -b 1’) (Frith et al., 2010). Alternatively, the tool also allows the 

input of an alignment file in MAF format. If not unique, the best alignment of each read 

is chosen based on alignment length to avoid the influence of mis-alignments due to 

repeat regions. 

Based on alignment results, training reads are classified into two types, aligned reads 

and unaligned reads. For aligned reads, typically only a middle region can be aligned, 

leaving the flanking head and tail regions soft-clipped from alignments. The length 

distribution of head and tail regions exhibits a multimodal pattern. The full read length 

distribution can be characterized by two empirical distributions: one for the length of the 

aligned regions, the second for the ratio of alignment lengths to read lengths. Length 

distributions of unaligned reads are also generated to simulate unaligned reads. The 

perfect flag of NanoSim can generate perfect reads with no errors, relying on the full-

length distribution of aligned reads. 

Sequencing errors on the aligned region share similar patterns among different 

datasets, which can be described by statistical mixture models (Warren et al., 2015): 

Mismatch: Pm ~ αm Poisson (λm) + (1 - αm) Geometric (pm) 

Insertion: Pi ~ αi Weibull (λi, κi) + (1 - αi) Geometric (pi) 

Deletion: Pd ~ αd Weibull (λd, κd) + (1 - αd) Geometric (pd) 

Here αm/i/d Î (0, 1) are mixture parameters, pm/i/d are the event probabilities in the 

geometric distributions, λm is the expected value of the Poisson distribution, and λi/d and 

κi/d, respectively, are the scale and shape parameters of the Weibull distributions. 

The mixture model describes stretches of substitution errors as being distributed 

according to Poisson distribution, whereas indels following Weibull distributions. All 

error modes have a second component of geometric distribution, which we postulate 

describes stochastic noise. Moreover, the structures of these models remain unchanged 
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when we use an alternative aligner (BWA-MEM with the ‘-x ont2d’ option) (Li et al., 

2013).  

The model parameters and error profiles for the tested datasets are provided with the 

software download package, and can be directly used for simulation. 

During simulation, the lengths of errors are drawn from the statistical models, and the 

error types are determined by a Markov chain, simulating the transitional probability 

between two consecutive errors (Supplementary Fig. S2). Interval lengths between 

errors are observed to be auto-correlated, and justifies the use of a Markov chain to 

model interarrival times between errors (Supplementary Fig. S3). 

Reads that are unaligned are more difficult to characterize. Rather than assuming 

them to be random sequences, we extract sequences from the reference, but use an 

arbitrarily high error rate compared to the aligned reads. We pick the length of each 

error in these reads from the same mixture models as the aligned reads, and randomly 

place them on the simulated sequence.  

Another feature of NanoSim is that it is able to simulate either circular or linear 

genomes. A read extracted from a circular genome can start from any position and may 

wrap around. If the length of a read is longer than the length of the whole genome, 

which is unlikely but possible for a plasmid or viral genome, it will be truncated to the 

genome length. For a linear genome to maintain a read length distribution similar to the 

training profile, NanoSim will only extract reads from chromosomes that are longer than 

the read length. 

The k-mer bias, especially the deficiency of long homopolymers, has been well-

studied (Loman et al., 2015). As a DNA molecule with a stretch of homopolymer 

sequence traverses through a nanopore, the change in electric current is not detectable 

or fails to be interpreted by the base-calling algorithm, leading to a deficient 

representation of homopolymers longer than the number of bases that can fit in the 

nanopores. The k-mer bias mode of NanoSim compresses all homopolymers longer 

than n into n-mers (default n=5), simulating the process of base-calling. The under or 

over representation of other k-mers is not supported in the current version of NanoSim. 

However, we expect this sequencing bias to be addressed by the vendor in the future, 
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given the improvement of the R7.3 chemistry compared to the previous R7 chemistry 

(Supplementary Fig. S4). 

Using an E. coli dataset, it has been reported that the GC content of 2D reads is very 

close to the reference, and that this has a minor effect on sequencing error rates 

(Karlsson et al., 2015). In prior work, we have also observed that substitution errors are 

not uniform, with a weak bias towards G and C (Warren et al., 2015). Since the 

underlying mechanism causing this bias is unclear, this pattern is not reflected in the 

NanoSim synthetic reads.  

3 Results and discussion 

Four datasets were used to benchmark NanoSim, including three E. coli datasets and 

one S. cerevisiae dataset (Table 1). Generally, 2D reads have higher quality than 1D 

reads, and are more frequently used in downstream analyses. As such, we only tested 

NanoSim on 2D reads. All tests were performed on a single machine with 8-core Intel 

i7-4770 CPUs @ 3.40GHz and 8 GB total RAM. 
Table. 1. Datasets used for benchmarking 

Organism Reference 

genome 

Download 

source 

Sequencing 

kit 

Flowcell 

chemistry 

Reference Short form 

in paper 

E. coli K12 E. coli str. K-12 

substr. MG1655 

http://gigadb.org

/dataset/100102 

SQK-MAP-

002 

R7 Quick et al., 

2014 

E. coli R7 

dataset 

E. coli K12 E. coli str. K-12 

substr. MG1655 

ENA: 

ERX708228, 

ERX708229, 

ERX708230, 

ERX708231 

SQK-MAP-

003, 004 

R7.3 Loman et 

al., 2015 

E. coli R7.3 

dataset 

E. coli K12 E. coli str. K-12 

substr. MG1655 

ENA: 

ERX947749, 

ERX947750 

SQK-MAP-

005.1 

R7.3 Ip et al., 

2015 

E. coli 

UCSC 

dataset 

S. 
cerevisiae 

W303 

S. Cerevisiae 

S288C 

http://schatzlab.

cshl.edu/data/na

nocorr/ 

NA R7 Goodwin et 

al., 2015 

Yeast 

dataset 
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3.1 Speed and memory 

The runtime of NanoSim scales up linearly with the number of reads (Supplementary 

Fig. S5), and the memory requirement depends on the length of the reference 

sequence. For example, the E. coli UCSC dataset contains 45,049 2D pass reads with 

an average length of 7,067 bp. Excluding read alignments, the characterization stage of 

NanoSim took 22m:32s, and the peak memory usage was 2.68 GB. Simulating 20,000 

E. coli reads took 4m:39s; peak memory usage was 120 MB.  

3.2 Simulation result and tool comparison 

The error models derived from the characterization stage are consistent across both 

chemistries and organisms (Supplementary Tables S1-S3). Assessing the goodness of 

fit via a Kolmogorov–Smirnov test, we observed that base call error distributions were 

statistically identical to their fitted models with p-value > 0.05 (Supplementary method). 

Currently, there are simulators that could potentially simulate Nanopore-like reads, 

such as PBSIM (Ono et al., 2013), ReadSim (Lee et al., 2014) and FASTQSim 

(Shcherbina, 2014). Among these, PBSIM is designed to simulate reads from Pacific 

Biosciences (PacBio) sequencers, which also produce long, yet error-rich reads. 

FASTQSim is a platform-independent simulator that can theoretically simulate any NGS 

datasets. ReadSim 1.6 is the only simulator, which advertises the ability to simulate 

ONT reads. 

Thus to evaluate the accuracy of NanoSim, we conducted comparisons only with 

ReadSim. In each experiment on the four datasets in Table 1, 20,000 synthetic reads 

were generated by NanoSim and ReadSim. Since ReadSim is not capable of simulating 

genomes with multiple chromosomes, for the yeast dataset we linked the yeast 

chromosomes with a single “N” in between before simulation, and discarded synthetic 

reads containing “Ns”. Simulated reads were aligned back to the reference genome and 

analyzed using the characterization tool of NanoSim. 

ReadSim simulates read lengths through a sample-based method or a Gaussian-

model-based method. The sample-based method was used here and fed with the 

empirical lengths of all reads regardless of alignment results. After simulation, over  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2016. ; https://doi.org/10.1101/044545doi: bioRxiv preprint 

https://doi.org/10.1101/044545
http://creativecommons.org/licenses/by-nd/4.0/


 
Fig. 1. NanoSim and ReadSim simulation results compared with UCSC E. coli experimental reads. (A) The 

four plots on the upper panel are cumulative density plots of error match events and error events. (B) Length density 

plot of unaligned regions and total read lengths of aligned reads. (C) Length density plot of aligned regions on each 

read. (D) Cumulative density plot of the alignment ratio of each read. 

 

99.9% synthetic reads produced by ReadSim can be aligned to the reference, while raw 

ONT datasets and NanoSim reads agree on the alignment rates ranging from 82.83% to 

99.68% for these four datasets. 

The length of consecutive perfect/error bases of simulated reads were plotted 

together along with their raw experimental read counterparts (Fig. 1A, Supplementary 

Fig. S6A, S7A, S8A). We observed that the ReadSim reads deviate further away from 

experimental data because they were simulated with uniformly distributed errors and 

randomly chosen error length.  

Statistically speaking, for all aligned reads, the lengths of the whole read and aligned 

regions of NanoSim reads and ONT reads are drawn from the same distributions (Fig. 

1B, 1C, Supplementary Fig. S6B, S6C, S7B, S7C, S8B, S8C). The distribution of 

aligned regions also exhibits bi-modal pattern with two peaks. Whereas, the only length 

distribution ReadSim re-produces well is the full length distribution of aligned reads on E. 

coli R7.3 dataset (Supplementary Fig. S7B).  

Since the lengths of ReadSim reads are drawn from the empirical data points directly, 

and over 99.9% ReadSim reads can be aligned, the full-length distribution of aligned 

A 

B C D 
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ReadSim reads is identical to the full-length distribution of all ONT reads. By comparing 

the total length density of ONT and ReadSim aligned reads, we observe that the length 

distributions of aligned reads and unaligned reads do not agree on all datasets except 

for E. coli R7.3 (Supplementary Fig. S7B). 

The lengths of unaligned regions are determined by the alignment ratio of each read. 

NanoSim performed better on E. coli R7 and yeast datasets than E. coli R7.3 and E. coli 

UCSC datasets, generating almost identical distributions of alignment ratio as the raw 

ONT reads (Fig. 1D, Supplementary Fig. S6D, S7D, S8D). This leads to similar 

statistical test results on the distribution of unaligned head and tail regions (Fig. 1B, 

Supplementary Fig. S6B, S7B, S8B). The unaligned regions on experimental ONT 

reads also have two peaks, and for E. coli UCSC dataset, they centered at 40 bp and 

1000 bp (Fig. 1B). NanoSim reads overlap with these two peaks on all four datasets, 

whereas ReadSim reads have much shorter unaligned regions. The head and tail 

regions are not profiled and thus not recovered by ReadSim.  

4 Conclusions 

In summary, NanoSim mimics ONT reads well, true to the major features of the 

emerging ONT sequencing platform, in terms of read length and error modes. The 

independent profiling module grants users the freedom to characterize their own ONT 

datasets, which is expected to perform consistently upon the improvement of nanopore 

sequencing technology, as the shapes of the error models hold among different 

datasets. NanoSim will immediately benefit the development of scalable NGS 

technologies for the long nanopore reads, including genome assembly, mutation 

detection, and even metagenomic analysis software. Currently, no human genome-size 

data sequenced by nanopore technologies are yet available. With the help of NanoSim, 

bioinformatics software developers can easily test the scalability of their tools using 

simulated reads. Moreover, a mixture of in silico genomes simulating a microbiome will 

be helpful for benchmarking algorithms with application in metagenomics, including 

functional gene prediction, species detection, comparative metagenomics, clinical 

diagnosis. As such, we expect NanoSim to have an enabling role in the field. 
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