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Abstract 

Single cell RNA sequencing (scRNAseq) technique is becoming increasingly popular for 

unbiased and high-resolutional transcriptome analysis of heterogeneous cell populations. 

Despite its many advantages, scRNAseq, like any other genomic sequencing technique, is 

susceptible to the influence of confounding effects. Controlling for confounding effects in 

scRNAseq data is thus a crucial step for proper data normalization and accurate downstream 

analysis. Several recent methodological studies have demonstrated the use of control genes for 

controlling for confounding effects in scRNAseq studies; the control genes are used to infer the 

confounding effects, which are then used to normalize target genes of primary interest. However, 

these methods can be suboptimal as they ignore the rich information contained in the target 

genes. Here, we develop an alternative statistical method, which we refer to as scPLS, for more 

accurate inference of confounding effects. Our method is based on partial least squares and 

models control and target genes jointly to better infer and control for confounding effects. To 

accompany our method, we develop a novel expectation maximization algorithm for scalable 

inference. Our algorithm is an order of magnitude faster than standard ones, making scPLS 

applicable to hundreds of cells and hundreds of thousands of genes. With extensive simulations 

and comparisons with other methods, we demonstrate the effectiveness of scPLS. We apply 

scPLS to analyze three scRNAseq data sets to further illustrate its benefits in removing 

technical confounding effects as well as for removing cell cycle effects.  
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Author Summary 

Data normalization is crucial for accurate estimation of gene expression levels and successful 

down-stream analysis in single cell RNA sequencing (scRNAseq) studies. We present a novel 

statistical method that solves a key challenge in data normalization for scRNAseq: controlling for 

the hidden confounding factors (e.g. batch effects, cell cycle effects etc.) and removing 

unwanted variation. Compare to some recent methods using a small set of control genes to infer 

and control for confounding effects, we propose instead modeling both control and non-control 

genes jointly. Through extensive simulations and case studies, we demonstrate that joint 

modeling enables much more accurate data normalization than previous approaches.  

	
  

Introduction 

Single-cell RNA sequencing (scRNAseq) has emerged as a powerful tool in genetics and 

genomics. It provides unprecedented insights into many basic biological questions by accurately 

quantifying gene expression levels at both the single cell resolution and the genome-wide scale. 

Recently, scRNAseq has been applied to classify novel cell subtypes [1, 2] and cellular states [3, 

4], reconstruct cell lineage and quantify progressive gene expression during development [5-8], 

perform spatial mapping and re-localization [9, 10], identify differentially expressed genes and 

gene expression modulars [11-13], and investigate the genetic basis of gene expression 

variation by detecting heterogenic allelic specific expressions [14, 15]. 

Like any other genomic sequencing experiment, scRNAseq studies are influenced by 

many factors that can introduce unwanted variation in the sequencing data and confound the 

down-stream analysis [16]. Due to low capture efficiency and low amount of input material, such 

unwanted variation are exacerbated in scRNAseq experiments [17]. As a result, adjusting for 

confounding factors and normalizing scRNAseq data is crucial for accurate estimation of gene 

expression levels and successful down-stream analysis [16-20]. However, depending on the 

source, adjusting for confounding factors in scRNAseq can be non-trivial. Some confounding 

effects, such as read sampling noise and drop-out events, are direct consequences of low 

sequencing-depth, which are random in nature and can be readily addressed by probabilistic 

modeling using existing statistical methods [18-22]. Other confounding effects are inherent to a 

particular experimental protocol and can cause amplification bias, but can be easily mitigated by 

using new protocols [23]. Yet other confounding effects are due to observable batches and can 

be adjusted for by including batch labels and technician ids as covariates. However, many 

confounding factors are hidden and are difficult or even impossible to measure. Common 

hidden confounding factors include various technical artifacts during library preparation and 
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sequencing, and unwanted biological confounders such as cell cycle status. These hidden 

confounding factors can cause systematic bias, are notoriously difficult control for, and are the 

focus of the present study.  

 To mitigate the influence of hidden confounding factors, existing statistical methods in 

scRNAseq studies take advantage of a set of control genes [24, 25]. Specifically, these methods 

divide genes into two sets: a control set of genes that are used to infer the confounding factors 

and a target set of genes that are of primary interest. The confounding factors inferred from the 

control set are used to remove unwanted variation in the target genes for subsequent 

downstream analysis. For example, most scRNAseq studies add ERCC spike-in controls during 

the PCR amplification and sequencing steps. The spike-in controls can be used to capture the 

hidden confounding technical noise associated with the experimental procedures for normalizing 

genes of primary interest [26]. Similarly, most scRNAseq studies include a set of control genes 

that are known to have varying expression levels across cell cycles. These cell cycle genes can 

be used to capture the unmeasured cell cycle status of each cell, which is further used to 

normalize target genes [24]. Various statistical methods can be used to infer the confounding 

effects from control genes. For example, principal component analysis (PCA) or factor models 

extract the principal components or factors from the set of control genes as surrogates for the 

confounding factors [25, 27-29]. Linear mixed models (LMMs) or single cell latent variable 

models (scLVM) construct a sample relatedness matrix based on the control genes to capture 

the influence of the confounding factors [24, 26, 30]. Other methods fit smooth curves to 

interpolate and estimate the overall contribution of the technical variation from the control genes 

[31].  

Although straightforward, these statistical methods overlook one important fact -- that the 

hidden confounding factors not only influence the control genes but also the target genes – i.e. 

the exact reason that we need to remove such unwanted variation in the first place. Because 

the confounding factors influence both control and target genes, using control genes alone to 

infer the confounding factors can be suboptimal as it fails to use the information from target 

genes. Thus, existing statistical methods do not make full use of the information contained in the 

data to remove the unwanted variation that can influence downstream analysis. 

To infer latent confounding factors from scRNAseq studies and remove unwanted 

variation, we develop a novel statistical method, which we refer to as scPLS. scPLS is based on 

the partial least squares regression models and incorporates both control and target genes to 

infer hidden confounding effects. In addition, our method can model other systematic biological 

variation and heterogeneity, which are often observed in the target genes. By incorporating such 
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systematic heterogeneity, we can further improve the estimation of the confounding factors and 

the removal of unwanted variation. To make our method widely applicable, we also develop a 

novel efficient estimation algorithm that is scalable to thousands of cells and tens of thousands 

of genes. With simulations and three real data examples, we illustrate the effectiveness of our 

method for gene expression normalization and accurate down-stream analysis in scRNAseq 

studies.  
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Results 

Method Overview 

We consider dividing genes into two sets: a control set that contains control genes and a target 

set that contains genes of primary interest. The control genes are selected based on the 

purpose of the analysis. For example, the control set would contain ERCC spike-ins if we want 

to remove technical confounding factors, and would contain cell cycle genes if we want to 

remove cell cycle effects. We use the partial least squares (PLS) regression to jointly model 

both control and target genes: 

𝒙! = 𝚲!𝒛! + 𝝐!" , 𝝐!"~𝑁(0,𝚿!") 

𝒚! = 𝚲!𝒛! + 𝚲!𝒖! + 𝝐!" , 𝝐!"~𝑁(0,𝚿!") 

where for i'th individual cell, 𝒙! is a q-vector of expression level for q control genes; 𝒚! is a p-

vector of expression level for p target genes; 𝒛! is 𝑘!-vector of unknown confounding factors that 

affect both control and target genes; the confounding effects are represented by the q by 𝑘! 

loading matrix 𝚲! for the control genes and the p by 𝑘! loading matrix 𝚲! for the target genes; 

𝒖! is a 𝑘!-vector of unknown factors in the target genes representing structured variation (see 

below); 𝚲! is a p by 𝑘! loading matrix; 𝝐!" is an q-vector of idiosyncratic error with covariance 

𝚿!" = 𝑑𝑖𝑎𝑔(𝜎!!! ,⋯ ,𝜎!"! ) ; 𝝐!"  is an p-vector of idiosyncratic error with covariance 

𝚿!" = 𝑑𝑖𝑎𝑔(𝜎!!! ,⋯ ,𝜎!"! ). We have assumed that the expression levels of each gene have been 

centered to have mean zero, allowing us to ignore the intercept. 

Our model includes two types of unknown latent factors. The first set of factors, 𝒛!, 

represents the unknown confounding factors that affect both control and target genes. The 

effects of 𝒛! on the control and target genes are captured in the loading matrices 𝚲! and 𝚲!, 

respectively. We call 𝒛! the confounding factors throughout the text, and we aim to remove the 

factor effects 𝚲!𝒛!  from the target genes. The second set of factors, 𝒖!, aims to capture a low 

dimensional structure of the expression level of p target genes. The factors 𝒖! are sometimes 

referred to as gene signatures, representing intermediate factors that coordinately regulate a set 

of genes in biological processes and/or specific experimental perturbations. These factors can 

be interpreted as cell subtypes, treatment status, transcription factors or regulators of biological 

pathways in different studies [32-36]. Although 𝒖! could be of direct biological interest in many 

data sets, we do not explicitly examine the inferred 𝒖! here. Rather, we view modeling 𝒖! in the 

target genes as a way to better capture the complex variance structure, and to facilitate precise 

estimation of the confounding factors 𝒛! . For simplicity, we call 𝒖!  the biological factors 

throughout the text, though we note that 𝒖! could well represent non-biological processes such 
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as treatment or environmental effects. Thus, the expression levels of the control genes can be 

described by a linear combination of the confounding factors 𝒛!  and residual errors; the 

expression levels of the target genes can be described by a linear combination of the 

confounding factors 𝒛! , the biological factors 𝒖!  and residual errors. For both types of 

confounding factors, we are interested in inferring the factor effects 𝚲!𝒛! and 𝚲!𝒖! rather than 

the individual factors 𝒛!  and 𝒖! . Therefore, unlike in standard factor models, we are not 

concerned with the identifiability of the factors. Figure 1 shows an illustration of scPLS. 

We develop an expectation-maximization (EM) algorithm to estimate the parameters in 

the latent factor model. Our algorithm treats the latent factors as missing data and uses an 

iterative procedure to compute the expectation of factors in the E-step and update the factor 

loading matrices in the M-step (details in the Supplementary Text). This naïve EM algorithm, 

however, is computationally expensive, and scales quadratically with the number of genes and 

linearly with the number of samples. To improve the computational speed, we develop a new 

EM-in-chunks algorithm. Our algorithm is based on the observation that the expression levels of 

the target genes are determined by the same set of underlying factors and that these factors 

can be estimated accurately even with a small subset set of target genes. This allows us to 

randomly divide target genes into dozens of chunks, compute the expectation of the factors in 

each chunk separately in the E-step, and then average these expectations across chunks. With 

the averaged expectations, we then update the factor loading matrices in the M-step. Thus, our 

new algorithm modifies the E-step in the naïve algorithm and is c times faster than the naïve 

one, where c is the number of chunks. Simulations show that our EM-in-chunks algorithm yields 

comparable results to the naïve EM algorithm with respect to estimation errors, but can be an 

order of magnitude faster (Table S1). To determine the number of confounding factors and 

biological factors, we evaluate the likelihood on a grid of 𝑘!  and 𝑘!  values and choose the 

optimal combination that minimizes the Bayesian information criterion (BIC). After parameter 

estimation, we use the residuals 𝒚! = 𝒚! − 𝚲!𝒛! as the de-noised values for subsequent analysis. 

Notice that the residuals are only free of confounding effects 𝚲!𝒛! but still contain the biological 

factor effects 𝚲!𝒖!. 

Simulations 

Our method improves upon previous methods in two important ways. First, it explicitly models 

the effects of confounding factors 𝒛𝒊 on both control and target genes. Second, it accounts for a 

low dimensional structure in the expression levels of target genes with the biological factors 𝒖!. 

Both features are expected to improve the normalization of target genes. To illustrate the 
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benefits of these two features, we perform a simulation study. Details of the simulations are 

described in Methods. Briefly, we simulate gene expression levels for 50 control genes and 

1,000 target genes for 200 cells. These 200 cells come from two equal-sized groups, 

representing two treatment conditions or two sub-cell types. Among the 1,000 target genes, only 

100 of them are differentially expressed (DE) between the two groups and thus represent the 

signature of the two groups. The effect sizes of the DE genes are simulated from a normal 

distribution, and we scale the effects further so that the group label explains a fixed percentage 

of phenotypic variation (PVE) in expression levels in the DE genes (ranging from 1% to 20%, 

with 1% intervals). In addition to the group effects, we simulate the confounding factors 𝒛! to 

explain 10% PVE in either the control or the target genes, the biological factors 𝒖! to explain 

either 0% (i.e. no effect) or 30% PVE of the target genes, and the residual errors to explain the 

rest of PVE. To make the simulations realistic, these PVE values are based on real data sets. 

For the confounding factors 𝒛!, we consider two scenarios: a simple scenario where 𝒛! is not 

correlated with the group label, and a complicated but perhaps more realistic scenario where 𝒛! 

is correlated with the group label.  

We then compare our method to two commonly used methods -- the PCA method and 

the LMM method – that use control genes to infer confounding effects. To illustrate the benefit of 

the biological factors 𝒖!, we also compare our full model to a reduced model that does not 

contain the biological factors. Our goal on the simulated data is twofold: we want to identify 

these differentially expressed genes and to classify the 200 cells into two groups. Therefore, we 

compare the performance of various methods based on two criteria: the power to identify the DE 

genes and the power to classify cells into two groups. We permute group labels to construct an 

empirical null and compare methods based on either power given a certain false discovery rate 

(FDR) for identifying DE genes or accuracy for classification. 

 Because our method infers the confounding factors 𝒛!  using information from both 

control and target genes, it can estimate the confounding effects more precisely than other 

methods and thus result in better gene expression estimates in the target set (Figure S1). For 

instance, the correlation between the true and estimated confounding effects is on average 0.84 

for scPLS, 0.81 for PCA, and 0.61 for LMM (p-value < 10-16 for scPLS vs PCA and p-value = 

0.015 for scPLS vs LMM). Due to the better normalization of expression levels, our method is 

more powerful than both PCA and LMM in identifying DE genes (Figures 2a and S2). 

Specifically, when PVE=10%, scPLS achieves an average power of 58.4% for detecting DE 

genes, while LMM and PCA achieve an average power of 38.5% and 42.2%, respectively; when 

PVE=20%, scPLS achieves an average power of 71.4% for detecting DE genes, while LMM and 
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PCA achieve an average power of 55.7% and 58.9%, respectively. The improvement of scPLS 

over other methods is especially significant in the scenario where the confounding factors are 

correlated with the group label, as the benefits of using the target genes in addition to the 

control genes become more important (Figure 2a vs Figure S2). Interestingly, for detecting DE 

genes, when the group effect size is small, methods that remove technical confounding factors 

may perform even worse than uncorrected data, presumably because of model over-fitting 

(Figure 2a). However, while PCA and LMM outperform the uncorrected data only when the 

group effect size is above PVE=10%, scPLS outperforms the uncorrected data for a small PVE 

of 5%, suggesting that scPLS is more robust to model over-fitting.  

One important benefit of scPLS, compared with others, is that it is less sensitive to the 

number of control genes used in the analysis. Because scPLS does not completely rely on 

information from the control genes, it achieves reasonably good performance even if we only 

use a much smaller subset of control genes. In contrast, the performance of other methods 

compromise more quickly with a reduced number of control genes (Figure 2b). For instance, for 

detecting DE genes, when PVE=20%, using 10 control genes instead of 50 results in an 

average power reduction of only 3.2% for scPLS, but results in an average power reduction of 

7.6% and 7.8% for LMM and PCA, respectively (p-value = 8.21x10-05 for scPLS vs PCA and p-

value = 4.79x10-05 for scPLS vs LMM).	
    

The higher power of scPLS to detect DE genes also translates to a better performance 

of classifying single cells. To visualize classification performance, we extract the principal 

components (PCs) from normalized expression levels of the top 100 DE genes and visualize the 

data on PC1 and PC2. For scPLS, PC1 and PC2 clearly separate cells into the two known cell 

groups. For both LMM and PCA, the separation is less clear (Figure 2c). To further quantify the 

classification performance, we apply the support vector machine (SVM) to classify the cells. We 

perform a five-fold cross-validation, training SVM with 80% of the samples and evaluating the 

prediction accuracy with the rest of the samples. As expected, scPLS outperforms the other two 

methods (Figure 2d). When PVE is 10%, scPLS achieves an average accuracy of 98% across 

10 replicates, while LMM and PCA only achieve 84.3%. When PVE is 20%, scPLS achieves 

99%, while LMM and PCA achieve 91.5% and 88.5%, respectively. 

Finally, our full model also compares favorably with the reduced model where we do not 

model biological factors. In particular, the full model performs better than the reduced model in 

the presence of biological factors, but does not perform much worse when there are no 

biological factors in the data (Figure S3a). For instance, when biological factors are included in 

the simulated data, the reduced model achieves 34.8%, compared with 58.4% from the full 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2016. ; https://doi.org/10.1101/045070doi: bioRxiv preprint 

https://doi.org/10.1101/045070
http://creativecommons.org/licenses/by-nc-nd/4.0/


model when PVE=10%. When PVE=20%, the reduced model only achieves a power of 52.1% 

for detecting DE gene, compared with 71.4% from the full model. As a consequence, the 

reduced model achieves an average prediction accuracy of 94.8% in classification, compared 

with 98% from the full model when PVE=10%. On the other hand, when there are no biological 

factors in then simulated data and when PVE=10%, the reduced model achieves a power of 

51.7%, while the full model still achieves a power of 50.4% (using 2 biological factors) -- a very 

small reduction (Figure S3b). Similarly, when PVE=20% the reduced model achieves a power of 

66.2%, while the full model still achieves a power of 65.2%. Importantly, the comparison results 

are not sensitive with respect to the number of biological factors used in fitting the model when 

no biological factors are present (Figure S3b). As it is often unknown whether a low-rank 

structural variation exists in a real data set, our simulation suggests that we can always include 

the biological factors 𝒖! in the model.  

 

Real Data Applications 

Next, we illustrate the benefits of our method in three real data sets. The first dataset is used to 

demonstrate the effectiveness of scPLS in removing the technical confounding effects by using 

ERCC spike-ins. Removing technical confounding effects is a common and important task in 

transcriptome analysis. The second dataset is used to demonstrate the effectiveness of scPLS 

in removing cell cycle effects by using a known set of cell cycle genes. Removing cell cycle 

effects can reveal gene expression heterogeneity that is otherwise obscured. Finally, with the 

third dataset, we demonstrate the effectiveness of scPLS in removing both technical 

confounding effects and cell cycle effects.  

 

Removing Technical Confounding Factors 

The first dataset consists of 251 samples of mouse embryonic stem cells (mESCs). The cells 

were cultured in two different media: two-inhibitor (2i) medium or serum medium. The cells in 

each medium were collected in two different ways: either as single cell samples subject to 

scRNAseq or as pooled samples subject to pooled RNAseq. Therefore, the samples can be 

divided into four different categories based on the medium type and collection type. We use 

ERCC spike-ins as controls and all other genes as the target. In this data, scPLS infers 𝑘! = 1 

confounding factors and 𝑘! = 1  biological factors. In the target genes, the confounding factors 

and biological factors explain a median of 16.1% and 33.9% of gene expression variance, 

respectively. The PVE by the technical factors are higher in highly variable genes. For example, 

in the top 500 genes with the largest variance, the two sets of factors explain a median of 18.6% 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2016. ; https://doi.org/10.1101/045070doi: bioRxiv preprint 

https://doi.org/10.1101/045070
http://creativecommons.org/licenses/by-nc-nd/4.0/


and 32.4% of gene expression variance, respectively. The PVE by the confounding and 

biological factors can be as high as 70.0% and 87.1% in the target genes (Figure 3a).  

We first visualize the uncorrected data and data corrected by scPLS with heatmap 

(Figure 3b). Before correction, there is a large variation in gene expression levels across 

samples in each category. However, this large variance is due to technical confounding. After 

correction, the variability of samples within each category is considerably reduced. 

We next compare the efficacy of scPLS with other methods in removing technical 

confounding factors. Here, in addition to LMM and PCA, we also compare with RUV, a method 

specifically designed to remove technical confounding factors by using control genes [25]. 

Because the data consists of four sample categories, we compare the performance of methods 

based on whether the corrected data can better reveal four distinct groups. In particular, if a 

method effectively removes confounding effects, the top PCs from the corrected data can be 

used to better distinguish the four categories. Thus, we extract the top PCs from both corrected 

data and uncorrected data. For each PC, we compute a ratio of within-category variance and 

the total-variance. A small ratio suggests that this particular PC can be used to distinguish the 

four categories. We then contrast the ratio from the k’th PC in the corrected data with the ratio 

from the k’th PC in the uncorrected data, and compute the reduction in ratio as a measurement 

of performance; a large reduction suggests better performance. As expected, data corrected by 

scPLS achieves the largest reduction in ratio, suggesting that scPLS outperforms the other 

methods (Figure 3c). For example, the within-cluster variance ratio for the first PC is reduced 30% 

by scPLS. In contrast, the decrease in the ratio for the first PC by PCA, LMM and RUV is only 

25.1%, 24.5% and 23.6%, respectively. The trend is apparent for all top PCs. For example, for 

the 10’th PCs, the ratio is reduced 13.4% by scPLS. In contrast, the ratio reduced by PCA, LMM 

and RUV are only 10.4%, 9.9% and 9.3%, respectively. The results suggest that scPLS 

performs better than the alternatives and can better reveal distinct sample categories in the data.  

 

Removing Cell Cycle Effects 

The second dataset measured the expression level of 301 single cells from either the utricular 

or the cochlear sensory epithelia in the inner ear of newborn mice [37]. The cells from each of 

the two tissues (i.e. utricle and cochlea) can be classified into three cell types (the hair cells, or 

HCs; the transitional epithelial cells, or TECs; and supporting cells, or SCs), resulting in a total 

of six distinct cell types. We 282 known cell cycle genes as controls and all other genes as 

targets. scPLS infers 𝑘! = 2 confounding factors of cell cycle and 𝑘! = 2 biological factors. The 

cell cycle confounding factors and biological factors explain a median of 11.9% and 1.4% of 
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gene expression variance, respectively. The PVE by the latent factors are higher in highly 

variable genes. For example, both factors explain a median of 18.0% and 2.4% of gene 

expression variance, respectively, in the top 500 genes with the largest variance. The PVE by 

the confounding and biological factors can be as high as 91.5% and 73.4% (Figure 4a). 

We first perform a PC analysis on the uncorrected data and the scPLS corrected data. In 

the uncorrected data, PC1 and PC2 separated cells into two clusters (Figure 4b). However, 

these two clusters do not represent tissue groups. Instead, one cluster consists largely of HCs 

from the two tissues while the other cluster consists of the other four cell types.  PC1 and PC3 

separate cells into the expected two tissue groups. On the other hand, PC1 and PC2 of scPLS 

corrected data directly cluster cells according to the cell type (Figure 4b). This suggests that 

PC1 of the uncorrected data may represent cell cycle effects. To directly test this, we extract 

PCs from the cell cycle genes and denote the first PC as the cell cycle PC (ccPC). We expect 

this ccPC to represent the majority of the cell cycle effects, as it accounts for 50.1% of variance 

among the top five PCs of cell cycle genes. In either the uncorrected data or scPLS corrected 

data, we calculate the correlation of PC1, PC2 and PC3 with ccPC (Figure 4c). In the 

uncorrected data, PC1 is highly corrected with ccPC with a striking correlation of 0.96 (p-value < 

10-16). PC2 is also correlated with ccPC but to a much lesser degree, and PC3 is not correlated 

(r= 0.23 and 0.02, p-values = 5.6 x 10-5 and 0.74). After scPLS adjusting for cell cycle effects, 

the correlation with PC1 is almost completely gone (r=6.8 x 10-3, p-value = 0.90). The 

correlations of ccPC with PC2 are also reduced to near zero (r= 8.4 x 10-5, and 0.04, p-values = 

0.99 and 0.55). The correlation results suggest that scPLS can successfully remove cell cycle 

effects.  

We then compare the performance of scPLS with other methods in this data. In addition 

to PCA and LMM, this time, we also include scLVM for comparison. scLVM is specifically 

designed to remove cell cycle effects [24]. Because we do not know the true cell cycle label 

here (unlike the following data; see below), we use two different criteria to compare different 

methods.  

Our first criterion is the correlation of PCs with ccPC as described in the paragraph 

above. All methods are able to reduce the correlation between PC1 and ccPC. For example, 

ccPC is not highly correlated with PC1 from PCA (r = 0.02), LMM (r= 0.02) or scLVM (r=0.05). 

However, among all the methods, PC1 from scPLS corrected data has the smallest correlation 

with ccPC (r=5.6 x 10-5; p-value < 1.0 x 10-16  for scPLS vs PCA, p-value < 1.0 x 10-16  for scPLS 

vs LMM, and p-value = 0.001 for scPLS vs scLVM), suggesting that scPLS works best among 
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all. A similar trend is observed for PC2. However for PC2, both scPLS and scLVM work well and 

reduce the correlation to near zero.  

Our second criterion to compare the methods is based on a subset analysis. For this 

criterion, we randomly split the cell cycle genes into two sets: one set (150 genes) is used as 

the control set as usual, but the other set (132 genes) is included in the target gene set and 

used for validation purpose. We perform four replicates of split. We reason that, if a method 

works well to remove the cell cycle effects, then the 132 genes in the validation set should be 

free of cell cycle effects, and thus would no longer be highly correlated with each other or with 

genes in the control set. In the uncorrected data, the control genes and validating genes are 

highly positively correlated with each other (Figure 4d). The standard hierarchical clustering 

algorithm cannot separate these two sets and genes from the two sets are intermingled in the 

hierarchical cluster. In contrast, after scPLC correction, the high correlations between the 

control genes and validating genes are largely gone. The standard hieratical clustering 

algorithm can easily separate the control genes and the validating genes (Figure 4d). To 

quantitatively measure the reduction in correlations, we compute all pair-wise correlations 

between genes from the controls set and genes from the validation set (Figure 4e). scPLS 

reduces the median correlation among genes from 0.09 to 0.043 (p-value = 8.0 x 10-5), and 

reduces the 90% quantile correlation from 0.190 to 0.108 (p-value =  0.0003). scLVM also 

reduces correlations, but to a lesser amount compared with scPLS. For example, scLVM 

reduces the 90% quantile correlation among genes to 0.115, which is significantly less than 

scPLS (p-value = 0.047). scLVM reduces the median correlation to 0.046, which is also 

significantly less than scPLS (p-value = 0.017). The results from PCA and LMM are not 

significantly different compared to scPLS, suggesting that these methods are also effective in 

removing cell cycle effects.  

In conclusion, based both criteria, scPLS can effectively remove cell cycle effects, and 

more so than the other methods. 

 

Removing Both Technical Effects and Cell Cycle Effects 

Our method can also be used to remove both technical effects and cell cycle effects. We can 

accomplish this in two steps. First, we use the spike-in genes as the control set and all genes as 

the target set to jointly infer and remove the technical confounding effects. Then, with the 

corrected gene expression levels from the first step, we further use the cell cycle genes as the 

control set and other genes as the target set to estimate and remove the cell cycle effects.  
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To demonstrate the effectiveness of the two-step approach, we apply our method to a 

third dataset. This dataset contains the transcriptional profile of 182 embryonic stem cells (ESCs) 

with pre-determined cell-cycle phases (G1, S and G2M) [24]. We used 92 ERCC spike-ins as 

the control genes and a set of 9,121 genes selected in the previous study [24]. To remove cell 

cycle effects, we use 629 annotated cell-cycle genes as controls and other genes as targets. 

scPLS infers 𝑘!! = 1 technical confounding factors, 𝑘!! = 1 cell cycle confounding factors, and 

𝑘! = 1 biological factors at the second step. These factors explain a median of 0.4%, 3.1%, and 

0.7% of gene expression variance, respectively (Figure 5a). The PVE by the three components -

- the confounding, cell cycle factors and biological factors -- can be as high as 40.0%, 74.8% 

and 37%. We visualize the uncorrected data and scPLS corrected data with a PCA plot (Figure 

5b). In the uncorrected data, there is a clear separation of cells according to cell-cycle stage. 

Such separation of cells is not observed in the corrected data, indicating that the cell cycle 

related expression signature is effectively removed. 

We compare the performance of scPLS with the other three methods. Here, both LMM 

and PCA use the same two-step procedure while scLVM uses the procedure developed earlier 

[24]. We evaluate the performance based on two different criteria. For the first criterion, we 

compute for each gene the proportion of expression variance explained by the cell cycle factor. 

We denote this quantity as PVEi, which stands for inferred PVE. Because the cell-cycle stage of 

each cell has been experimentally determined in this data set, we further compute the variance 

explained by the true cell cycle labels. We denote this quantity as PVEt, which stands for true 

PVE. For scPLS, PVEi and PVEt are highly correlated (r2 = 0.77), demonstrating the efficacy of 

scPLS (Figure 5c). Importantly, the correlation is similar whether we use the naïve EM algorithm, 

or the EM-in-chunks algorithm with either the full control set or with a subset of 300 controls 

(Figure S4). The correlation between PVEi and PVEt in scPLS is higher than that from scLVM 

(r2=0.68; p-value < 10-16), LMM (r2=0.53; p-value < 10-16), and PCA (r2=0.70; p-value < 10-16) 

(Figure 5c), suggesting that scPLS works better than the other three methods. To examine 

whether those factors are indeed good predictors for cell cycle, we further build a regression 

model between the inferred factors and the know cell cycle phases. For each cell cycle phase, 

we create a binary indicator variable. We then regress these indicator variables on the 

estimated technical factors to compute an R2. A higher R2 suggests better performance. scPLS 

achieves R2 coefficients of 0.33, 0.46 and 0.43 for G1, S and G2M, respectively. In comparison, 

PCA achieves R2 coefficients of 0.32, 0.42 and 0.40, and LMM achieved 0.28, 0.40, and 0.38.  

To further validate the efficacy of our approach, we again randomly split the cell cycle 

genes into two sets: one is used as the controls (300 genes), and the other (329) as a validation 
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set, included in the target set. In the uncorrected data, the control genes and validating genes 

are highly correlated with each other and intermingled (Figure S5b). After scPLC correction, the 

correlation between the control genes and the validating genes is largely gone and the two set 

could be easily separated. To quantitatively measure the reduction in correlations, we compute 

all pair-wise correlations between genes from the controls set and genes from the validation set 

(Figure S5a). scPLS reduces the median correlation among genes from 0.075 to 0.052 (p-value 

= 0.0001), and reduces the 95% quantile correlation from 0.219 to 0.158 (p-value = 0.0001). As 

a comparison, PCA and LMM reduce the median correlation among genes to 0.057, and 0.056, 

both of which are significantly less than scPLS (p-value =	
  7.0 x 10-5, and 5.53 x 10-5 for scPLS 

vs PCA, scPLS vs LMM, respectively). scLVM reduces the median correlation among genes to 

0.052, which is not significantly different from scPLS (p-value =0.483).  

In conclusion, scPLS performs better than the other methods based on multiple criteria. 
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Discussion 

We have presented a new method, scPLS, for removing hidden confounding factors and 

normalizing expression data in scRNAseq studies. scPLS uses both control and target genes to 

infer the confounding factors and is more effective in removing confounding effects than 

previous approaches that use control genes alone. With both simulations and applications to 

three real data sets, we have demonstrated the effectiveness of our method for controlling for 

hidden confounding effects in scRNAseq studies.  

Although we have focused on the applications of our method to scRNAseq studies, our 

method can be readily applied to other genomic sequencing studies. For instance, our method 

can be used to remove confounding effects from gene expression levels in bulk RNAseq studies 

[38] or from methylation levels in bisulfite sequencing studies [39]. The main requirement of our 

method is a set of pre-specified control genes that are measured together with the target genes 

in the sequencing studies. It is often straightforward to obtain such control genes. For example, 

many scRNAseq studies include a set of ERCC spike-in controls that could be used to model 

and remove technical confounding effects [26]. Even when such ERCC spike-in controls are not 

present, we can select a known set of house-keeping genes as controls to remove technical 

confounding [25]. Similarly, we can use a set of known cell cycle genes to remove cell cycle 

effects. Importantly, unlike other methods, the performance of scPLS is not sensitive to the 

number of genes included in the control set, and yields comparable results even when a much 

smaller number of control genes is used (Figure 2b). This is because scPLS not only uses 

information from control genes but also relies on information from target genes. Insensitivity to 

the control set makes scPLS especially suited to removing confounding factors in studies where 

a control set is not clearly defined. Because of its effectiveness and robustness, we expect 

scPLS to be widely useful in normalizing data from sequencing studies.  

One important feature of scPLS is that it includes a low-rank component to model the 

structured biological variation often observed in real data. By decomposing the (residual) gene 

expression variation into a low-rank structured component that is likely to be contributed by a 

sparse set of biological factors, and an unstructured component that reflects the remaining 

variation, scPLS can better model the residual error structure for accurate inference of 

confounding effects. Although here we have focused on using the biological factors to better 

infer the confounding effects, we note that the low-rank biology factors themselves could be of 

direct interest. In fact, low-rank factors inferred from many data sets using standard factor 

models have been linked to important biological pathways or transcription factors [32-36]. 

Inferring the biological factors using our current model is not feasible at the moment, however: 
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because of model identifiability, scPLS can only be used to infer the biological effects (i.e. 𝚲!𝒖!) 

but not the biological factors (i.e. 𝒖!). That said, additional assumptions can be made on the 

structure of the factors or the factor loading matrices to make factor inference possible [40]. For 

example, we could impose sparsity assumptions on the low-rank factors to facilitate the 

inference of a parsimonious set of biological factors. Exploring the use of biological factors from 

scPLS is an interesting avenue for future research. 

Like many other methods for scRNAseq [31] or bulk [41, 42] RNAseq studies, scPLS 

requires a data standardization step that converts the count data into quantitative expression 

data. Different conversion methods can affect the interpretation of the data and are 

advantageous in different situations [16]. Because scPLS does not rely on a particular 

standardization procedure, scPLS can be paired with any conversion methods to take 

advantage of their benefits. One important feature of scPLS is that it directly models quantitative 

expression data instead of raw count data. Despite the count nature of sequencing data, it has 

been show that there is often a limited advantage of modeling the raw read counts directly, at 

least for RNAseq studies [43, 44]. Statistical methods that convert and model the quantitative 

expression data have been shown to be robust [41, 42] and most large scale bulk RNAseq 

studies in recent years have used normalized data instead of count data [28, 45-47]. However, 

we note that, unlike bulk RNAseq studies, single cell RNAseq data often come with low read 

depth. In low read depth cases, modeling count data while accounting for over-dispersions (e.g. 

dropout events) in single cell RNAseq studies may have added benefits [17, 19]. Therefore, 

extending our framework to modeling count data [48, 49] is another promising avenue for future 

research. 
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Methods 

scRNAseq Data 

We applied our method to three real data sets.  

The first dataset contained both single cell sequencing data and bulk sequencing data, 

with a total of 251 samples cultured in two different media [18]. In particular, it included 74 

mouse embryonic stem cells (mESCs) single cells cultured in a two-inhibitor (2i) medium, 45 

mESCs single cells cultured in a serum medium, 56 samples with pooled RNA from mESCs 

cultured in a 2i medium, and 76 samples with pooled RNA from mESCs cultured in serum. The 

raw UMI counts (kindly provided by the authors) data contained measurements for 92 ERCC 

spike-ins and 23,459 genes. Due to the low coverage of this dataset (median coverage equals 

1), we filtered out lowly expressed genes and selected only genes that had at least five counts 

in more than 1/3 of the cells. This filtering step resulted in a total of 17 ERCC spike-ins used as 

the controls and 2,795 genes used as the targets. Following previous approaches [4, 10, 11, 24], 

we used log10 transformed values for analysis.  

The second dataset contained single cell expression data from the utricular and the 

cochlear sensory epithelia in the inner ear of newborn mice [37]. We obtained the data from 

GEO website with accession number GSE71982. The original RSEM data contained count 

measurements for 26,585 genes of 321 cells. We removed cell types that were represented by 

less than five cells and focused on the resulting 307 cells from a total of six distinct cell types. 

The six cell types included the hair cells (HCs), the transitional epithelial cells (TECs), and 

supporting cells (SCs) from each of the two tissues (utricle and cochlea). For genes, we further 

filtered out lowly expressed genes that had less than five counts in more than 90% of the cells 

and fewer variable genes that had variance less than 0.75. This yielded a set of 4,128 genes, 

282 of which were annotated as cell cycle genes (see below). Among these genes, we used 

3,846 non cell cycle as targets and 282 cell cycle genes as controls. Again, we used log10 

transformed values for analysis. In the subset analysis, we randomly sampled 150 genes from 

the cell cycle genes as controls and used the rest 132 genes in the target set. We only 

performed four replicates in the subset analysis because results were very consistent across 

replicates.  

The third dataset contained the transcriptional profile of 182 embryonic stem cells (ESCs) 

with 92 ERCC spike-ins [24]. We obtained the data from ArrayExpress database with accession 

number E-MTAB-2805. The cells were in three different cell-cycle phases (G1, S and G2M) 

which had been determined experimentally. There were 59 cells in G1 phase, 58 cells in S 

phase and 65 cells in G2M phase. We extracted the count data for a list of 9,571 genes as 
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before [24]. Among them, we focused our analysis on 629 annotated cell-cycle genes and 8,942 

non cell-cycle genes with the largest variance. Again, we used log10 transformed values for 

analysis. For scPLS, at the first step, we used 92 spike-ins as controls and 9,571 genes as 

targets to remove the technical effects. The corrected data were obtained by subtracting the 

part contributed by the latent technical factors from the measured expression. To further remove 

cell cycle effects, we used 629 cell-cycle genes as controls and used 8,942 non cell cycle genes 

as the target set in the second step. In the subset analysis, we randomly sampled 329 genes 

from the controls and added the rest 300 genes to the target set. Four replicates were 

generated for the subset analysis.  

Both the second and third dataset required a pre-specified set of cell cycle genes as 

controls. We used a set of 892 cell cycle genes following a previous study [24]. This set of cell 

cycle genes were generated by intersecting two different data sources: all cell cycle genes with 

GO ID 0007049 [50], and a list of 600 top-ranked genes from CycleBase [51].  

 

Simulations 

We simulated gene expression levels for 50 control genes and 1000 target genes for 200 cells. 

These 200 cells were simulated from two equal-sized groups, representing two treatment 

conditions or two sub-cell types. Among the 1000 target genes, only 100 of them were 

differentially expressed between the two groups and thus represented the signature of the two 

groups. We generated the expression profile according to the following model:   

𝒙! = 𝚲!𝒛! + 𝝐!" , 

𝒚! = 𝚲!𝒛! + (𝐈 − 𝑫)𝚲!𝒖! + 𝑔!𝜷 + 𝝐!" ,   

where 𝒛! is the 𝑘!-vector of confounding factors shared between 𝒙! and 𝒚!; 𝒖𝒊 is the 𝑘!-vector of 

biological factors specific to 𝒚!; 𝑔! is a group indicator function that equals 1 if i'th gene belongs 

to group one and equals 0 otherwise; 𝜷 is a p-vector of DE effects sizes that equals 0 for non-

DE genes; 𝑫 is p by p diagonal indicator matrix of DE genes: jj’th element of 𝑫 equals 1 if j’th 

gene is a DE genes while equals 0 otherwise. This way, the expression levels of DE genes can 

be described by a linear combination of the confounding factors 𝒛!, the DE effects and the 

residual errors. The expression levels of non-DE genes can be described by a linear 

combination of the confounding factors 𝒛! , the biological factors 𝒖!  and residual errors. We 

considered three different simulation scenarios. 

 In scenario I, the confounding factors were independent of group effects. Here, we set 

𝑘! = 6 and 𝑘! = 10 as motivated by real data analysis. We simulated each element of 𝒛! and 𝒖! 

from a standard normal distribution. We simulated each element of 𝚲! from 𝑁(−0.2,𝜎!!) and 
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each element of 𝚲𝒚 from 𝑁(0.2,𝜎!!). Note that 𝚲! and 𝚲! were simulated differently to capture 

the fact that the effect sizes of the confounding factors can be different for control and target 

genes. We simulated each element of 𝚲! from 𝑁(0,𝜎!!). We simulated each element of 𝝐!" and 

𝝐!" from a normal distribution 𝑁(0,𝜎!!). We simulated the 100 DE effects 𝛽! ∼ 𝑁(0,𝜎!). We set 

𝜎!! = 1.2, 𝜎!! = 0.4 and 𝜎! = 2.4 to ensure that, in non-DE genes, the confounding factors 𝒛! 

explain 10% PVE in either the control or the target genes, the biological factors 𝒖! to explain 30% 

PVE of the target genes, and the residual errors to explain the rest of PVE. We also set 𝜎! such 

that, in DE genes, the group effects explain a fixed proportion of phenotypic variance that 

ranging from 1% to 20% with 1% intervals. To make the simulations realistic, these PVE values 

were all based on real data analysis.  

 In scenario II, the confounding factors were correlated with group effects. The 

simulations here were largely similar to scenario I, with the only exception of 𝒛!. Here, each 

element of 𝒛! was simulated depending on the group label of i'th sample; the element of 𝒛! was 

simulated from 𝑁(0, 1) when i'th sample belongs to group one, but was simulated from 𝑁(0.5, 1) 

when the sample belongs to group two. This way, 𝒛! is correlated with group label 𝑔!. 

 Finally, we also considered a scenario III where there were no group effects. The 

simulations here were largely similar to scenario I, with the only exception that all genes were 

non-DE, or 𝛽! = 0.  

 To evaluate the performance of different methods, we applied t-test to normalized data 

to identify DE genes. For each simulated data, we also permuted the group label 10,000 times 

to construct an empirical null distribution of p-values. With the empirical null, we computed 

power of each method for identifying DE genes based on a fixed empirical false discovery rate 

(FDR). 

 
Other Methods 

We compared scPLS with four other competing methods in both simulations and real data 

applications. The first method is PCA. We used the top k PCs from control genes as covariates 

to remove confounding effects from target genes. Unlike scPLS, PCA cannot infer k. Thus, we 

used k=kz as inferred from scPLS. The second method was LMM, implemented in the GEMMA 

software [52, 53]. For LMM, we used all control genes to construct a relatedness matrix. Then, 

we fitted a LMM for each gene in turn from the target set to remove the confounding random 

effects. The third method was RUV [25]. RUV is specifically designed to remove technical 

confounding factors. Thus, we only applied RUV to the first real data set. The fourth method 
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was scLVM [24]. scLVM is specifically designed to remove cell cycle effects. Thus we applied 

scLVM to the second and third real data sets.  

 

Software Availability 
The scPLS software is a part of Citrus project and is freely available at: 
http://chenmengjie.github.io/Citrus/. 
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Figure	
  legends	
  

	
  

Figure	
  1:	
  Illustration	
  of	
  scPLS.	
  We	
  model	
  the	
  expression	
  level	
  of	
  genes	
  in	
  the	
  control	
  set	
  (X)	
  and	
  genes	
  in	
  
the	
  target	
  set	
  (Y)	
  jointly.	
  Both	
  control	
  and	
  target	
  genes	
  are	
  affected	
  by	
  common	
  confounding	
  factors	
  (Z)	
  
with	
  effects	
  𝚲!	
  and	
  𝚲!	
  in	
  the	
  two	
  sets,	
  respectively.	
  The	
  target	
  genes	
  are	
  also	
   influenced	
  by	
  biological	
  
factors	
   (U)	
   with	
   effects	
  𝚲! .	
   The	
   biological	
   factors	
   represent	
   intermediate	
   factors	
   that	
   coordinately	
  
regulate	
   a	
   set	
   of	
   genes,	
   and	
   are	
   introduced	
   to	
   better	
   capture	
   the	
   complex	
   variance	
   structure	
   in	
   the	
  
target	
  genes.	
  scPLS	
  aims	
  to	
  remove	
  the	
  confounding	
  effects	
  𝐳𝚲!	
  in	
  the	
  target	
  genes.	
  

	
  

Figure	
  2.	
  Method	
  comparison	
   in	
  simulations.	
   (a)	
  Compared	
  with	
  PCA	
  (green)	
  and	
  LMM	
  (purple),	
  scPLS	
  
(blue)	
  achieves	
  higher	
  power	
  to	
   identify	
  DE	
  genes	
  across	
  a	
  range	
  of	
  effect	
  sizes.	
  The	
  uncorrected	
  data	
  
(orange)	
   is	
  also	
   included	
   in	
   the	
  panel.	
  Power	
   is	
  evaluated	
  at	
  an	
  empirical	
   false	
  discovery	
   (FDR)	
   rate	
  of	
  
0.05	
  in	
  each	
  of	
  the	
  10	
  replicates.	
  x-­‐axis	
  shows	
  the	
  effect	
  sizes,	
  which	
  are	
  measured	
  as	
  the	
  percentage	
  of	
  
phenotypic	
  variation	
  (PVE)	
  in	
  expression	
  levels	
  explained	
  by	
  the	
  group	
  label	
  (ranges	
  from	
  1%	
  to	
  20%).	
  (b)	
  
Sensitivity	
   analysis	
   shows	
   that,	
   compared	
  with	
  PCA	
  and	
   LMM,	
   scPLS	
  has	
   the	
   least	
   reduction	
   in	
  power	
  
when	
  a	
  smaller	
  subset	
  of	
  control	
  genes	
  are	
  used	
  (N=10,	
  20,	
  30	
  or	
  40	
  instead	
  of	
  50).	
  Power	
  is	
  averaged	
  
across	
  replicates.	
  (c)	
  The	
  first	
  two	
  principal	
  components	
  (PC)	
  based	
  on	
  the	
  top	
  100	
  identified	
  DE	
  genes	
  
from	
  scPLS,	
  but	
  not	
  from	
  PCA	
  or	
  LMM	
  or	
  uncorrected	
  data,	
  cluster	
  cells	
  into	
  two	
  expected	
  groups	
  (red	
  
star	
   and	
   green	
   triangle).	
   (d)	
   scPLS	
   corrected	
  expression	
  data	
   (blue)	
   better	
   classifies	
   cells	
   into	
   the	
   two	
  
known	
   clusters	
   than	
   PCA	
   (green)	
   or	
   LMM	
   (purple)	
   corrected	
   expression	
   data	
   or	
   uncorrected	
   data	
  
(orange)	
   from	
   one	
   replicate.	
   Classification	
   is	
   based	
   on	
   support	
   vector	
   machine	
   (SVM)	
   with	
   five-­‐fold	
  
cross-­‐validation.	
  Accuracy	
   is	
  computed	
  as	
  the	
  mean	
  percentage	
  of	
   true	
  positives	
   in	
   the	
  test	
  set	
  across	
  
replicates.	
  

	
  

Figure	
  3.	
  Removing	
  technical	
  effects	
  in	
  the	
  Grun	
  et	
  al.	
  data.	
  (a)	
  For	
  each	
  gene,	
  the	
  expression	
  variance	
  is	
  
partition	
  into	
  three	
  components:	
  a	
  component	
  that	
  is	
  explained	
  by	
  technical	
  confounding	
  factors	
  (blue),	
  
a	
   component	
   that	
   is	
  explained	
  by	
  biological	
   factors	
   (orange),	
  and	
   the	
   residual	
  error	
  variance	
   (purple).	
  
Genes	
  are	
  evenly	
  divided	
  into	
  ten	
  quantiles	
  based	
  on	
  the	
  sample	
  variance.	
  (b)	
  Heat	
  map	
  visualizes	
  gene	
  
expression	
  levels	
  in	
  the	
  uncorrected	
  data	
  and	
  scPLS	
  corrected	
  data.	
  The	
  plot	
  reveals	
  reduction	
  in	
  within	
  
group	
  variation	
  after	
  correction.	
  	
  (c)	
  PCs	
  from	
  scPLS	
  corrected	
  data	
  (blue)	
  can	
  better	
  reveal	
  the	
  known	
  
cells	
  clusters	
  than	
  that	
  from	
  the	
  PCA	
  (purple),	
  LMM	
  (orange),	
  or	
  RUV	
  (green)	
  corrected	
  data.	
  For	
  each	
  PC,	
  
we	
  evaluate	
  its	
  ability	
  to	
  classify	
  cells	
  into	
  the	
  correct	
  clusters	
  before	
  and	
  after	
  correction.	
  We	
  compute	
  
the	
   reduction	
   in	
   within-­‐cluster	
   variance	
   as	
   a	
  measure	
   of	
   the	
   improvement	
   after	
   correction;	
   a	
   higher	
  
value	
  thus	
  indicates	
  better	
  performance.	
  	
  

	
  

Figure	
  4.	
  Removing	
  cell	
  cycle	
  effects	
  in	
  the	
  Burns	
  et	
  al.	
  data.	
  (a)	
  For	
  each	
  gene,	
  the	
  expression	
  variance	
  is	
  
partition	
  into	
  three	
  components:	
  a	
  component	
  that	
  is	
  explained	
  by	
  cell	
  cycle	
  factors	
  (blue),	
  a	
  component	
  
that	
   is	
   explained	
   by	
   biological	
   factors	
   (orange),	
   and	
   the	
   residual	
   error	
   variance	
   (purple).	
   Genes	
   are	
  
evenly	
  divided	
   into	
  ten	
  quantiles	
  based	
  on	
  the	
  sample	
  variance.	
   (b)	
  PCA	
  plot	
   for	
  the	
  uncorrected	
  data	
  
and	
  scPLS	
  corrected	
  data.	
  Six	
  different	
  cell	
  types	
  are	
   in	
  different	
  color	
  and	
  shape.	
  Notice	
  the	
  similarity	
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between	
  PC3	
  vs	
  PC2	
  plot	
   in	
   the	
  uncorrected	
  data	
  and	
  PC2	
  vs	
  PC1	
  plot	
   in	
  the	
  scPLS	
  corrected	
  data.	
   (c)	
  
Correlation	
   of	
   the	
   first	
   three	
   PCs	
   from	
   either	
   the	
   uncorrected	
   data	
   (orange)	
   or	
   data	
   corrected	
   by	
  
different	
  methods	
  with	
  the	
   first	
  PC	
  of	
  cell	
  cycle	
  genes	
   (ccPC).	
  Correlation	
   is	
  displayed	
  on	
   log	
  scale.	
   (d)	
  
Heatmap	
   of	
   correlations	
   between	
   control	
   genes	
   and	
   validation	
   genes	
   in	
   the	
   subset	
   analysis.	
   In	
  
uncorrected	
  data,	
   genes	
   from	
   the	
   two	
   sets	
   are	
   intermingled.	
  After	
   scPLC	
   correction,	
   the	
   two	
   sets	
   are	
  
easily	
  separable.	
  (e)	
  In	
  the	
  subset	
  analysis,	
  pairwise	
  correlations	
  are	
  computed	
  between	
  genes	
  from	
  the	
  
controls	
  set	
  and	
  that	
  from	
  the	
  validation	
  set.	
  The	
  median	
  correlation,	
  as	
  well	
  as	
  correlations	
  at	
  the	
  up	
  
quantiles	
  from	
  scPLS	
  are	
  lower	
  than	
  the	
  other	
  methods.	
  

	
  

Figure	
  5.	
  Removing	
  both	
  technical	
  effects	
  and	
  cell	
  cycle	
  effects	
  in	
  the	
  Buettner	
  et	
  al.	
  data.	
  (a)	
  For	
  each	
  
gene,	
   the	
   expression	
   variance	
   is	
   partition	
   into	
   four	
   components:	
   a	
   component	
   that	
   is	
   explained	
   by	
  
technical	
   confounding	
   factors	
   (blue),	
   a	
   component	
   that	
   is	
   explained	
   by	
   cell	
   cycle	
   factors	
   (green),	
   a	
  
component	
   that	
   is	
   explained	
   by	
   biological	
   factors	
   (orange),	
   and	
   the	
   residual	
   error	
   variance	
   (purple).	
  
Genes	
   are	
   evenly	
   divided	
   into	
   ten	
   quantiles	
   based	
   on	
   the	
   sample	
   variance.	
   (b)	
   PCA	
   analysis	
   for	
   the	
  
uncorrected	
  data	
  and	
  scPLS	
  corrected	
  data.	
  In	
  the	
  uncorrected	
  data,	
  there	
  is	
  a	
  clear	
  separation	
  of	
  cells	
  
by	
   cell-­‐cycle	
   stage.	
   Such	
   separation	
   of	
   cells	
   is	
   no	
   longer	
   observed	
   in	
   the	
   scPLS	
   corrected	
   data.	
   (c)	
  
Estimated	
  proportion	
  of	
  variance	
  explained	
  by	
  the	
  cell	
  cycle	
  inferred	
  from	
  different	
  methods	
  are	
  plotted	
  
against	
  that	
  obtained	
  with	
  the	
  known	
  cell	
  cycle	
  labeling.	
  scPLS	
  achieves	
  a	
  higher	
  correlation	
  than	
  other	
  
methods.	
  

	
  

	
  

Supplementary	
  Figure	
  legends	
  

	
  

Figure	
  S1.	
  Sensitivity	
  analysis	
  compares	
  the	
  estimation	
  accuracy	
  of	
  scPLS	
  with	
  that	
  of	
  PCA	
  and	
  LMM	
  in	
  
simulations.	
   The	
   three	
  methods	
   are	
   applied	
   to	
   remove	
   confounding	
   effects	
   using	
   either	
   10,	
   30	
   or	
   50	
  
control	
  genes.	
  For	
  each	
  gene,	
  the	
  estimated	
  proportion	
  of	
  variance	
  explained	
  by	
  the	
  confounding	
  effects	
  
is	
  plotted	
  against	
  the	
  truth.	
  scPLS	
  achieves	
  higher	
  correlation	
  between	
  the	
  estimates	
  and	
  the	
  truth.	
   In	
  
addition,	
  scPLS	
  is	
  less	
  sensitive	
  to	
  the	
  number	
  of	
  control	
  genes	
  used	
  in	
  the	
  analysis.	
  	
  	
  

	
  

Figure	
  S2.	
  Power	
  comparison	
  in	
  simulations	
  where	
  the	
  confounding	
  factors	
  are	
  not	
  corrected	
  with	
  the	
  
group	
   label.	
   Compared	
   with	
   PCA	
   (green)	
   and	
   LMM	
   (purple),	
   scPLS	
   (blue)	
   achieves	
   higher	
   power	
   to	
  
identify	
  DE	
  genes	
  across	
  a	
   range	
  of	
  effect	
   sizes.	
  The	
  uncorrected	
  data	
   (orange)	
   is	
  also	
   included	
   in	
   the	
  
panel.	
   Power	
   is	
   evaluated	
   at	
   an	
   empirical	
   false	
   discovery	
   (FDR)	
   rate	
   of	
   0.05	
   and	
   averaged	
   across	
   10	
  
replicates.	
  The	
  effect	
  sizes	
  are	
  measured	
  as	
  the	
  percentage	
  of	
  phenotypic	
  variation	
  (PVE)	
  in	
  expression	
  
levels	
  explained	
  by	
  the	
  group	
  label	
  (ranging	
  from	
  1%	
  to	
  20%).	
  	
  	
  

	
  

Figure	
  S3.	
  (a)	
  Power	
  comparison	
  of	
  the	
  full	
  model	
  (scPLS)	
  and	
  the	
  reduced	
  model	
  (reduced	
  scPLS)	
  in	
  the	
  
presence	
  of	
  biological	
  factors.	
  PCA,	
  LMM	
  and	
  uncorrected	
  data	
  are	
  also	
  included.	
  Power	
  is	
  evaluated	
  at	
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2016. ; https://doi.org/10.1101/045070doi: bioRxiv preprint 

https://doi.org/10.1101/045070
http://creativecommons.org/licenses/by-nc-nd/4.0/


an	
  empirical	
  false	
  discovery	
  (FDR)	
  rate	
  of	
  0.05	
  across	
  10	
  replicates.	
  x-­‐axis	
  shows	
  the	
  effect	
  sizes,	
  which	
  
are	
   measured	
   as	
   the	
   percentage	
   of	
   phenotypic	
   variation	
   (PVE)	
   in	
   expression	
   levels	
   explained	
   by	
   the	
  
group	
   label	
   (ranges	
   from	
   1%	
   to	
   20%).	
   (b)	
   Power	
   comparison	
   of	
   full	
  model	
   using	
   different	
   number	
   of	
  
biological	
   factors	
  (K=2,	
  4,	
  6,	
  8)	
  and	
  the	
  reduced	
  model	
   (K=0)	
  when	
  there	
   is	
  no	
  biological	
   factors	
   in	
  the	
  
data.	
  Power	
   is	
  evaluated	
  at	
  an	
  empirical	
   false	
  discovery	
   (FDR)	
  rate	
  of	
  0.05	
  across	
  10	
  replicates.	
  Under	
  
this	
  setting,	
   the	
  full	
  model	
  does	
  not	
  perform	
  much	
  worse	
  that	
  the	
  reduced	
  model	
  with	
  respect	
  to	
  the	
  
power	
  of	
  identifying	
  DE	
  genes.	
  The	
  comparison	
  results	
  are	
  also	
  not	
  sensitive	
  with	
  respect	
  to	
  the	
  number	
  
of	
  factors	
  used	
  in	
  the	
  model	
  even	
  when	
  the	
  truth	
  is	
  zero.	
  	
  

	
  

Figure	
  S4.	
  The	
  comparison	
  of	
  estimates	
  of	
  cell	
  cycle	
  proportion	
  for	
  genes	
  in	
  the	
  mouse	
  embryonic	
  stem	
  
cell	
  data	
  using	
  different	
  scPLS	
  algorithms:	
  EM-­‐in-­‐chunks	
   (as	
   in	
   the	
  paper),	
  naïve	
  EM	
  and	
  EM-­‐in-­‐chunks	
  
using	
  a	
  subset	
  of	
  cell	
  cycle	
  genes.	
  We	
  only	
  perform	
  comparison	
  in	
  this	
  data	
  because	
  we	
  know	
  the	
  true	
  
cell	
  cycle	
  labels.	
  

	
  

Figure	
   S5.	
   (a)	
   In	
   the	
   subset	
   analysis	
   of	
   the	
   Buettner	
   et	
   al.	
   data,	
   pairwise	
   correlations	
   are	
   computed	
  
between	
  genes	
  from	
  the	
  controls	
  set	
  and	
  that	
  from	
  the	
  validation	
  set.	
  The	
  median	
  correlation,	
  as	
  well	
  as	
  
correlations	
   at	
   the	
   up	
   quantiles	
   from	
   scPLS	
   are	
   lower	
   than	
   the	
   other	
   methods.	
   (b)	
   Heatmap	
   of	
  
correlations	
   between	
   control	
   genes	
   and	
   validation	
   genes	
   in	
   the	
   subset	
   analysis	
   of	
   the	
   Buettner	
   et	
   al.	
  
data.	
   In	
   uncorrected	
  data,	
   genes	
   from	
   the	
   two	
   sets	
   are	
   intermingled.	
  After	
   scPLC	
   correction,	
   the	
   two	
  
sets	
  are	
  easily	
  separable.	
  

	
  

Table	
  S1.	
  Comparison	
  of	
  the	
  naïve	
  EM	
  algorithm	
  and	
  the	
  EM-­‐in-­‐chunks	
  algorithm	
  in	
  terms	
  of	
  accuracy	
  
and	
  speed	
  in	
  simulations.	
  	
  The	
  EM-­‐in-­‐chunks	
  algorithm	
  uses	
  either	
  a	
  chunk	
  size	
  of	
  500	
  genes	
  or	
  a	
  chunk	
  
size	
  of	
  1,000	
  genes.	
  Accuracy	
  is	
  measured	
  by	
  the	
  estimation	
  errors	
  of	
  the	
  loading	
  matrix	
  in	
  terms	
  of	
  the	
  
normalized	
  Frobenius	
  norm.	
  Speed	
  is	
  measured	
  by	
  CPU	
  time	
  in	
  seconds.	
  n:	
  the	
  number	
  of	
  cells.	
  p:	
  the	
  
number	
  of	
  genes.	
  	
  

	
  

Supplementary	
  File	
  1	
  This	
  zip	
  files	
  contain	
  gene	
  expression	
  levels	
  of	
  three	
  described	
  datasets	
  before	
  and	
  
after	
  correcting	
  for	
  technical	
  or	
  cell	
  cycle	
  effect.	
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