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Abstract 1	
  

 2	
  
Images of iconic buildings, such as the CN Tower, instantly transport us to specific places, such 3	
  
as Toronto. Despite the substantial impact of architectural design on people’s visual experience 4	
  
of built environments, we know little about its neural representation in the human brain. In the 5	
  
present study, we have found patterns of neural activity associated with specific architectural 6	
  
styles in several high-level visual brain regions, but not in primary visual cortex (V1). This 7	
  
finding suggests that the neural correlates of the visual perception of architectural styles stem 8	
  
from style-specific complex visual structure beyond the simple features computed in V1. 9	
  
Surprisingly, the network of brain regions representing architectural styles included the fusiform 10	
  
face area (FFA) in addition to several scene-selective regions. Hierarchical clustering of error 11	
  
patterns further revealed that the FFA participated to a much larger extent in the neural encoding 12	
  
of architectural styles than entry-level scene categories. We conclude that the FFA is involved in 13	
  
fine-grained neural encoding of scenes at a subordinate-level, in our case, architectural styles of 14	
  
buildings. This study for the first time shows how the human visual system encodes visual 15	
  
aspects of architecture, one of the predominant and longest-lasting artefacts of human culture.  16	
  
  17	
  
197/200 words	
    18	
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As of 2014, more than half of the world’s population resided in urban environments [1]. 19	
  
Architectural design has profound impact on people’s preferences and productivity in such built 20	
  
environments [2, 3]. Despite the ubiquity and importance of architecture for people’s lives, it is 21	
  
so far unknown where and how architectural styles are represented in people’s brains. While 22	
  
appraisal of architectural design is a collective experience encompassing perceptual, cognitive, 23	
  
and emotional experiences, architecture takes essentially a visual form [2]. That is, even though 24	
  
people have different cognitive interpretations and emotional responses to the Walt Disney 25	
  
Concert Hall in Los Angeles, they are likely to agree that the building exhibits an unusual 26	
  
asymmetric shape composed of metallic exterior surfaces with high curvature (shown in Fig 1C. 27	
  
Gehry). Here we show that the perceptual basis of architectural styles is represented in 28	
  
distributed patterns of neural activity in several visually active brain regions in ventral temporal 29	
  
cortex, but not in primary visual cortex.  30	
  
 31	
  
In a functional magnetic resonance imaging (fMRI) scanner, 23 students in their final year at The 32	
  
Ohio State University (11 majoring in architecture, 12 majoring in psychology or neuroscience, 33	
  
one psychology student excluded due to excessive head motion) viewed blocks of images while 34	
  
performing a one-back task. Each block comprised four images from one of the following 35	
  
sixteen categories; (1) representative buildings of four architectural styles (Byzantine, 36	
  
Renaissance, Modern, and Deconstructive); (2) representative buildings designed by four famous 37	
  
architects of Modern and Deconstructive styles (Le Corbusier, Antoni Gaudi, Frank Gehry, and 38	
  
Frank Lloyd-Wright); (3) four entry-level scene categories (mountains, pastures, highways, and 39	
  
playgrounds); and (4) photographs of faces of four different non-famous men (Fig. 1). The 40	
  
building images encompassed a variety of views, including close-ups of signature facets of an 41	
  
architecture, far views capturing an entire building, and aerial views. Brain activity was recorded 42	
  
in 35 coronal slices, which covered approximately the posterior 70% of the brain. For each 43	
  
participant, several visually active regions of interest (ROI) were functionally localized: the 44	
  
parahippocampal place area (PPA), the occipital place area (OPA), the retrosplenial cortex 45	
  
(RSC), the lateral occipital complex (LOC), and the fusiform face area (FFA). Primary visual 46	
  
cortex (V1) was defined on each participant’s original cortical surface map using the automatic 47	
  
cortical parcellation provided by Freesurfer [4]. Surface-defined V1 was registered back to the 48	
  
volumetric brain separately for each hemisphere using AFNI (see Supplementary Methods for 49	
  
the ROI delineation methods). 50	
  
 51	
  
Following standard pre-processing, data from the image blocks were subjected to a multi-voxel 52	
  
pattern analysis (MVPA). For each of the four groups of stimuli, a linear support vector machine 53	
  
decoder was trained to discriminate between the activity patterns associated with each of the four 54	
  
sub-categories. The decoder was tested on independent data in a leave-one-run-out (LORO) 55	
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cross validation. Separate decoders were trained and tested for each participant and each ROI. 56	
  
Accuracy was compared to chance (25%) at the group level using one-tailed t tests.  57	
  
 58	
  

 59	
  

Results 60	
  

 61	
  
Successful decoding of architectural categories from human visual cortex	
  62	
  
 63	
  
We used a mixed analysis of variance (ANOVA) to test for differences in decoding accuracy 64	
  
between experts and non-experts. We found no differences between the groups and therefore 65	
  
proceeded to collapse the data for participants from both groups for further analysis. The details 66	
  
of the inter-group analysis are discussed at the end of the results section.  67	
  
 68	
  

 
Figure 1.  Example images and category decoding accuracy rates for three visual categories 
across the ROIs: (A) entry-level scene categories, (B) architectural style, and (C) architects (for 
differences in mean activity levels see Fig S1). These public-domain example images were not 
shown to the participants, but are visually similar to the experiment stimuli (i.e., depicting the 
same architecture) downloaded from the World Wide Web. Decoding of face identity was only 
possible in V1 (at 37.1%, p = 6.18·10-5) and is not shown here. Error bars indicate standard 
errors of mean. Significance with respect to chance (25%) was assessed at the group level with 
one-sample t-tests (one-tailed). P-values were adjusted using false discovery rate, *p < .05, **p < 
.01, ***p < .001.  

 69	
  
Consistent with previous results [5, 6, 7], we could decode entry-level scene categories from all 70	
  
visually active ROIs (Fig. 2A). Furthermore, we could decode architectural styles from all five 71	
  
high-level visual brain regions, but not from V1 (Fig. 2B). In addition, it was possible to decode 72	
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buildings by famous architects from brain activity in the PPA and the OPA, but not from V1, the 73	
  
RSC, the LOC, or the FFA (Fig. 2C). Decoding of facial identity succeeded only in V1 and was 74	
  
not possible in any of the high-level ROIs, including the FFA. Supplementary Table S1 shows 75	
  
details of the statistical results. Full discrimination between sub-categories was only possible by 76	
  
considering the spatial patterns of brain activity within ROIs (see Supplementary Figure S1 for 77	
  
mean neural activity results, and Supplementary Table S2 for univariate LORO decoding 78	
  
results).  79	
  
	
  	
  80	
  

Searchlight analysis of the scanned parts of the brain confirmed the ROI-based results (details of 81	
  
the searchlight analysis are given in the Supplementary Methods). The searchlight map of 82	
  
decoding entry-level scene categories showed significant clusters at both occipital poles and 83	
  
calcarine gyri as well in bilateral lingual, fusiform, and parahippocampal gyri and bilateral 84	
  
transverse occipital sulci. On the other hand, the searchlight map of decoding architectural styles 85	
  
showed clusters encompassing bilateral fusiform gyri and transverse occipital sulci, but not the 86	
  
occipital poles and nearby areas. The searchlight map for decoding buildings by famous 87	
  
architects was similar to that of decoding architectural styles, with an additional small cluster on 88	
  
the left occipital pole. Two significant clusters were found for decoding of facial identity, 89	
  
encompassing parts of occipital cortex and adjacent parietal tissue. Table 1 provides a full list of 90	
  
significant clusters from each searchlight map and Supplementary Figs. S2-5 show significant 91	
  
clusters in axial views separately for the searchlight maps.  Analysis of the overlap of 92	
  
individual’s searchlight maps with their ROIs is shown in Supplementary Table S3.  93	
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Table 1.  Clusters identified in the searchlight analysis for the four categorization conditions. Significance 
was determined using p < .005 (one-tailed) with a cluster correction (minimum cluster size of 13 voxels).  

Decoding 
Condition 

Peak 
Volume 

(µl) 
Description 

x y z 
Accuracy 

(%) 
Scenes 40.0 85.5 13.2 43.4 167542 Bilateral occipital poles, calcarine gyri, fusiform gyri. lingual 

gyri, bilateral hippocampus, parahippocampal gyri, inferior 
occipital gyri and sulci, middle occipital gyri, superior occipital 
gyri,  transverse occipital sulci, inferior parieto-angular gyri, 
superior parieto-occiptial sulci, cerebella 

-7.5 63.0 48.2 32.3 688 Right precuneus  
-42.5 30.5 -6.8 31.2 281 White matter between right hippocampus and right superior 

temporal sulcus 
62.5 43.0 25.8 30.2 203 Left inferior parietosupramarginal gyrus 

Styles -47.5 63.0 -9.2 34.1 10360 Right inferior occipital gyrus and sulcus, right occipito-temporal 
(lateral fusiform) gyrus, right medial occipito-temporal sulcus, 
right middle temporal gyrus, right inferior temporal gyrus, right 
middle temporal gyrus 

 
-30.0 85.5 20.8 33.6 8063 Right superior occipital sulcus, right transverse occipital sulcus, 

right middle occipital gurus, right occipito-temporal (lateral 
fusiform) gyrus, right lateral occipto-temporal sulcus 

 
47.5 63.0 -6.8 33.7 6672 Left inferior occipital gyrus and sulcus, left occipito-temporal 

(lateral fusiform) gyrus, left inferior temporal gyrus, left middle 
temporal gyrus. 

 
15.0 78.0 50.8 32.9 2813 Left superior occipital sulcus, left transverse occipital sulcus, left 

superior parietal gyrus, left precuneus 
 42.5 85.5 15.8 32.2 2235 Left middle occipital gyrus 
 7.5 90.5 8.2 33.9 1063 Left cuneus 
 -10.0 48.0 5.8 32.3 906 Right posterior ventral cingulate gyrus 
 -35.0 25.5 3.2 32.2 531 Right superior parietal gyrus 
 15.0 93.0 33.2 30.5 500 Left superior occipital gyrus 
 -12.5 93.0 18.2 31.1 391 Right superior occipital gyrus 
 20.0 85.5 8.2 30.9 375 White matter between left middle occipital gyrus and left cuneus 
 -50.0 55.5 40.8 31.7 266 Right inferior parieto-angular gyrus 

Architects 22.5 100.5 -9.2 33.4 10032 Left occipital pole, left inferior occipital gyrus and sulcus, left 
middle occipital gyrus, left superior occipital gyrus 

 
-47.5 68.0 -6.8 32.5 5672 Right inferior occipital gyrus and sulcus, right middle occipital 

gyrus 
 -15.0 93.0 5.8 31.2 1938 Right occipital pole 

 
-30.0 40.5 -6.8 32.3 1047 Right lateral occipito-temporal (fusiform) gyrus, right medial 

occipito-temporal (lingual) gyrus, right hippocampus, right 
parahippocampal gyrus 

 22.5 73.0 -6.8 32.1 453 White matter near the left medial occipito-temporal gyrus and 
sulcus 

 
30.0 63.0 -6.8 31.2 344 White matter between left medial occipito-temporal (lingual) 

gyrus and left lateral occipito-temporal (fusiform) gyrus 
 -20.0 25.5 58.2 31.2 344 White matter near the left precentral gyrus 

Face -2.5 93.0 8.2 41.0 27174 Bilateral occipital pole, calcarine gyri, cuneus, medial occipito-
temporal (lingual) gyri, superior occipital gyri 

 
-32.5 50.5 8.2 31.2 469 Right superior parietal gyrus, right intraparietal sulcus, right 

transverse occipital sulcus 
 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 7, 2016. ; https://doi.org/10.1101/045245doi: bioRxiv preprint 

https://doi.org/10.1101/045245
http://creativecommons.org/licenses/by/4.0/


7	
  
	
  

Analysis of error patterns 94	
  
 95	
  
To explore the nature of the underlying categorical structure of architectural styles in visual 96	
  
cortex in more detail, we analyzed patterns of decoding errors. Decoding errors were recorded in 97	
  
confusion matrices, whose rows (r) indicate the ground truth of the presented category, and 98	
  
whose columns (c) represent predictions by the decoder. Individual cells (r,c) contain the 99	
  
proportion of blocks with category r, which were decoded as category c. Diagonal elements 100	
  
contain correct predictions, summarized as decoding accuracy in Fig. 2. Off-diagonal elements 101	
  
represent decoding errors. The patterns of decoding errors serve as a proxy for the underlying 102	
  
categorical structure between sub-categories in a particular brain region. We computed the 103	
  
correlations of error patterns as a measure of the similarity between these neural representations 104	
  
across ROIs. Significance of error correlations was established non-parametrically using a 105	
  
permutation test. We also subjected these error correlations to a hierarchical clustering analysis 106	
  
to capture the similarities in categorical structures underlying successful category decoding 107	
  
across high-level visual regions.  108	
  
 109	
  

 
Figure 2.  Dendrogram of hierarchical clusters of decoding error patterns from the PPA, OPA, 
RSC, LOC, and FFA for (A) entry-level scene categories (in blue) and (B) architectural styles (in 
red). The nearest neighbor linkage method was used to compute cluster distances across the error 
patterns. 
 110	
  
In the case of entry-level scene categorization, we found significant correlations of error patterns 111	
  
between the three ROIs known to specialize in scene perception: the PPA, the RSC, and the 112	
  
OPA. We also found significant error correlation between the PPA and the LOC. The FFA did 113	
  
not correlate significantly with any of the other ROIs, even though we could decode entry-level 114	
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scene categories from the FFA. The hierarchical clustering analysis further illustrates these 115	
  
results by showing a cluster consisting of the OPA and the LOC, which subsequently clustered 116	
  
with the PPA and then the RSC. Note that the error pattern from the FFA was not clustered with 117	
  
any of the other ROIs (Fig. 2A).  118	
  
 119	
  
For architectural styles, we found a different error correlation structure, showing statistically 120	
  
significant error correlations between the FFA and the high-level visual regions of the PPA, 121	
  
OPA, and LOC. The error correlation between the PPA and the LOC was also significant. 122	
  
Similarly, hierarchical clustering showed that the FFA error pattern was closely clustered with 123	
  
scene-specific brain regions, starting with the RSC error pattern, and subsequently with a cluster 124	
  
consisting of the OPA and the LOC, thus leaving the PPA clustered with the rest of the ROIs 125	
  
(Fig. 2B).  126	
  
 127	
  
The differences in error pattern similarity structure between entry-level categorization and 128	
  
categorization of architectural styles largely stem from tighter integration of the FFA with the 129	
  
rest of the high-level visual ROIs. In both cases of categorization, error pattern correlations are 130	
  
significant across the scene-specific visual regions – the PPA and OPA as well as the PPA and 131	
  
the LOC. Consistently, cluster distances between the RSC, OPA, LOC, and the PPA are similar 132	
  
between the two experimental conditions. Unlike the case of entry-level scene categorization, the 133	
  
FFA is recruited into the scene processing network for more specialized and demanding 134	
  
subordinate-level scene categorization.  135	
  
 136	
  
We found low correlations of error patterns between ROIs for decoding architects because of the 137	
  
difficulty of decoding architects from some of the ROIs (i.e., the RSC, the LOC, and the FFA) in 138	
  
the first place. Given that facial identity could not be decoded from any of the high-level visual 139	
  
ROIs, we did not further pursue error correlations for the face identification condition. The 140	
  
decoding error patterns of all four image categories across all six ROIs are shown in 141	
  
Supplementary Fig. S6. 142	
  
 143	
  
 144	
  
No discernable effect of expertise in visual cortex	
  145	
  
 146	
  
Architectural styles are ultimately visual categories – the majority of defining attributes is visual 147	
  
in nature. Still, accurate recognition of architectural styles or architects of buildings is often 148	
  
affected not only by visual consistency within a style or an architect, but also by the historical, 149	
  
regional, and cultural context of buildings. Prior knowledge of a building's style may influence 150	
  
the perception of architectural categories and their neural correlates.  151	
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 152	
  
Nevertheless, we found no group effect on decoding of either architectural styles or architect, 153	
  
indicating that expertise has little influence on amounts of decodable information of architectural 154	
  
categories in visual cortex – at least not sufficiently to be detected in our experimental paradigm. 155	
  
A mixed ANOVA of decoding accuracy with group as a between-subject factor and visual 156	
  
category as a within-subject factor failed to find a main effect of group or an interaction between 157	
  
group and visual category in any of the ROIs (see Supplementary Table S4). Could these results 158	
  
be due to the lack of the differences in ability to distinguish between architectural styles or 159	
  
architects between the two groups? 160	
  
 161	
  
To test whether the participants majoring in architecture indeed had higher domain knowledge 162	
  
than the participants majoring in either psychology or neuroscience, we measured expertise for 163	
  
architectural styles in a post-scan behavioral experiment employing the Vanderbilt Expertise 164	
  
Test [8]. In this test, participants were asked to identify which of three displayed images 165	
  
belonged to a given set of six target categories. We confirmed that architecture students had 166	
  
higher expertise for architectural styles and buildings by famous architects: We not only found a 167	
  
significant main effects of group, F(1, 20) = 30.170, p <.001, ηp

2 = .601, but also a significant 168	
  
interaction between group and visual category, F(2.050, 40.994) = 6.486, p = .003, ηp

2 = .245. 169	
  
The effect of visual category was also significant, F(2.050, 40.994) = 48.888, p < .001, ηp

2 170	
  
= .710. Note, however, that both experts and non-experts could reliably detect target architectural 171	
  
styles from distractors well above chance, as shown in Fig. 3A, consistent with successful 172	
  
decoding of architectural styles in high-level visual regions in both groups. 173	
  
 174	
  
The same analyses on average reaction times (RT) showed significant main effects of group, F(1, 175	
  
20) = 4.946, p = .038,  ηp

2 = .198, and visual category, F(3, 60) = 24.300, p < .001,  ηp
2 = .549, 176	
  

but no significant interaction between them, F(3, 60) = 1.904, p = .139,  ηp
2 =  .087, indicating 177	
  

that architecture students (mean RT = 2485 ms) were slower than psychology/neuroscience 178	
  
students (mean RT = 3342 ms) for all types of categorization tasks. 179	
  
 180	
  
As shown in Fig. 3, post-hoc tests confirmed significantly higher accuracy for students of 181	
  
architecture than for students of psychology/neuroscience for architectural styles, t(20) = 3.963, 182	
  
p < .001, Cohen’s d = 1.690, and architects, t(20) = 6.219, p < .001, Cohen’s d = 2.652, but not 183	
  
for entry-level categories, t(20) = 1.845, p = .080, Cohen’s d = .787, or faces, t(20) = .545, p 184	
  
= .592, Cohen’s d = .232.   185	
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Figure 3. Group-average accuracy rates (A) and reaction times (B) for the four categorization 
tasks. Dark-colored bars indicate behavioral performances of the eleven architecture students, 
and bright-colored bars indicate performances of the eleven psychology and neuroscience 
students. Different hues indicate the four visual categories: entry-level scene categories in blue, 
architectural styles in red, architects in green, and face identities in gray. Error bars show 
standard errors of mean. Accuracy of post-hoc comparisons is indicated above the bars. ***p < 
.001.  

 186	
  
 187	
  

Discussion 188	
  

 189	
  
The current study shows for the first time that architectural styles of buildings can be decoded 190	
  
from the neural activity patterns of several high-level visual areas in human temporal cortex. It 191	
  
was even possible to decode the architects of buildings from neural activity elicited by images of 192	
  
the buildings in the PPA and the OPA. However, architectural styles, unlike entry-level scene 193	
  
categories, could not be decoded from V1, indicating that the simple visual properties encoded in 194	
  
V1 are insufficient to discriminate between architectural styles. We also found substantial 195	
  
similarity in error patterns of decoding architectural styles between the FFA and the other high-196	
  
level visual regions.  197	
  
 198	
  
The PPA is one of the most robust modular regions known to be specialized for outdoor and 199	
  
indoor scenes and buildings [9]. Thus, it is no surprise to find a significant amount of decodable 200	
  
information about architectural styles in this “building” area. How exactly the PPA encodes 201	
  
various scenes and buildings, however, is not entirely clear, since the PPA contains decodable 202	
  
information about numerous aspects of scenes, such as spatial structure [5, 10, 11], texture and 203	
  
material properties [12], as well as semantic categories [6, 7]. Note that all these perceptual 204	
  
aspects are critical for characterizing architectural styles. The PPA is also suggested as a key area 205	
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for linking various perceptual instantiations of the same building [13], and similar neural 206	
  
mechanisms may be at work to form subordinate-level categories of buildings, such as for 207	
  
architectural styles. We suggest that the PPA elicits style-specific neural activity patterns for 208	
  
buildings by extracting multi-dimensional statistics specific to architectural styles from a given 209	
  
instance. 210	
  
 211	
  
Architectural styles of buildings could also be decoded from activity patterns in the OPA and 212	
  
RSC, the other two scene-specific ROIs [14, 15]. The OPA has been suggested to contain 213	
  
primitive scene representations by encoding mid-level visual properties [14, 16]. Since we could 214	
  
not decode architectural styles from V1, it is likely that the neural representations of architectural 215	
  
features begin to arise from mid-level visual features (e.g., symmetry, curvature, collinearity 216	
  
etc.), which are available in the OPA. Mid-level visual properties, in fact, have previously been 217	
  
suggested to contribute to successful cross-decoding between interior and exterior views of 218	
  
landmark buildings in the OPA [13].  219	
  
 220	
  
The RSC, on the other hand, has been found to reflect mnemonic and contextual aspects of real-221	
  
world scenes rather than their perceptual aspects [15, 17]. The building images were all relatively 222	
  
famous landmarks, and might have induced semantic or even episodic memory components. 223	
  
Given our data, however, we cannot provide an operational mechanism of how the RSC can 224	
  
differentially respond to buildings according to their architectural styles.   225	
  
 226	
  
Real-world scene categories elicit distributed neural activity patterns in visual regions sensitive 227	
  
to objects. Scene information in the LOC has been associated with category-specific object 228	
  
statistics [10, 16, 18] – office scenes are highly likely to contain desks, chairs, and computers 229	
  
whereas city street scenes are highly likely to contain vehicles, buildings, and driveways. Despite 230	
  
the high homogeneity in object statistics (i.e., buildings and occasionally trees and vehicles), we 231	
  
still found successful decoding of architectural styles from the LOC as well as a significant error 232	
  
pattern correlation between the LOC and the PPA. We, therefore, suggest that the contribution of 233	
  
the LOC may be to encode local elements [19, 20] such as motifs and embellishments common 234	
  
in an architectural style. However, this conjecture will have to be tested rigorously in future 235	
  
investigations. 236	
  
 237	
  
Surprisingly, architectural styles also can be decoded from another high-level visual region 238	
  
typically considered as not preferring scenes and buildings – the fusiform face area, previously 239	
  
implicated in the preferential processing of faces [21] as well as visual expertise [22]. More 240	
  
importantly, the FFA is recruited as part of a network of regions that share similar error patterns. 241	
  
By contrast, entry-level categorization of scenes does not include the FFA in the same way, 242	
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instead relying on a tight network of three scene-selective areas, the PPA, the RSC, and the OPA, 243	
  
as well as the LOC. The FFA could be involved in the encoding of configural characteristics of 244	
  
buildings. This is consistent with the FFA’s role in visual expertise as shown for object 245	
  
categories as varied as birds, cars, motorcycles or artificial “Greeble” objects [22]. Note that 246	
  
those results were shown for mean activity levels, whereas ours appear in the interpretation of 247	
  
multi-voxel patterns of brain activity.  248	
  
 249	
  
Taken together, the hallmark of neural representations of architectural styles is their distributed 250	
  
and interactive nature. It may be, in fact, the only practical solution for human visual cortex to 251	
  
deal with the multi-dimensionality underlying the visual classification between architectural 252	
  
styles. To characterize a style, one needs to inspect global shape and layout of a building, the 253	
  
shape of architectural elements (i.e., roof, walls, pillars) and their configurations, construction 254	
  
materials, local motif and embellishments, etc. For instance, byzantine architecture is 255	
  
characterized by symmetry in the global shape of buildings and a dome roof, stone brick exterior, 256	
  
and tile mosaic embellishments, whereas deconstructive architecture is well known for its non-257	
  
collinearity and fragmented global shape and concrete, steel, glass exterior, and minimal 258	
  
embellishments. These insights may in fact explain the lack of decodable information about 259	
  
architectural styles in V1: the multi-dimensionality of distinguishing features may be simply 260	
  
beyond the processing capability of V1. Similarly, the neural representations of artistic styles 261	
  
associated with painters (Dali or Picasso) have been found to reflect painter-specific global 262	
  
visual statistics (i.e., chromatic intensity histograms) rather than pixel-based features [23]. 263	
  
 264	
  
Unexpectedly, we did not find a reliable effect of domain expertise on the amount of decodable 265	
  
information of architectural styles in the visual cortex. Categorizing a building by its 266	
  
architectural style or its designer involves not only detecting characteristic visual features, but 267	
  
also recruitment of semantic knowledge. A number of past studies suggest that gaining expertise 268	
  
of perceptual categorization relies on intercortical loops involving not only modality-specific 269	
  
sensory regions (i.e. visual cortex), but also medial temporal, parietal, and prefrontal cortex and 270	
  
subcortical structures such as basal ganglia (for a review, see [24]). Consistent with this idea, we 271	
  
also found decodable information about architectural features in parietal regions beyond visual 272	
  
cortex. Another possibility is that core differences between experts and non-experts prevail in 273	
  
their post-perceptual analyses of buildings involving cognitive and aesthetic appreciation [3, 25] 274	
  
rather than perceptual analyses.  275	
  
 276	
  
In summary, several high-level visual regions, but not primary visual cortex, contain decodable 277	
  
neural representations of architectural styles and architects of buildings. The FFA substantially 278	
  
participates in a network of high-level visual areas characterized by similar error patterns in the 279	
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decoding architectural styles but not in decoding entry-level scene categories. We showed that 280	
  
high-level visual regions in the human brain contain neural correlates of the visual perception of 281	
  
architectural styles, which are likely to be driven by complex perceptual statistics specific to an 282	
  
architectural style or an architect. We found no evidence for differences in the neural code in 283	
  
visual cortex between experts and non-experts for architecture. Our findings have characterized 284	
  
neural mechanisms for perceptual encoding of architecture in the human visual system, one of 285	
  
the predominant and longest-lasting artefacts of human culture. 286	
  
 287	
  
 288	
  

Methods 289	
  

 290	
  
All experimental procedures were approved by the institutional review board of The Ohio State 291	
  
University, and all data collection and analyses were carried out in accordance with the approved 292	
  
guidelines.  293	
  
 294	
  
Participants:    Twenty-three healthy undergraduate students in their final year at The Ohio State 295	
  
University participated in the study for monetary compensation of $15/hour and gave written 296	
  
informed consent. We recruited eleven students from the Department of Architecture (2 females; 297	
  
l left-handed; age range = 21–27, M = 22.4, SD = 3.0), and twelve senior students majoring in 298	
  
psychology or neuroscience (3 females; 2 left-handed, age range = 21– 24, M = 21.8, SD = 0.9). 299	
  
Data from one psychology student was not included in the analysis due to excessive head motion 300	
  
during the scan. 301	
  
 302	
  
Post-scan behavioral experiment: We measured participants’ visual domain knowledge in a 303	
  
post-scan behavioral experiment similar to the Vanderbilt Expertise Test [8]. Domain knowledge 304	
  
for each visual category was tested in four separate blocks. Each block consisted of three 305	
  
components: study, practice, and testing. During study, participants were introduced to six target 306	
  
categories. Example images for each of the six target categories were displayed on the screen 307	
  
with correct category labels: (1) architectural styles: Byzantine, Gothic, Renaissance, Modern, 308	
  
Postmodern, and Deconstructive; (2) buildings by famous architects: Peter Eisenman, Antoni 309	
  
Gaudi, Frank Gehry, Michael Graves, Le Corbusier, and Frank Lloyd-Wright; (3) entry-level 310	
  
scene categories: fountains, highways, mountains, pastures, skylines, and waterfalls; (4) faces: 311	
  
six non-famous individuals varied in gender and race. Following the study phase, participants 312	
  
experienced twelve practice trials. In these trials, three images (12° x 12° of visual angle each) 313	
  
were presented side by side. Participants were asked to indicate which of the three images 314	
  
belonged to a given target category by pressing one of the keys, “1,” “2,” or “3.” During practice, 315	
  
one of the three images was always drawn from the set of studied examples. The images were 316	
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presented until the participant made a response, and feedback was provided by displaying the 317	
  
word “CORRECT” or “INCORRECT.” Study exemplars were shown again halfway through 318	
  
practice and at the beginning of the subsequent test phase. For the 35 test trials, 24 new grayscale 319	
  
images from the target categories and 48 new grayscale foil images from different categories 320	
  
were used. Structure of the test trials was the same as practice, except that participants no longer 321	
  
received feedback. The entire experiment lasted approximately 30 min.  322	
  
 323	
  
The average accuracy rates and reaction times of individual participants entered an ANOVA 324	
  
using participant group as a between-subjects factor and visual category (entry-level scene 325	
  
categories vs. architectural styles vs. architects vs. faces) as a within-subjects factor. The degrees 326	
  
of freedom were adjusted using Greenhouse-Geisser, because the assumption of equal variance 327	
  
was violated for the factor of visual category. To further analyze the significant group x visual 328	
  
category interaction, post-hoc t-tests were performed, using Bonferroni correction to account for 329	
  
multiple comparisons (critical p = .0125).  330	
  
 331	
  
fMRI Experiment: MRI images were recorded on a 3T Siemens MAGNETOM Trio MRI scanner 332	
  
with a 12-channel head coil at the Center for Cognitive and Behavioral Brain Imaging at The 333	
  
Ohio State University. High-resolution anatomical images were obtained with a 3D-MPRAGE 334	
  
sequence with coronal slices covering the whole brain; inversion time = 930 ms, repetition time 335	
  
(TR) = 1900 ms, echo time (TE) = 4.44 ms, flip angle = 9°, voxel size = 1 x 1 x 1 mm, matrix 336	
  
size = 224 x 256 x 160.  Functional images were obtained with T2*-weighted echo-planar 337	
  
sequences with coronal slices covering approximately the posterior 70% of the brain: TR = 338	
  
2000ms, TE = 28ms, flip angle = 72°, voxel size = 2.5 x 2.5 x 2.5 mm, matrix size = 90 x 100 x 339	
  
35.   340	
  

 341	
  
Participants viewed 512 grayscale photographs of four visual categories: (1) 32 images of 342	
  
representative buildings of each of four architectural styles: Byzantine, Renaissance, Modern, 343	
  
and Deconstructive; (2) 32 images of buildings designed by each of four well-known architects: 344	
  
Le Corbusier, Antoni Gaudi, Frank Gehry, and Frank Lloyd-Wright; (3) 32 scene images per 345	
  
each of four entry-level scene categories: mountains, pastures, highways, and playgrounds; (4) 346	
  
32 face images per each of four different individuals [26]. The building images encompassed a 347	
  
variety of views, including close-ups, far views, and aerial views. This variation of views 348	
  
ensured that building categories were not confounded with other global scene properties, such as 349	
  
openness or mean distances [5, 10, 27].  Brightness and contrast were equalized across all 350	
  
images. Images were back-projected with a DLP projector (Christie DS+6K-M 3-chip SXGA+) 351	
  
onto a screen mounted in the back of the scanner bore and viewed through a mirror attached to 352	
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the head coil. Images subtended approximately 12º x 12 º of visual angle. A fixation cross 353	
  
measuring 0.5º x 0.5º of visual angle was displayed at the center of the screen. 354	
  

 355	
  
During each of nine runs, participants saw sixteen 8-second blocks of images. In each block, four 356	
  
photographs from a single category were each shown for 1800 ms, followed by a 200 ms gap. 357	
  
The order of images within a block and the order of blocks within a run were randomized in such 358	
  
a way that the four blocks belonging to the same stimulus type (entry-level scenes, styles, 359	
  
architects, faces) were shown back to back. A 12-sec fixation period was placed between blocks 360	
  
as well as at the beginning and the end of each run, resulting in a duration of 5 min 32sec per 361	
  
run. Occasionally, (approximately one out of eight blocks), an image was repeated back-to-back 362	
  
within a block. Participants were asked to press a button when they detected image repetitions.  363	
  

 364	
  
FMRI data were motion corrected, spatially smoothed (2 mm full width at half maximum), and 365	
  
converted to percent signal change. We used a general linear model with only nuisance 366	
  
regressors to regress out effects of motion and scanner drift. Residuals corresponding to image 367	
  
blocks were extracted with a 4 s hemodynamic lag and averaged over the duration of each block. 368	
  
Block-average activity patterns within pre-defined ROIs was used for multi-voxel pattern 369	
  
analysis (MVPA). 370	
  
 371	
  
MVPA was performed separately for each participant by training a linear support vector machine 372	
  
on the data for all runs except one, and then testing on the data from the left-out run. In a leave-373	
  
one-run-out (LORO) cross validation each run was left out in turn, thus generating predictions 374	
  
for each run. Separate decoders were trained for each participant, each ROI, and each visual 375	
  
category (entry-level scene categories, architectural styles, buildings by famous architects, 376	
  
faces). Proportion of correct predictions is reported as accuracy. At the group level, accuracy is 377	
  
compared to chance (0.25) using one-tailed t tests. P-values were adjusted using false discovery 378	
  
rate [28].  379	
  
 380	
  
Prediction errors were recorded in a confusion matrix. Patterns of errors (off-diagonal elements 381	
  
of the confusion matrices) were correlated between ROIs.  Significance of error correlations was 382	
  
tested non-parametrically against the null distribution of correlations obtained by jointly 383	
  
permuting the rows and columns of one of the confusion matrices. Only error correlations with 384	
  
none of the 24 permutations resulting in higher correlation than the correct ordering were 385	
  
deemed significant. Correlations of group-level error patterns between ROIs form the basis of a 386	
  
hierarchical clustering analysis, performed in MATLAB with a nearest-neighbor linkage method 387	
  
to illustrate the error pattern correlations across the ROIs as dendrograms. 388	
  

 389	
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