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Abstract

To understand the biological mechanisms underlying thousands of genetic variants robustly associated

with complex traits, scalable methods that integrate GWAS and functional data generated by large-

scale efforts are needed. Here we propose a method termed MetaXcan that addresses this need by

inferring the downstream consequences of genetically regulated components of molecular traits on complex

phenotypes using summary data only. MetaXcan allows multiple causal variants and flexible multivariate

models enabling the testing of a variety of complex processes under different contexts. As an example

application, we trained prediction models of gene expression levels in 44 human tissues and inferred the

consequences of their regulation in 40 complex phenotypes. Our examination of this broad set of human

tissues revealed many novel genes and re-identified known ones with patterns of regulation in expected

as well as unexpected tissues.

Introduction

Over the last decade, GWAS have been successful in identifying genetic loci that robustly associate

with human complex traits. However, the mechanistic understanding of these discoveries is still limited,
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hampering the translation of this knowledge into actionable targets. Studies of enrichment of expres-

sion quantitative trait loci (eQTLs) among trait-associated variants [1–3] show the importance of gene

expression regulation. Direct quantification of the contribution of different functional classes of genetic

variants showed that 80% of the common variant contribution to phenotype variability (in 12 diseases)

can be attributed to DNAase I hypersensitivity sites, further highlighting the importance of transcript

regulation in determining phenotypes [4].

Many transcriptome studies have been conducted where genotypes and expression levels are assayed

for a large number of individuals [5–8]. The most comprehensive transcriptome dataset, in terms of

tissues covered, is the one generated by the Genotype-Tissue Expression Project (GTEx); a large-scale

effort where DNA and RNA are collected from multiple tissue samples from nearly 1000 individuals and

sequenced to high coverage [9]. This remarkable resource provides a comprehensive cross-tissue survey of

the functional consequences of genetic variation at the transcript level.

To integrate knowledge generated from these large-scale transcriptome studies and shed light on

disease biology, we developed PrediXcan [10], a gene-level association approach that tests the mediating

effects of gene expression levels on phenotypes. This is implemented on GWAS/sequencing studies (i.e.

studies with genome-wide interrogation of DNA variation and phenotypes) where transcriptome levels

are imputed with models trained in measured transcriptome datasets (e.g. GTEx). These predicted

expression levels are then correlated with the phenotype in a gene-level association test that addresses

some of the key limitations of GWAS [10].

A method based on similar ideas was proposed by Gusev et al. [11] called Transcriptome-wide Associ-

ation Study (TWAS). For the individual level data based version, the main difference between PrediXcan

and TWAS resides in the models used for the prediction of gene expression levels in the implementa-

tion. An important extension of this approach was implemented by Gusev et al. [11] that allows us to

compute gene level association results using only summary statistics. We will refer to this method as

TWAS-summary.

Meta-analysis efforts that aggregate results from multiple GWAS studies have been able to identify

an increasing number of associations that were not detected with smaller sample sizes [12–14]. We will

refer to these results as GWAMA (Genome-wide association meta analysis) results. In order to harness

the power of these increased sample sizes while keeping the computational burden manageable, methods

that uses summary level rather than individual level data are needed.
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Zhu et al [15] proposed another method that integrates eQTL data with GWAS results based on

summary data. The method, Summary Mendelian Randomization (SMR), uses Wald statistics (effect

size/standard error) from GWAS and eQTL studies and derives the effect of the genetic component of

gene expression on a phenotype using the delta approximation [16]. By design, this approach uses one

eQTL per gene so that in practice only the top eQTL is used per gene. SMR also incorporates uncertainty

in the eQTL association and a measure of colocalization of the GWAS and eQTL hits.

Here we present a method we call MetaXcan that greatly expands the applicability of the ideas behind

PrediXcan by using only summary results. We will show that our method can reproduce PrediXcan results

accurately and it is robust to ancestry mismatches between study, reference, and training populations. We

also emphasize that given the relatively easy access to summary statistics, MetaXcan allows us to compute

the phenotypic consequences of any molecular process that can be approximated by linear functions of

SNPs.

To illustrate the power of MetaXcan, we first train over 1 million elastic net prediction models of gene

expression traits, covering protein coding genes across 44 human tissues from GTEx, and then apply it to

40 phenotypes from 17 large meta analysis consortia. We use the results of these to lay the groundwork

for building a comprehensive catalog of phenotypic consequences of gene regulation across multiple tissues

and contexts.

Results

Inferring PrediXcan results with summary statistics

We have derived an analytic expression that allows us to compute the outcome of PrediXcan using only

summary statistics from genetic association studies. Details of the derivation are shown in the Methods

section. In Figure 1, we illustrate the mechanics of MetaXcan in relation to traditional GWAS and our

recently published PrediXcan method [10].

For both GWAS and PrediXcan, the input is a genotype matrix and phenotype vector. GWAS

computes the regression coefficient of the phenotype on each marker in the genotype matrix and gen-

erates SNP-level results. PrediXcan starts by estimating the genetically-regulated component of the

transcriptome (using weights from the publicly available PredictDB database) and then computes regres-

sion coefficients of the phenotype on each predicted gene expression level generating gene-level results.
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MetaXcan, on the other hand, can be viewed as a shortcut that uses the output from a GWAS study

to infer the output from PrediXcan. Since MetaXcan only uses summary statistics, it can effectively

take advantage of large-scale meta analysis results, avoiding the computational and regulatory burden of

handling large amounts of protected individual-level data.

MetaXcan formula

Figure 1B shows the main analytic expression used by MetaXcan for the Z-score (Wald statistic) of the

association between predicted gene expression and a phenotype. The input variables are the weights used

to predict the expression of a given gene, the variance and covariances of the markers included in the

prediction of the expression level of the gene, and the GWAS coefficient for each marker. The last factor

in the formula can be computed exactly in principle, but we would need additional information that is

unavailable in typical GWAS summary statistics output such as sample size and variance of the phenotype.

Dropping this factor from the formula does not affect the accuracy of the results as demonstrated in the

close to perfect concordance between MetaXcan and PrediXcan results on the diagonal of Figure 2A.

The approximate formula we use is:

Zg ≈
∑

l∈Modelg

wlg
σ̂l
σ̂g

β̂l

se(β̂l)
(1)

where

• wlg is the weight of SNP l in the prediction of the expression of gene g,

• β̂l is the GWAS regression coefficients for SNP l,

• se(β̂l) is standard error of β̂l,

• σ̂l is the estimated variance of SNP l, and

• σ̂g is the estimated variance of the predicted expression of gene g.

The inputs are based, in general, on data from three different sources:

• study set (e.g. GWAS study set),

• training set (e.g. GTEx, DGN),
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Figure 1. A) Comparison of GWAS, PrediXcan, and MetaXcan This figure illustrates the
MetaXcan method in relationship to GWAS and PrediXcan. Both GWAS and PrediXcan take genotype
and phenotype data as input. GWAS computes the regression coefficients of Y on Xl using the model
Y = a+Xlb+ ε, where Y is the phenotype and Xl the individual SNP dosage. The output is the table
of SNP-level results. PrediXcan, in contrast, starts first by predicting/imputing the transcriptome.
Then it calculates the regression coefficients of the phenotype Y on each gene’s predicted expression Tg.
The output is a table of gene-level results. MetaXcan directly computes the gene-level association
results using the output from GWAS. B) MetaXcan formula. This plot shows the formula to infer
PrediXcan gene-level association results using summary statistics. The different sets involved in input
data are shown. The regression coefficient between the phenotype and the genotype is obtained from
the study set. The training set is the reference transcriptome dataset where the prediction models of
gene expression levels are trained. The reference set, in general 1000 Genomes, is used to compute the
variances and covariances (LD structure) of the markers used in the predicted expression levels. Both
the reference set and training set values are pre-computed and provided to the user so that only the
study set results need to be provided to the software. The crossed out term was set to 1 as an
approximation, since its calculation depends on generally unavailable data. We found this
approximation to have negligible impact on the results.
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• population reference set (e.g. 1000 Genomes).

The study set is the main dataset of interest from which the genotype and phenotypes of interest

are gathered. The regression coefficients and standard errors are computed based on individual-level

data from the study set or a SNP-level meta-analysis of multiple GWAS. Training sets are the reference

transcriptome datasets used for the training of the prediction models (GTEx, DGN, Framingham, etc.)

thus the weights wlg are computed from this set. Training sets are also used to generate variance and

covariances of genetic markers, which will usually be different from the study sets. When individual level

data are not available from the training set we use population reference sets such as 1000 Genomes data.

In the most common use scenario, users will need to provide only GWAS results using their study

set. The remaining parameters are pre-computed, and download information can be found at the https:

//github.com/hakyimlab/MetaXcan resource.

Performance in simulated data

We first compared MetaXcan and PrediXcan using simulated phenotypes generated from a normal dis-

tribution, using a single transcriptome model trained on Depression Genes and Network’s (DGN) Whole

Blood data set [5] downloaded from PredictDB (http://predictdb.org). For genotypes we used three

ancestral subsets of the 1000 Genomes project: Africans (n=661), East Asians (n=504), and Europeans

(n=503). Each set was taken in turn as reference and study set yielding a total of 9 combinations as

shown in Figure 2. For each population combination, we computed PrediXcan association results for the

simulated phenotype and compared them with results generated using MetaXcan in a scatter plot. In

this manner we assess the effect of ancestral differences between study and reference sets.

As expected, when the study and reference sets are the same, the concordance between MetaXcan and

PrediXcan is 100%, whereas for sets of different ancestral origin the R2 drops a few percentage points,

with the biggest loss (down to 85%) when the study set is African and the reference set is Asian. This

confirms that our formula works as expected and that the approach is robust to ethnic differences between

study and reference sets.

Performance in cellular growth phenotype from 1000 genomes cell lines

Next we tested with an actual cellular phenotype - intrinsic growth. This phenotype was computed based

on multiple growth assays for over 500 cell lines from the 1000 Genomes project [17]. We used a subset
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Figure 2. Comparison of PrediXcan and MetaXcan results for (A) a simulated phenotype, (B) a
cellular phenotype, intrinsic growth; Study sets and MetaXcan population reference sets consisted of European,
African, and Asian individuals from the 1000 Genomes Project. Gene expression prediction models were based
on DGN Cohort. (C) Comparison of PrediXcan results and MetaXcan results for a Type 1 Diabetes study and
a Bipolar Disorder study. Study data was extracted from Wellcome Trust Case Control Consortium, and
MetaXcan reference population were the European individuals from Thousand Genomes Project (same subset
as in previous sections).

of values for European (EUR), African (AFR), and Asian (EAS) individuals.

We compared Z-scores for intrinsic growth generated by PrediXcan and MetaXcan for different com-

binations of reference and study sets, using whole blood prediction models trained in the DGN cohort.

The results are shown in Figure 2B. Consistent with our simulation study, the MetaXcan results closely

match the PrediXcan results. Again, the best concordance occurs when reference and study sets share

similar continental ancestry while differences in population slightly reduce concordance. Compared to

the plots for the simulated phenotypes, the diagonal concordance is slightly lower than 1. This is due to

the fact that more individuals were included in the reference set than in the study set, thus the study

and reference sets were not identical for MetaXcan.

Performance on disease phenotypes from WTCCC

We show the comparison of MetaXcan and PrediXcan results for two diseases: Bipolar Disorder (BD)

and Type 1 Diabetes (T1D) from the WTCCC in Figure 2C. Other disease phenotypes exhibited similar

performance (data not shown). Concordance between MetaXcan and PrediXcan is over 99% for both

diseases (BD R2 = 0.996 and T1D R2 = 0.995). The very small discrepancies are explained by differences
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in allele frequencies and LD between the reference set (1000 Genomes) and the study set (WTCCC).

It is worth noting that the PrediXcan results for diseases were obtained using logistic regression

whereas MetaXcan formula is based on linear regression properties. As observed before [18], when the

number of cases and controls are relatively well balanced (roughly, at least 25% of a cohort are cases

or controls), linear regression approximation yields very similar results to logistic regression. This high

concordance also shows that the approximation of dropping the factor
√

1−R2
l

1−R2
g
does not significantly affect

the results.

Comparison of MetaXcan with other integrative methods based on summary results

Zhu et al. have proposed Summary Mendelian Randomization (SMR) [15], a summary data based

Mendelian randomization that integrates eQTL results to determine target genes of complex trait-

associated GWAS loci. They derive an approximate χ2 statistic (Eq 5 in SMR) for the mediating effect of

the target gene expression on the phenotype. This approximation is only valid when the eQTL association

is much stronger than the GWAS association (Z2
S1,X(eQTL) >> Z2

S1,Y (GWAS), without this assumption

the variance if off by a factor of 4). Within the range of validity of the SMR statistic, MetaXcan produces

approximately the same result if the top eQTL is used as the prediction model. We demonstrate in the

Methods section that the difference is negligible within the range where SMR assumptions hold.

Gusev et al. have proposed Transcriptome-Wide Association Study (TWAS-summary), which imputes

the SNP level Z-scores into gene level Z-scores. This is a natural extension of ImpG [19] or DIST [20],

which are SNP-based methods that impute summary statistics of unmeasured SNPs using Gaussian

imputation [21]. If restricted to Gaussian imputation, we show that this approach would be equivalent

to predicting expression levels using BLUP/Ridge Regression, which has been shown to be suboptimal

for gene expression traits [22]. However, the mathematical expression used by TWAS-summary can be

extended to any set of weights such as BSLMM as used by Gusev et al. [11]. TWAS-Summary imputes the

Zscore from the gene-level result assuming that under the null the Zscores are normally distributed with

the same correlation structure as the SNPs whereas in MetaXcan we compute the result of PrediXcan

using summary statistics. In the Methods Section we show that with slightly different reasoning TWAS-

summary and MetaXcan expression yield equivalent mathematical expression (after setting the factor√
1−R2

l

1−R2
g
≈ 1).

Figure 3 illustrates the SMR, TWAS, and MetaXcan approaches. ImpG and DIST methods are also
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included in the figure for comparison. All three methods seek to identify target genes by computing the

strength of association between the unobserved predicted expression levels (X) of a gene with the complex

trait (Y ) quantified with ZX,Y or Z2
X,Y . Unlike current versions of MetaXcan and TWAS-summary, SMR

also incorporates uncertainty of the predicted expression in the statistics and adds a test for colocalization

of GWAS and eQTL hits (HEIDI).

Next we demonstrate the utility of MetaXcan by training prediction models for a broad set of primary

tissue expression levels from GTEx and applying them to multiple GWAMA summary results.

Prediction models across 44 human tissues

Using the release version 6p (dbGaP Accession phs000424.v6.p1) from GTEx, we have trained prediction

models for expression levels of 44 human tissues with a total of 1,091,787 gene tissue pairs. Among

these 203,494 yielded prediction models with cross validated q value < 0.05 (FDR computed within each

tissue model) and corresponding to protein coding genes. These were saved into the publicly available

PredictDB database and used for subsequent analysis.

To build the models, we use SNPs within 1Mb upstream of the TSS and 1Mb downstream of the

TES. We use elastic net [23], a multivariate linear model estimated via penalized maximum likelihood,

with a mixing parameter of 0.5. As reported in [10,22] overall performance remains similar for a range of

values of the mixing parameter but drops abruptly when the model becomes very close to ridge regression

(fully polygenic). Based on this, we chose to use elastic net with 0.5 as mixing parameter, which retains

several correlated predictors and is consequently more robust to missing genotype data or low quality

imputation. A summary of tissues, sample sizes, and number of attempted and successful models (FDR

< 5%) can be found in Supplementary Table 7.

Catalog of the phenotypic consequences of gene regulation

Next we downloaded summary statistics of meta analysis of 40 phenotypes from 17 consortia. The full

list of consortia and phenotypes is shown in Supplementary Table 3. We tested association between these

phenotypes and the predicted expression levels using elastic net models in 44 human tissues from GTEx

as described in the previous section and a whole blood model from the DGN cohort presented in [10].

We used a Bonferroni threshold accounting for all the gene-tissue pairs that were tested (0.05/total

number of gene-tissue pairs ≈ 2.5e-7). This approach is conservative because the correlation between
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ẐX,Y =
W 0ZS,Y

W 0⌃S,SW
; W = ⇢0S,X⌃�1
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Figure 3. Comparison of MetaXcan with TWAS and SMR. All three methods seek to identify
target genes by computing the strength of association between the unobserved predicted expression
levels (X) of a gene with the complex trait (Y ) quantified with ZX,Y or Z2

X,Y . SMR uses the top eQTL
(thus implicitly assumes single causal SNP). SMR uses the fact that Z2(SMR) has an approximate χ2

distribution when the eQTL association is much stronger than the GWAS association, i.e.
ZS1,X(eQTL) >> ZS1,Y (GWAS). ImpG [19] and DIST [20] are precursors of TWAS-summary. These
impute the summary results of unmeasured SNPs using a Gaussian imputation scheme. The weights are
given by the Best Linear Unbiased Prediction (BLUP) formula. TWAS-summary simply extends this
idea to imputed gene expression levels but allows use of other weighting scheme such as BSLMM.
MetaXcan directly computes the result of PrediXcan using summary statistics only.
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tissues would make the total number of independent tests smaller than the total number of gene-tissue

pairs. Height had the largest number of genes significantly associated with 1691 unique genes (based

on a GWAMA of 250K individuals), followed by schizophrenia with 285 unique significant genes (n =

150K individuals), lipid levels, glycemic traits, and immune/inflammatory disorders such as rheumatoid

arthritis and inflammatory bowel disease. Other Psychiatric phenotypes had much smaller number of

significant genes with 8 significant genes for bipolar disorder (n = 16,731) and none for major depressive

disorder (n = 18,759) probably due to smaller sample size but also smaller effect sizes.

Mostly, genome-wide significant genes tend to cluster around known SNP level genome-wide significant

loci or sub-genome wide significant loci. Because of the reduction in multiple testing or an increase in

power because it takes into account the combined effects of multiple variants, regions with sub-genome-

wide significant SNPs can yield genome-wide significant results in MetaXcan. Supplementary Table 2

lists a few examples where this occurs.

As expected, results of MetaXcan tend to be more significant as the genetic component of gene

expression increases (larger cross validated prediction performance R2). Similarly, MetaXcan associations

tend to be more significant when prediction p-values are more significant. The trend is seen both when

results are averaged across all tissues for a given phenotype or across all phenotypes for a given tissue.

All tissues and representative phenotypes are shown in Supplementary Figures 1-4. This trend was also

robust to using different monotone functions of the Z-scores.

The full set of results can be queried in our online catalog (gene2pheno.org). This web application

allows filtering the results by gene, phenotype, tissue, p value, and prediction performance . For each trait

we assigned ontology terms from the Experimental Factor Ontology (EFO) [24] and Human Phenotype

Ontology (HPO) [25], if applicable. As the catalog grows, the ontology annotation will facilitate the

analysis by hierarchy of phenotypes. Supplementary Table 3 shows the list of consortia and phenotypes

for which gene level association are available.

Disease associated genes in ClinVar also associated in MetaXcan

We verified that disease genes listed in ClinVar for obesity, rheumatoid arthritis, diabetes, Alzheimer’s,

Crohn’s disease, ulcerative colitis, and age-related macular degeneration [26] show inflated significance

among MetaXcan association results for the corresponding diseases. Schizophrenia and autism genes

did not show enriched significance, which is not surprising given the highly polygenic nature of these
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Figure 4. ClinVar genes show significant MetaXcan associations. Genes implicated in ClinVar
tended to be more significant in MetaXcan for most diseases we tested, except for schizophrenia and
autism. Blue circles correspond to qqplot of genes in ClinVar that were annotated with the phenotype
and black correspond to all genes

.

phenotypes and consequently smaller effect sizes of these disease genes. Genes with small effect sizes are

likely to be underrepresented in ClinVar. The list of diseases in ClinVar used to generate the enrichment

figures can be found in Supplementary Table 1, along with the corresponding association results.

Agnostic scanning of a broad set of tissues enabled by GTEx

The broad coverage of tissues in our prediction models enabled us to examine the tissue specificity of

phenotypic consequences of GWAS signals. We started by computing average enrichment of significance

by tissue. We used several measures of enrichment such as the mean Z-scores squared across all genes,

or across significant genes for different thresholds, as well as the proportion of significant genes for
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different thresholds. We also compared the full distribution of the p-values of a given tissue relative to

the remaining tissues. Supplementary Figure 5 shows the average Z-score2 as a measure of enrichment of

each tissue by phenotype.

For low-density lipoprotein cholesterol (LDL-C) levels, liver was the most enriched tissue in significant

associations as expected given known biology of this trait. This prominent role of liver was apparent

despite the smaller sample size available for building liver models (n=97), which was less than a third

of the numbers available for muscle (n=361) or lung (n=278). In general, however, expected tissues

for diseases given currently known biology did not stand out as more enriched when we looked at the

average across all (significant) genes using various measures of enrichment in our results. For example,

the enrichment in liver was less apparent for high-density lipoprotein cholesterol (HDL-C) or triglyceride

levels.

Next we focus on a few genes whose functional role has been well established: C4A for schizophrenia

[27] and SORT1 [28] and PCSK9 both for LDL-C and cardiovascular disease. The MetaXcan results

for these genes and traits and regulatory activity by tissue (as measured by the proportion of expression

explained by the genetic component) are shown in Figure 5 and details can be found in Supplementary

Tables 4, 5, and 6

There is strong evidence that SORT1 has a causal role in LDL-C levels which is likely to affect risk for

cardiovascular disease. This gene is most actively regulated in liver (close to 50% of the expression level

of this gene is determined by the genetic component) with the most significant MetaXcan association in

liver (p-value ≈ 0) consistent with our prior knowledge of lipid metabolism.

Other genes are found to be associated across multiple tissues. C4A is one example that was sig-

nificantly associated with schizophrenia risk across all tissues (p< 10−7 in 36 tissue models and p<0.05

for the remaining 4 tissue models) even though the effect of this gene is thought to be determined by

excessive synaptic pruning in the brain during development.

PCSK9 is a target of several LDL cholesterol lowering drugs currently under trial to lower cardiovac-

ular events [29]. Results from the STARNET study [30] profiled gene expression levels in cardiometabolic

disease patients and showed that index SNP rs12740374 to be a strong eQTL for PCSK9 in visceral fat

but not in liver. Consistent with this our MetaXcan results also show highly significant association be-

tween PCSK9 and LDL cholesterol (p ≈ 10−13) in visceral fat and not in liver (our training algorithm did

not yield a prediction model for PCSK9 i.e. there was no evidence of regulatory activity). In our results,
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Figure 5. MetaXcan association for PCSK9, SORT1, and C4A. Pred.perf.R2 corresponds to
the correlation squared between observed and predicted expression computed via cross validation in the
training set. Darker points indicate larger genetic component and consequently more active regulation
in the tissue. The size of the points represent the significance of the association between predicted
expression and the traits indicated on the right side labels. C4A associations with schizophrenia (SCZ)
is found across all tissues. SORT1 association with LDL-C, coronary artery disease (CAD), and
myocardial infarction (MI) are most significant in liver. PCSK9 association LDL-C, coronary artery
disease (CAD), and myocardial infarction (MI) are most significant in tibial nerve. Tissue abbreviation: Adipose
- Subcutaneous (ADPSBQ), Adipose - Visceral (Omentum) (ADPVSC), Adrenal Gland (ADRNLG), Artery - Aorta (ARTAORT), Artery - Coronary
(ARTCRN), Artery - Tibial (ARTTBL), Bladder (BLDDER), Brain - Amygdala (BRNAMY), Brain - Anterior cingulate cortex (BA24) (BRNACC),
Brain - Caudate (basal ganglia) (BRNCDT), Brain - Cerebellar Hemisphere (BRNCHB), Brain - Cerebellum (BRNCHA), Brain - Cortex (BRNCTXA),
Brain - Frontal Cortex (BA9) (BRNCTXB), Brain - Hippocampus (BRNHPP), Brain - Hypothalamus (BRNHPT), Brain - Nucleus accumbens (basal
ganglia) (BRNNCC), Brain - Putamen (basal ganglia) (BRNPTM), Brain - Spinal cord (cervical c-1) (BRNSPC), Brain - Substantia nigra (BRNSNG),
Breast - Mammary Tissue (BREAST), Cells - EBV-transformed lymphocytes (LCL), Cells - Transformed fibroblasts (FIBRBLS), Cervix - Ectocervix
(CVXECT), Cervix - Endocervix (CVSEND), Colon - Sigmoid (CLNSGM), Colon - Transverse (CLNTRN), Esophagus - Gastroesophageal Junction
(ESPGEJ), Esophagus - Mucosa (ESPMCS), Esophagus - Muscularis (ESPMSL), Fallopian Tube (FLLPNT), Heart - Atrial Appendage (HRTAA),
Heart - Left Ventricle (HRTLV), Kidney - Cortex (KDNCTX), Liver (LIVER), Lung (LUNG), Minor Salivary Gland (SLVRYG), Muscle - Skeletal
(MSCLSK), Nerve - Tibial (NERVET), Ovary (OVARY), Pancreas (PNCREAS), Pituitary (PTTARY), Prostate (PRSTTE), Skin - Not Sun Exposed
(Suprapubic) (SKINNS), Skin - Sun Exposed (Lower leg) (SKINS), Small Intestine - Terminal Ileum (SNTTRM), Spleen (SPLEEN), Stomach
(STMACH), Testis (TESTIS), Thyroid (THYROID), Uterus (UTERUS), Vagina (VAGINA), Whole Blood (WHLBLD).
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however, the statistical evidence is much stronger in tibial nerve (p ≈ 10−27). The association between

PCSK9 and coronary artery disease is also significant in tibial nerve (p ≈ 10−8) but only nominally

significant in visceral fat (p ≈ 0.02). Accordingly, in our training set (GTEx), there is much stronger

evidence of regulation of this gene in tibial nerve compared to visceral fat.

These examples show the importance of studying the regulation in a broad set of tissues and contexts

and emphasize the challenges of determining causal tissues of complex traits based on in-silico analysis

alone.

Discussion

Here we propose MetaXcan, a method that integrates genetically regulated components of molecular

traits into large-scale GWAS results, to gain insight into the mechanisms that link genetic variation to

phenotypic variation.

MetaXcan scales up the applicability of ideas behind PrediXcan and allows us to build a mechanism

testing framework using prediction models of complex molecular processes and publicly available GWAMA

summary results. Any molecular process that can be represented as linear functions of SNP variation

can be encoded into prediction models which are in turn used to infer the phenotypic consequences via

MetaXcan. These processes include, for example, expression levels of genes, intron usage, methylation

status, telomere length, within different spatial, temporal, and developmental contexts.

As an example application of this framework, we trained transcriptome models in 44 human tissues

from GTEx and estimated their effect on phenotypes from multiple publicly available GWAMA studies.

We find known disease and trait associated genes active in relevant tissues but we also discover patterns

of regulatory activity in tissues that are not traditionally associated with the trait. Further investigation

of context and tissue specificity of these processes is needed but our results emphasize the importance of

methods that integrate functional data across a broad set of tissues and contexts to augment our ability

to identify novel target genes and provide mechanistic insight.

To facilitate broad adoption of the MetaXcan framework, we make user-friendly software and all

pre-computed prediction models publicly available. We also host MetaXcan results for publicly avail-

able GWAMA results and make it freely available to the research community. This database lays the

groundwork for a comprehensive catalog of phenome-wide consequences of complex molecular processes.
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Software and Resources

We make our software publicly available on a GitHub repository: https://github.com/hakyimlab/

MetaXcan. Prediction model weights and covariances for different tissues can be downloaded from

predictdb.org. A short working example can be found on the GitHub page; more extensive docu-

mentation can be found on the project’s wiki page. The results of MetaXcan applied to the 44 human

tissues and a broad set of phenotypes can be queried on gene2pheno.org.

Methods

Derivation of MetaXcan Formula

The goal of MetaXcan is to infer the results of PrediXcan using only GWAS summary statistics. Individual

level data are not needed for this algorithm. We will define some notations for the derivation of the

analytic expressions of MetaXcan.

Notation and Preliminaries

Y is the n-dimensional vector of phenotype for individuals i = 1, n. Xl is the allelic dosage for SNP l.

Tg is the predicted expression (or estimated GREx, genetically regulated expression). wlg are weights to

predict expression Tg =
∑
l∈Modelg wlgXl, derived from an independent training set.

We model the phenotype as linear functions of Xl and Tg

Y = α1 +Xlβl + η

Y = α2 + Tgγg + ε,

where α1 and α2 are intercepts, η and ε error terms independent of Xl and Tg, respectively. Let γ̂g and β̂l

be the estimated regression coefficients of Y regressed on Tg and Xl, respectively. γ̂g is the result (effect

size for gene g) we get from PrediXcan whereas β̂l is the result from a GWAS for SNP l.

We will denote as V̂ar and Ĉov the operators that compute the sample variance and covariance, i.e.

V̂ar(Y ) = σ̂2
Y =

∑
i=1,n(Yi − Ȳ )2/(n − 1) with Ȳ =

∑
i=1,n Yi/n. Let σ̂2

l = V̂ar(Xl), σ̂2
g = V̂ar(Tg) and

Γg = (X− X̄)′(X− X̄)/n, where X′ is the n × p matrix of SNP data and X̄ is a n × p matrix where

column l has the column mean of Xl (p being the number of SNPs in the model for gene g).
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With this notation, our goal is to infer PrediXcan results (γ̂g and its standard error) using only GWAS

results (β̂l and se), estimated variances of SNPs (σ̂2
l ), estimated covariances between SNPs in each gene

model (Γg), and prediction model weights wlg.

Input: β̂l, se(β̂l), σ̂2
l , Γg, wlg. Output: γ̂g/se(γ̂g).

Next we list the properties and definitions used in the derivation:

γ̂g =
Ĉov(Tg, Y )

V̂ar(Tg)
=

Ĉov(Tg, Y )

σ̂2
g

(2)

and

β̂l =
Ĉov(Xl, Y )

V̂ar(Xl)
=

Ĉov(Xl, Y )

σ̂2
l

(3)

The proportion of variance explained by the covariate (Tg or Xl) can be expressed as

R2
g = γ̂2g

σ̂2
g

σ̂2
Y

R2
l = γ̂2l

σ̂2
l

σ̂2
Y

By definition

Tg =
∑

l∈Modelg

wlgXl

V̂ar(Tg) = σ̂2
g can be computed as

σ̂2
g = V̂ar


 ∑

l∈Modelg

wlgXl




= V̂ar(WgXg) where Wg is the vector of wlgfor SNPs in the model of g

= W′
gV̂ar(Xg)Wg where Γg is the V̂ar(Xg) = sample covariance matrix of Xg

= W′
gΓgWg (4)
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Calculation of regression coefficient γ̂g

γ̂g can be expressed as

γ̂g =
Ĉov(Tg, Y )

σ̂2
g

=
Ĉov(

∑
l∈Modelg wlgXl, Y )

σ̂2
g

=
∑

l∈Modelg

wlgĈov(Xl, Y )

σ̂2
g

by linearity of Ĉov

=
∑

l∈Modelg

wlgβ̂lσ
2
l

σ̂2
g

using Eq 3 (5)

Calculation of standard error of γ̂g

Also from the properties of linear regression we know that

se2(γ̂g) = Var(γ̂g) =
σ̂2
ε

nσ̂2
g

=
σ̂2
Y (1−R2

g)

nσ̂2
g

(6)

In this equation, σ̂2
Y /n is not necessarily known but can be estimated using the analogous equation (6)

for beta

se2(β̂l) =
σ̂2
Y (1−R2

l )

nσ̂2
l

(7)

Thus
σ̂2
Y

n
=

se(β̂l)2σ̂2
l

(1−R2
l )

(8)

Notice that the right hand side of (8) is dependent on the SNP l while the left hand side is not. This

equality will hold only approximately in our implementation since we will be using approximate values

for σ̂2
l , i.e. from reference population, not the actual study population.
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Calculation of Z score

To assess the significance of the association, we need to compute the ratio of the estimated effect size γ̂g

and standard error se(γg), or Z score,

Zg =
γ̂g

se(γ̂g)
(9)

with which we can compute the p value as

p = 2 pnorm(−|Zg|) (10)

Zg =
γ̂g

se(γ̂g)

=
∑

l∈Modelg

wlgβ̂lσ̂
2
l

σ̂2
g

√
n

σ̂2
Y

σ̂2
g

(1−R2
g)

using Eq. 5 and 6

=
∑

l∈Modelg

wlgβ̂lσ̂
2
l

σ̂g

√
(1−R2

l )

se(β̂l)2σ̂2
l

√
1

(1−R2
g)

=
∑

l∈Modelg

wlg
σ̂l
σ̂g

β̂l

se(β̂l)

√
1−R2

l

1−R2
g

(11)

≈
∑

l∈Modelg

wlg
σ̂l
σ̂g

β̂l

se(β̂l)
(12)

Based on results with actual and simulated data for realistic effect size ranges, we have found that the

last approximation does not affect our ability to identify the association. The approximation becomes

inaccurate only when the effect sizes are very large. But in these cases, the small decrease in statistical

efficiency induced by the approximation is compensated by the large power to detect the larger effect

sizes.

Expression model training

To train our prediction models, we obtained genotype data and normalized gene expression data collected

by the GTEx Project. We used 44 different tissues sampled by GTEx and thus generated 44 different
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tissue-wide models. Sample sizes for different tissues range from 70 (Uterus) to 361 (Muscle - Skeletal).

The models referenced in this paper make use of the GTEx ProjectâĂŹs V6p data, a patch to the version

6 data and makes use of improved gene-level annotation. To avoid foreseeable errors in future predictions,

we removed ambiguously stranded SNPs from genotype data, i.e. ref/alt pairs A/T, C/G, T/A, G/C.

Genotype data was filtered to include only SNPs with MAF > 0.01. For each tissue, normalized gene

expression data was adjusted for covariates such as gender, sequencing platform, the top 3 principal com-

ponents from genotype data and top PEER Factors. The number of PEER Factors used was determined

by sample size: 15 for n < 150, 30 for n between 150 and 250, and 35 for n > 250 Covariate data was

provided by GTEx. For our analysis, we used protein-coding genes only.

For each gene-tissue pair for which we had adjusted expression data, we fit an Elastic-Net model

based on the genotypes of the samples for the SNPs located within 1 Mb upstream of the geneâĂŹs

transcription start site and 1 Mb downstream of the transcription end site. We used the R package

glmnet with mixing parameter alpha equal to 0.5, and the penalty parameter lambda was chosen through

10-fold cross-validation.

Once we fit all models, we retained only the models which reached significance at a False Discovery

Rate of less than 0.05. For each tissue examined, we created a sqlite database to store the weights of the

prediction models, as well as other statistics regarding model training. These databases have been made

available for download at PredictDB.org.

Comparison with TWAS

Formal similarity with TWAS can be made more explicit by rewriting MetaXcan formula in matrix form.

With the following notation and definitions

W̃g = (σ1w1g, ..., σpwpg)
′

ZSNPs = (Z1, ..., Zp)
′

= (
β̂1

se(β1)
, ...,

β̂p
se(βp)

)′
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and correlation matrix of SNPs in the model for gene g

Σg = diag(
1

σ1
, ...,

1

σp
) · Γg · diag(

1

σ1
, ...,

1

σp
)

it is quite straightforward to write the numerator in 1 and 12 as

W̃g · ZSNPs

and the denominator, the variance of the predicted expression level of gene g, as

W̃
′
g · Σg · W̃g

thus

Zg =
W̃g · ZSNPs

W̃
′
g · Σg · W̃g

This equation has the same form as the TWAS expression if we use the scaled weight vector W̃g instead

of Wg. TWAS-Summary imputes the Zscore from the gene-level result assuming that under the null the

Zscores are normally distributed with the same correlation structure as the SNPs whereas in MetaXcan

we compute the result of PrediXcan using summary statistics. In the Methods Section we show that

with slightly different reasoning TWAS-summary and MetaXcan yield equivalent mathematica expression

(after setting the factor
√

1−R2
l

1−R2
g
≈ 1).

Comparison with SMR

SMR quantifies the strength of the association between expression levels of a gene and complex traits

with TSMR using the following function of the eQTL and GWAS Z-score statistics.

TSMR =
Z2

eqtlZ
2
GWAS

Z2
eqtl + Z2

GWAS
(13)

which can be expressed as

1

TSMR
=

1

Z2
eqtl

+
1

Z2
GWAS

(14)
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Here Zeqtl is the Z score (=effect size / standard error) of the association between SNP and gene

expression, and ZGWAS is the Z score of the association between SNP and trait. Thus the inverse of

the square of the Wald statistic derived by Yang et al is the sum of two inverse χ2 (Z is asymptotically

normally, Z2 is chisquare, 1/Z2 is inverse chisquare). This approximation only holds if the significance of

the eQTL is very large so that only the GWAS Z-score contributes to the statistics. So within the range

where this approximation is valid

1

TSMR
≈ 1

Z2
GWAS

thus

TSMR ≈ Z2
GWAS

On the other hand the MetaXcan formula when only the top eQTL is used to predict the expression

level of a gene is

ZMetaXcan =
∑

l∈Modelg

wlg
σ̂l
σ̂g

β̂l

se(β̂l)
using 12

= w1g
σ̂1√
w2

1gσ
2
1

Z1 only top eQTL is in the model

= Z1

where Z1 is the GWAS Z-score of the top eQTL in the model for gene. Thus

Z2
MetaXcan = Z2

GWAS

SMR will work best if there is no allelic heterogeneity, i.e. single causal variant.
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Supplementary Figure 1. Z-score2 vs predicted performance R2 by phenotype. When
averaged across all genes and tissues within each phenotype the significance of the association tends to
be more pronounced as the genetic component is larger.
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Supplementary Figure 2. Z-score2 vs predicted performance R2 by tissue. When averaged
across all genes and phenotypes within each tissue the significance of the association tends to be more
pronounced as the genetic component is larger.
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Supplementary Figure 3. Z-score2 vs predicted performance p-value by phenotype. When
averaged across all genes and tissues within each phenotype the significance of the association tends to
be more pronounced as the cross validated prediction is more significantly associated with the observed
expression.
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Supplementary Figure 4. Z-score2 vs predicted performance p-value by tissue. When
averaged across all genes and phenotypes within each tissue the significance of the association tends to
be more pronounced as the cross validated prediction is more significantly associated with the observed
expression.
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Supplementary Figure 5. Average enrichment of significant genes by tissues. This figure
shows the average square of the zscores (effect size/standard error) of the association between the
genetic component of gene expression levels and phenotype. CIGPD (cigarettes per day), BMI (body
mass index), FGLUC (fasting glucose), T2D (type 2 diabetes), CAD (coronary artery disease), LDL
(low-density lipoprotein cholesterol), TG (triglycerides), RA (rheumatoid arthritis), ALZH (alzheimer’s
disease), HDL (high-density lipoprotein cholesterol), CROHN (Crohn’s disease), ULCERC (ulcerative
colitis), HEIGHT, BHEAD (birth head), BLGTH (birth length), BWEIG (birth weight), AUTIS
(autism), EDUCYR (education years), SCZ (schizophrenia), AMD (age-related macular degeneration),
ANX (anxiety), HBA1C (Hemogoblin A1C), FPROINS (fasting proinsulin), FI.aBMI (fasting insuline
adjusted for BMI), MDD (major depressive disorder), BIPDIS (bipolar disorder).
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Supplementary Tables

Supplementary Table 1. ClinVar genes with significant association in MetaXcan. Data
included in clinvar_enrichment.txt

Supplementary Table 2. MetaXcan Association yields results more significant than Top
SNPs. Genes associated by MetaXcan to Coronary Artery Disease GWAS where MetaXcan
outperforms individual SNPs in a 2 Mb window around the gene.

Gene Name Tissue Pval Top SNP in Region Top SNP PValue
TUBG2 Adipose Visceral Omentum 2.34E-07 rs72823056 1.50E-06
UTP11L Artery Tibial 1.58E-07 rs28470722 9.84E-07
FHL3 Skin Sun Exposed Lower leg 1.99E-07 rs28470722 9.84E-07
IP6K2 Adipose Subcutaneous 2.14E-07 rs7623687 5.22E-07
SNF8 Thyroid 2.20E-07 rs35895680 3.76E-07

CCDC97 Adipose Subcutaneous 1.31E-09 chr19:41790086:D 1.75E-07
FURIN Artery Aorta 1.27E-08 rs2521501 5.01E-08
FES Cells Transformed fibroblasts 1.23E-08 rs2521501 5.01E-08

PCSK9 Nerve Tibial 1.04E-08 rs11206510 2.34E-08
SWAP70 Spleen 1.01E-08 rs10840293 1.28E-08
NT5C2 Testis 3.79E-09 rs11191416 4.65E-09
IL6R Colon Transverse 2.31E-10 rs6689306 2.60E-09
TCF21 Nerve Tibial 7.19E-12 rs12202017 1.98E-11
LIPA Whole Blood 1.67E-14 rs1412444 5.15E-12
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Supplementary Table 3. List of Genome-wide Association Meta Analysis (GWAMA)
Consortia and phenotypes. # Signif. column lists the number of gene/tissue pairs that were found
to be significant after bonferroni correction for total number of tests (≈ 2.5 10−7). # Unique Sig.
column lists the number of unique genes among the significant gene/tissue pairs.

Consortium Phenotype Sample Size # Signif # Unique Sig.
PGC Attention Deficit/Hyperactivity Disorder 5415 0 0
PGC Bipolar Disorder 16731 13 8
PGC Major Depressive Disorder 18759 1 1
PGC Schizophrenia 150064 1122 305
CIAC Clozapine-Induced Agranulocytosis 1352 0 0
CONVERGE Major Depressive Disorder 11670 0 0
IGAP Alzheimer 54162 124 55
TAG Tobacco Cigarettes per Day 38181 23 13
IBD Inflammatory Bowel Disease 20833 1052 230
IBD Ulcerative Colitis 27432 565 123
IBD Chron’s Disease 34652 607 164
GIANT Body Mass Index 339224 508 129
GIANT Waist-to-Hip Ratio 142762 18 15
GIANT Waist Circumference 224459 102 30
GIANT Hip Circumference 224459 373 83
GIANT Height 253288 5840 1685
CARDIoGRAM C4D Coronary Artery Disease (additive model) 184305 136 57
CARDIoGRAM C4D Myocardial Infarction 184305 80 32
MAGIC Fasting Glucose 133010 542 262
MAGIC Fasting Insulin /Adjusted for BMI) 108557 102 72
MAGIC Fasting Glucose and BMI interaction 58074 10 2
MAGIC Fasting Proinsulin 10701 187 43
MAGIC Glycated Hemogoblin 46368 69 21
SSGAC College Completion 101069 5 3
SSGAC Education Years 95427 20 10
EGG Birth Length 28459 7 2
EGG Birth Weight 26836 9 8
EGG Childhood Obesity 13848 13 6
EGG Head Circumference 10678 0 0
GLGC Low-density Lipoprotein Cholesterol 188578 825 296
GLGC High-density Lipoprotein Cholesterol 188578 822 262
GLGC Triglicerids 188578 709 245
GPC Five Factor Model Conscientiousness 17375 0 0
ANGST Anxiety Disorder (Factor Score) 18186 0 0
AMD Age-related Macular Degeneration 34009 754 152
DIAGRAM Type II diabetes 149461 33 19
RA Rheumatoid Arthritis 80799 1567 242
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Supplementary Table 4. MetaXcan association results for SORT1. Association with LDL
cholesterol, coronary artery disease, and myocardial infarction are shown for available tissue models.
Liver shows the most significant association with all three phenotypes. Also liver is the tissue with the
most active regulation of SORT1 expression, with 49% of the expression explained by our genetic
prediction model. This is expected given the importance of this tissue in liver metabolism and its
mediating effect on cardiovascular disease. Pvalue is the significance of the association between
predicted expression levels and the phenotype. Effect size is the change in the phenotype when there is
a change of 1 standard deviation in the predicted expression. Pred.Perf.R2 column is the cross validated
R2 in the training set between observed and predicted expression level. This can also be interpreted as
a lower bound of the heritability of the expression trait. Pred.Perf.Pvalues is the p values of the
correlation between predicted and observed expression. Note that tissue models will be available only
when regulation was sufficiently active to yield a significant genetic component for the gene. Full set of
results can be queried in gene2pheno.org

Gene Phenotype Effect Size Pvalue Tissue Pred.Perf.R2 Pred.Perf.Pvalue
SORT1 CAD -0.058 1.28E-17 Liver 0.492 1.18E-15

-0.035 3.58E-07 Pancreas 0.114 2.52E-05
-0.023 9.29E-04 DGN WB 0.017 8.27E-05
-0.018 8.73E-03 Esophagus Mucosa 0.051 4.08E-04
0.014 0.06 Small Intestine Terminal Ileum 0.173 1.70E-04
-0.014 0.15 Spleen 0.092 3.89E-03
-0.007 0.24 Testis 0.178 3.83E-08
0.005 0.54 Brain Hippocampus 0.087 7.48E-03
-0.002 0.58 Brain Anterior cingulate cortex BA24 0.172 2.93E-04
0.001 0.89 Breast Mammary Tissue 0.028 0.024
0.001 0.99 Pituitary 0.064 0.018

SORT1 LDL-C -0.085 7.45E-183 Liver 0.492 1.18E-15
-0.058 6.48E-96 Pancreas 0.114 2.52E-05
-0.030 2.92E-31 Esophagus Mucosa 0.051 4.08E-04
-0.031 2.76E-27 DGN WB 0.017 8.27E-05
0.020 5.91E-11 Brain Hippocampus 0.087 7.48E-03
-0.017 3.56E-06 Spleen 0.092 3.89E-03
-0.011 5.16E-04 Testis 0.178 3.83E-08
0.008 0.03 Small Intestine Terminal Ileum 0.173 1.70E-04
-0.003 0.15 Brain Anterior cingulate cortex BA24 0.172 2.93E-04
-0.003 0.20 Pituitary 0.064 1.79E-02
-0.001 0.84 Breast Mammary Tissue 0.028 0.02

SORT1 Myocardial -0.051 5.17E-12 Liver 0.492 1.18E-15
Infarction -0.031 4.41E-05 Pancreas 0.114 2.52E-05

-0.020 0.01 DGN WB 0.017 8.27E-05
-0.016 0.03 Esophagus Mucosa 0.051 4.08E-04
0.012 0.12 Small Intestine Terminal Ileum 0.173 1.70E-04
-0.008 0.24 Testis 0.178 3.83E-08
-0.007 0.29 Brain Anterior cingulate cortex BA24 0.172 2.93E-04
-0.012 0.33 Spleen 0.092 3.89E-03
0.006 0.53 Pituitary 0.064 0.018
0.002 0.82 Brain Hippocampus 0.087 7.48E-03
-0.001 0.93 Breast Mammary Tissue 0.028 0.024
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Supplementary Table 5. MetaXcan association between C4A and schizophrenia MetaXcan
association with schizophrenia for available tissue models. C4A is actively regulated across all tissues,
with prediction R2 ranging from 8% to 39%. Predicted expression levels of C4A are also significantly
associated with schizophrenia risk uniformly across all tissues. Pvalue is the significance of the
association between predicted expression levels and the phenotype. Effect size is the change in the
phenotype when there is a change of 1 standard deviation in the predicted expression. Pred.Perf.R2
column is the cross validated R2 in the training set between observed and predicted expression level.
This can also be interpreted as a lower bound of the heritability of the expression trait.
Pred.Perf.Pvalues is the p values of the correlation between predicted and observed expression. Note
that tissue models will be available only when regulation was sufficiently active to yield a significant
genetic component for the gene. Full set of results can be queried in gene2pheno.org

Gene Phenotype Effect Size Pvalue Tissue Pred.Perf.R2 Pred.Perf.Pvalue
C4A Schizophrenia 0.072 2.29E-20 Pancreas 0.266 1.66E-11

0.069 7.72E-20 Artery Aorta 0.234 6.11E-13
0.060 1.46E-19 Testis 0.347 4.61E-16
0.065 2.61E-19 Thyroid 0.276 3.65E-21
0.066 6.78E-19 Heart Atrial Appendage 0.394 8.55E-19
0.062 8.45E-19 Adipose Subcutaneous 0.221 8.78E-18
0.064 9.25E-19 Colon Sigmoid 0.165 2.94E-06
0.068 1.01E-18 Heart Left Ventricle 0.260 5.60E-14
0.070 1.15E-18 Liver 0.380 1.86E-11
0.069 1.98E-18 Cells EBV-transformed lymphocytes 0.229 7.29E-08
0.062 2.23E-18 Stomach 0.305 6.18E-15
0.067 3.54E-18 Brain Hypothalamus 0.094 5.25E-03
0.058 1.02E-17 Lung 0.196 8.29E-15
0.061 2.70E-17 Colon Transverse 0.202 8.55E-10
0.062 3.73E-17 Muscle Skeletal 0.184 1.29E-17
0.056 4.74E-17 Nerve Tibial 0.327 1.20E-23
0.061 9.07E-17 Adipose Visceral Omentum 0.219 1.81E-11
0.053 3.64E-16 Brain Putamen basal ganglia 0.188 4.61E-05
0.057 3.99E-16 Artery Coronary 0.099 5.20E-04
0.063 1.16E-15 Brain Frontal Cortex BA9 0.176 3.10E-05
0.068 1.74E-15 Esophagus Gastroesophageal Junction 0.224 2.00E-08
0.050 4.11E-15 Prostate 0.215 6.22E-06
0.057 6.16E-15 Esophagus Mucosa 0.263 1.48E-17
0.059 1.53E-14 Breast Mammary Tissue 0.257 2.45E-13
0.054 2.55E-14 Skin Sun Exposed Lower leg 0.237 2.33E-19
0.056 1.18E-13 Brain Cerebellum 0.231 2.76E-07
0.051 6.32E-13 Whole Blood 0.205 1.89E-18
0.050 2.20E-12 Brain Cerebellar Hemisphere 0.166 7.33E-05
0.054 4.34E-12 Skin Not Sun Exposed Suprapubic 0.350 7.11E-20
0.046 1.01E-11 Cells Transformed fibroblasts 0.233 2.81E-17
0.051 6.82E-11 Adrenal Gland 0.169 1.76E-06
0.038 3.19E-10 Artery Tibial 0.169 5.16E-13
0.042 5.71E-10 Brain Caudate basal ganglia 0.126 2.92E-04
0.045 1.09E-09 Uterus 0.101 7.20E-03
0.045 5.37E-09 Spleen 0.280 1.00E-07
0.037 2.95E-08 Brain Anterior cingulate cortex BA24 0.246 9.32E-06
0.032 1.09E-04 Small Intestine Terminal Ileum 0.083 1.09E-02
0.023 2.61E-04 Pituitary 0.145 2.76E-04
0.015 0.02 Brain Hippocampus 0.125 1.21E-03
0.016 0.03 Brain Cortex 0.099 1.80E-03
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Supplementary Table 6. MetaXcan association results for PCSK9. Association with LDL
cholesterol, coronary artery disease, and myocardial infarction are shown for available tissue models.
The significant association between LDL-C and PCSK9 in visceral fat is consistent with other
reports [30] but the most significant association is found in tibial nerve. Tibial nerve was the most
actively regulated tissue with 18% of the expression level of the gene being explained by our genetic
prediction model (cross validated). Pvalue is the significance of the association between predicted
expression levels and the phenotype. Effect size is the change in the phenotype when there is a change
of 1 standard deviation in the predicted expression. Pred.Perf.R2 column is the cross validated R2 in
the training set between observed and predicted expression level. This can also be interpreted as a
lower bound of the heritability of the expression trait. Pred.Perf.Pvalues is the p values of the
correlation between predicted and observed expression. Note that tissue models will be available only
when regulation was sufficiently active to yield a significant genetic component for the gene. Full set of
results can be queried in gene2pheno.org

Gene Phenotype Effect Size Pvalue Tissue Pred.Perf.R2 Pred.Perf.Pvalue
PCSK9 CAD 0.039 1.04E-08 Nerve Tibial 0.179 1.48E-12

0.037 4.14E-07 Lung 0.010 0.102
0.029 4.60E-05 Whole Blood 0.007 0.119
0.020 4.53E-03 Testis 0.043 9.05E-03
-0.017 0.01 Colon Transverse 0.022 0.054
0.015 0.02 Adipose Visceral Omentum 0.056 1.13E-03
0.014 0.04 Brain Cerebellum 0.072 6.09E-03
-0.008 0.23 Skin Sun Exposed Lower leg 0.010 0.080
0.007 0.35 Artery Tibial 0.023 0.010
-0.006 0.48 Vagina 0.079 0.012
-0.003 0.60 Artery Coronary 0.036 0.038
-0.001 0.95 Brain Cortex 0.044 0.039

PCSK9 LDL-C 0.039 1.45E-27 Nerve Tibial 0.179 1.48E-12
-0.027 5.05E-21 Colon Transverse 0.022 0.054
0.032 2.19E-13 Lung 0.010 0.102
0.030 2.41E-13 Adipose Visceral Omentum 0.056 1.13E-03
-0.021 4.27E-12 Skin Sun Exposed Lower leg 0.010 0.080
0.019 1.05E-10 Whole Blood 0.007 0.119
0.020 2.48E-10 Brain Cerebellum 0.072 6.09E-03
0.010 3.65E-03 Brain Cortex 0.044 0.039
-0.005 0.44 Vagina 0.079 0.012
0.004 0.47 Testis 0.043 9.05E-03
-0.002 0.51 Artery Coronary 0.036 0.038
0.002 0.99 Artery Tibial 0.023 0.010

PCSK9 Myocardial 0.037 8.62E-07 Nerve Tibial 0.179 1.48E-12
0.035 7.89E-06 Lung 0.010 0.102
0.029 3.05E-04 Whole Blood 0.007 0.119
0.018 0.02 Testis 0.043 9.05E-03
-0.013 0.08 Skin Sun Exposed Lower leg 0.010 0.080
0.012 0.09 Adipose Visceral Omentum 0.056 1.13E-03
-0.011 0.15 Colon Transverse 0.022 0.054
0.009 0.25 Brain Cerebellum 0.072 6.09E-03
-0.004 0.58 Brain Cortex 0.044 0.039
0.003 0.72 Artery Tibial 0.023 0.010
-0.003 0.85 Vagina 0.079 0.012
0.001 0.90 Artery Coronary 0.036 0.038
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Supplementary Table 7. List of Tissue Models. # protein cod. lists the number of genes in the
training set for the tissue, # samples is the samples available with expression and genotype data, #
signif. models lists the number of models that achieved cross validated prediction significance FDR
lower than 5%.

Tissue # protein cod. # samples # signif. models
(FDR <.05)

Adipose Subcutaneous 15935 298 7249
Adipose Visceral Omentum 15790 185 4568
Adrenal Gland 15370 126 4174
Artery Aorta 15401 197 6182
Artery Coronary 15437 118 3222
Artery Tibial 15388 285 7121
Brain Anterior cingulate cortex BA24 15385 72 2559
Brain Caudate basal ganglia 15658 100 3544
Brain Cerebellar Hemisphere 15202 89 4068
Brain Cerebellum 15456 103 4995
Brain Cortex 15652 96 3558
Brain Frontal Cortex BA9 15547 92 3258
Brain Hippocampus 15628 81 2566
Brain Hypothalamus 15818 81 2451
Brain Nucleus accumbens basal ganglia 15636 93 3057
Brain Putamen basal ganglia 15374 82 2749
Breast Mammary Tissue 16188 183 4648
Cells EBV-transformed lymphocytes 13905 114 3660
Cells Transformed fibroblasts 14556 272 7609
Colon Sigmoid 15599 124 3720
Colon Transverse 16010 169 4788
Esophagus Gastroesophageal Junction 15364 127 3601
Esophagus Mucosa 15741 241 6889
Esophagus Muscularis 15556 218 6533
Heart Atrial Appendage 15242 159 4565
Heart Left Ventricle 14834 190 4858
Liver 14767 97 2759
Lung 16336 278 6564
Muscle Skeletal 14959 361 6563
Nerve Tibial 15998 256 8113
Ovary 15238 85 2880
Pancreas 15335 149 4931
Pituitary 16131 87 3335
Prostate 15994 87 2614
Skin Not Sun Exposed Suprapubic 16110 196 5633
Skin Sun Exposed Lower leg 16259 302 7567
Small Intestine Terminal Ileum 15872 77 2613
Spleen 15371 89 3715
Stomach 15989 170 4096
Testis 17683 157 7043
Thyroid 16193 278 8026
Uterus 15164 70 2159
Vagina 15715 79 2041
Whole Blood 14858 338 6650
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