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Abstract14

Scalable, integrative methods to understand mechanisms that link genetic variants with phenotypes are15

needed. Here we derive a mathematical expression to compute PrediXcan (a gene mapping approach)16

results using summary data (S-PrediXcan) and show its accuracy and general robustness to misspecified17

reference sets. We apply this framework to 44 GTEx tissues and 100+ phenotypes from GWAS and18

meta-analysis studies, creating a growing public catalog of associations that seeks to capture the effects19

of gene expression variation on human phenotypes. Replication in an independent cohort is shown. Most20

of the associations were tissue specific, suggesting context specificity of the trait etiology. Colocalized21

significant associations in unexpected tissues underscore the need for an agnostic scanning of multiple22

contexts to improve our ability to detect causal regulatory mechanisms. Monogenic disease genes are23

enriched among significant associations for related traits, suggesting that smaller alterations of these24

genes may cause a spectrum of milder phenotypes.25
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Introduction26

Over the last decade, GWAS have been successful in robustly associating genetic loci to human com-27

plex traits. However, the mechanistic understanding of these discoveries is still limited, hampering the28

translation of the associations into actionable targets. Studies of enrichment of expression quantitative29

trait loci (eQTLs) among trait-associated variants [1–3] show the importance of gene expression regula-30

tion. Functional class quantification showed that 80% of the common variant contribution to phenotype31

variability in 12 diseases can be attributed to DNAase I hypersensitivity sites, further highlighting the32

importance of transcript regulation in determining phenotypes [4].33

Many transcriptome studies have been conducted where genotypes and expression levels are assayed34

for a large number of individuals [5–8]. The most comprehensive transcriptome dataset, in terms of35

examined tissues, is the Genotype-Tissue Expression Project (GTEx): a large-scale effort where DNA36

and RNA were collected from multiple tissue samples from nearly 1000 individuals and sequenced to high37

coverage [9,10]. This remarkable resource provides a comprehensive cross-tissue survey of the functional38

consequences of genetic variation at the transcript level.39

To integrate knowledge generated from these large-scale transcriptome studies and shed light on40

disease biology, we developed PrediXcan [11], a gene-level association approach that tests the mediating41

effects of gene expression levels on phenotypes. PrediXcan is implemented on GWAS or sequencing studies42

(i.e. studies with genome-wide interrogation of DNA variation and phenotypes). It imputes transcriptome43

levels with models trained in measured transcriptome datasets (e.g. GTEx). These predicted expression44

levels are then correlated with the phenotype in a gene association test that addresses some of the key45

limitations of GWAS [11].46

Meta-analysis efforts that aggregate results from multiple GWAS have been able to identify an in-47

creasing number of associations that were not detected with smaller sample sizes [12–14]. We will refer48

to these results as GWAMA (Genome-wide association meta-analysis) results. In order to harness the49

power of these increased sample sizes while keeping the computational burden manageable, methods that50

use summary level data rather than individual level data are needed.51

Methods similar to PrediXcan that estimate the association between intermediate gene expression52

levels and phenotypes, but use summary statistics have been reported: TWAS (summary version) [15]53

and SMR (Summary Mendelian Randomization) [16]. Another class of methods that integrate eQTL54
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information with GWAS results are based on colocalization of eQTL and GWAS signals. Colocalized55

signals provide evidence of possible causal relationship between the target gene of an eQTL and the56

complex trait. These include RTC [1], Sherlock [17], COLOC [18], and more recently eCAVIAR [19] and57

ENLOC [20].58

Here we derive a mathematical expression that allows us to compute the results of PrediXcan without59

the need to use individual-level data, greatly expanding its applicability. We compare with existing60

methods and outline a best practices framework to perform integrative gene mapping studies, which we61

term MetaXcan.62

We apply the MetaXcan framework by first training over 1 million elastic net prediction models of63

gene expression traits, covering protein coding genes across 44 human tissues from GTEx, and then64

performing gene-level association tests over 100 phenotypes from 40 large meta-analysis consortia and65

dbGaP.66

Results67

Computing PrediXcan results using summary statistics68

We have derived an analytic expression to compute the outcome of PrediXcan using only summary69

statistics from genetic association studies. Details of the derivation are shown in the Methods section. In70

Figure 1-A, we illustrate the mechanics of Summary-PrediXcan (S-PrediXcan) in relation to traditional71

GWAS and the individual-level PrediXcan method [11].72

We find high concordance between PrediXcan and S-PrediXcan results indicating that in most cases,73

we can use the summary version without loss of power to detect associations. Figure 2 shows the74

comparison of PrediXcan and S-PrediXcan Z-scores for a simulated phenotype (under the null hypothesis),75

a cellular growth phenotype and two disease phenotypes: type 1 diabetes and bipolar disorder from the76

WTCCC Consortium [21]. For the simulated phenotype, the study sets (in which GWAS is performed)77

and the reference set (in which LD between SNPs is computed) were African, East Asian, and European78

from 1000 Genomes. The training set (in which prediction models are trained) was European (DGN79

Cohort [5]) in all cases. The high correlation between PrediXcan and S-PrediXcan demonstrates the80

robustness of our method to mismatches between reference and study sets. Despite the generally good81

concordance between the summary and individual level methods, there were a handful of false positive82
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results with S-PrediXcan much more significant than PrediXcan. This underscores the need to use closely83

matched LD information whenever possible. Supplementary Figure 11 shows S-PrediXcan’s performance84

on a phenotype simulated under the alternative hypothesis.85

Notice that we are not testing here whether PrediXcan itself is robust to population differences86

between training and study sets. Robustness of the prediction across populations has been previously87

reported [22]. We further corroborated this in Supplementary Figure 10.88

Next we compare with other summary result-based methods such as S-TWAS, SMR, and COLOC.89

Colocalization estimates complement PrediXcan results90

One class of methods seeks to determine whether eQTL and GWAS signals are colocalized or are distinct91

although linked by LD. This class includes COLOC [18], Sherlock [17], and RTC [1], and more recently92

eCAVIAR [19], and ENLOC [20]. Thorough comparison between these methods can be found in [18,19].93

HEIDI, the post filtering step in SMR that estimates heterogeneity of GWAS and eQTL signals, can94

be included in this class. We focus here on COLOC, whose quantification of the probability of five95

configurations complements well with S-PrediXcan results.96

COLOC provides the probability of 5 hypotheses: H0 corresponds to no eQTL and no GWAS associ-97

ation, H1 and H2 correspond to association with eQTL but no GWAS or vice-versa, H3 corresponds to98

eQTL and GWAS association but independent signals, and finally H4 corresponds to shared eQTL and99

GWAS association. P0, P1, P2, P3, and P4 are the corresponding probabilities for each configuration.100

The sum of the five probabilities is 1. The authors [18] recommend to interpret H0, H1, and H2 as limited101

power; we will aggregate these three hypothesis into one event with probability 1-P3-P4 for convenience.102

Figure 3 shows ternary plots [23] with P3, P4, and 1-P3-P4 as vertices. The blue region, top sub-103

triangle, corresponds to high probability of colocalized eQTL and GWAS signals (P4). The orange region,104

bottom left, corresponds to high probability of distinct eQTL and GWAS signals (P3). The gray region,105

center and bottom right, corresponds to low probability of both colocalization and independent signals.106

Figure 3-B shows association results for all gene-tissue pairs with the height phenotype. We find that107

most associations fall in the gray, ‘undetermined’, region. When we restrict the plot to S-PrediXcan108

Bonferroni-significant genes (Figure 3-C), three distinct peaks emerge in the high P4 region (‘colocalized109

signals’), high P3 region (‘independent signals’ or ‘non-colocalized signals’), and ‘undetermined’ region.110

Moreover, when genes with low prediction performance are excluded (Supplementary Figure 6-D) the111
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‘undetermined’ peak significantly diminishes.112

These clusters provide a natural way to classify significant genes and complement S-PrediXcan results.113

Depending on false positive/false negative trade-off choices, genes in the ‘independent signals’ or both114

‘independent signals’ and ‘undetermined’ can be filtered out. The proportion of colocalized associations115

(P4>0.5) ranged from 5 to 100% depending on phenotype with a median of 27.6%. The proportion of116

‘non-colocalized’ associations ranged from 0 to 77% with a median of 27.0%. Supplementary Table 2117

summarizes the percentages of significant associations that fall into the different colocalization regions.118

This post-filtering idea was first implemented in the SMR approach using HEIDI. Comparison of119

COLOC results with HEIDI is shown in Figure 6-E to -F.120

Comparison of S-PrediXcan to S-TWAS121

Gusev et al. have proposed Transcriptome-Wide Association Study based on summary statistics (S-122

TWAS), which imputes the SNP level Z-scores into gene level Z-scores. This is not the same as computing123

the results of individual level TWAS. We show (in Methods section) that the difference between the124

individual level and summary level TWAS is given by the factor
√

1−R2
l

1−R2
g
, where Rl is the proportion of125

variance in the phenotype explained by a SNP’s allelic dosage, and Rg is the proportion explained by126

gene expression (see Methods section). For most practical purposes we have found that this factor is very127

close to 1 so that if the same prediction models were used, no substantial difference between S-TWAS128

and S-PrediXcan should be expected.129

Figure 4-A shows a diagram of S-PrediXcan and S-TWAS. Both use SNP to phenotype associations130

results (ZX,Y ) and prediction weights (wX,Tg
) to infer the association between the gene expression level131

(Tg) and phenotype (Y ).132

Figure 4-B compares S-TWAS significance (as reported in [24]) to S-PrediXcan significance. The133

difference between the two approaches is mostly driven by the different prediction models: TWAS uses134

BSLMM [25] whereas PrediXcan uses elastic net [26]. BSLMM allows two components: one sparse (small135

set of large effect predictors) and one polygenic (all variants contribute some marginal effect to the136

prediction). For PrediXcan we have chosen to use a sparse model (elastic net) based on the finding that137

the genetic component of gene expression levels is mostly sparse [27].138

Figure 4-C shows that the proportion of non-colocalized (independent) GWAS and eQTL signals is139

larger among TWAS significant genes than among S-PrediXcan significant ones. This is likely due to140
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the polygenic component of BSLMM models, a wider set of SNPs increasing the chance of capturing141

LD-contaminated (non-colocalized) association. Figure 4-D shows that, for most traits, the proportion142

of colocalized signals is larger among S-PrediXcan significant genes than S-TWAS significant genes.143

Comparison of S-PrediXcan to SMR144

Zhu et al. have proposed Summary Mendelian Randomization (SMR) [16], a summary data based145

Mendelian randomization that integrates eQTL results to determine target genes of complex trait-146

associated GWAS loci. They derive an approximate χ2
1-statistic (Eq 5 in [16]) for the mediating effect of147

the target gene expression on the phenotype.148

Unfortunately, the derived statistic is mis-calibrated. A QQ plot comparing the SMR statistic (under149

the null hypothesis of genome-wide significant eQTL signal and no GWAS association) shows deflation.150

The sample mean of the statistic is ≈ 0.93 instead of 1, the expected value for the mean of a χ2
1 random151

variable. See Figure 5 (B and C) and Methods section for details. The χ2 approximation is only valid152

in two extreme cases: when the eQTL association is much stronger than the GWAS association or vice153

versa, when the GWAS association is much stronger than the eQTL association. See Methods for details.154

One limitation is that the significance of the SMR statistic is the lower of the top eQTL association155

(genotype to expression) or the GWAS association (genotype to phenotype) as shown in Figure 5 (E and156

F). Given the much larger sample sizes of GWAS studies, for most genes, the combined significance will be157

determined by the eQTL association. The combined statistic forces us to apply multiple testing correction158

for all genes, even those that are distant to GWAS associated loci, which is unnecessarily conservative.159

Keep in mind that currently both SMR and PrediXcan only use cis associations. An example may clarify160

this further. Let us suppose that for a given phenotype there is only one causal SNP and that the GWAS161

yielded a highly significant p-value, say 10−50. Let us also suppose that there is only one gene (gene A) in162

the vicinity (we are only using cis predictors) associated with the causal SNP with p=10−5. SMR would163

compute the p-values of all genes and yield a p-value ≈ 10−5 for gene A (the less significant p-value).164

However, after multiple correction this gene would not be significantly associated with the phenotype.165

Here it is clear that we should not be adjusting for testing of all genes when we know a priori that only166

one is likely to produce a gene level association. In contrast, the PrediXcan p-value would be ≈ 10−50167

for gene A and would be distributed uniformly from 0 to 1 for the remaining genes. Most likely only168

gene A (or perhaps a handful of genes, just by chance) would be significant after Bonferroni correction.169
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If we further correct for prediction uncertainty (here =eQTL association), a p-value of ≈ 10−5 would170

remain significant since we only need to correct for the (at most) handful of genes that were Bonferroni171

significant for the PrediXcan p-value.172

Another potential disadvantage of this method is that only top-eQTLs are used for testing the gene173

level association. This does not allow to aggregate the effect on the gene across multiple variants.174

Figure 5-D compares S-PrediXcan (elastic net) and SMR association results. As expected, SMR p-175

values tend to be less significant than S-PrediXcan’s in large part due to the additional adjustment for176

the uncertainty in the eQTL association. Figures 5-E and -F show that the SMR significance is bounded177

by the eQTL and GWAS association strengths of the top eQTL.178

SMR introduces a post filtering step via an approach called HEIDI, which is compared to COLOC in179

Figure 3 and Supplementary Figure 6.180

MetaXcan framework181

Building on S-PrediXcan and existing approaches, we define a general framework (MetaXcan) to integrate182

eQTL information with GWAS results and map disease-associated genes. This evolving framework can183

incorporate models and methods to increase the power to detect causal genes and filter out false positives.184

Existing methods fit within this general framework as instances or components (Figure 6).185

The framework starts with the training of prediction models for gene expression traits followed by186

a selection of high-performing models. Next, a mathematical operation is performed to compute the187

association between each gene and the downstream complex trait. Additional adjustment for the uncer-188

tainty in the prediction model can be added. To avoid capturing LD-contaminated associations, which189

can occur when expression predictor SNPs and phenotype causal SNPs are different but in LD, we use190

colocalization methods that estimate the probability of shared or independent signals.191

PrediXcan implementations use elastic net models motivated by our observation that gene expression192

variation is mostly driven by sparse components [27]. TWAS implementations have used Bayesian Sparse193

Linear Mixed Models [25] (BSLMM). SMR fits into this scheme with prediction models consisting solely194

of the top eQTL for each gene (weights are not necessary here since only one SNP is used at a time).195

For the last step, we chose COLOC to estimate the probability of colocalization of GWAS and eQTL196

signals. COLOC probabilities cluster more distinctly into different classes and thus, unlike other methods,197

suggests a natural cut off threshold at P=0.5. Another advantage of COLOC is that for genes with low198
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probability of colocalization, it further distinguishes distinct GWAS and eQTL signals from low power.199

This is a useful feature that future development of colocalization methods should also offer. SMR, on the200

other hand, uses its own estimate of ‘heterogeneity’ of signals calculated by HEIDI.201

Suggested association analysis pipeline202

1. Perform PrediXcan or S-PrediXcan using all tissues. Use Bonferroni correction for all gene-tissue203

pairs: keep p< 0.05/ number of gene-tissue pairs tested.204

2. Keep associations with significant prediction performance adjusting for number of PrediXcan sig-205

nificant gene-tissue pairs: keep prediction performance p-values < 0.05/(number of significant as-206

sociations from previous step).207

3. Filter out LD-contaminated associations, i.e. gene-tissue pairs in the ‘independent signal’ (=‘non-208

colocalized’) region of the ternary plot (See Figure 3-A): keep COLOC P3< 0.5 (Blue and gray209

regions in Figure 3-A).210

4. If further reduction of number of genes to be taken to replication or validation is desired, keep only211

hits with explicit evidence of colocalization: P4> 0.5 (Blue region in Figure 3-A).212

Any choice of thresholds has some level of arbitrariness. Depending on the false positive and negative213

trade off, these number may be changed.214

Gene expression variation in humans is associated to diverse phenotypes215

We downloaded summary statistics from meta analyses of over 100 phenotypes from 40 consortia. The216

full list of consortia and phenotypes is shown in Supplementary Table 4. We tested association between217

these phenotypes and the predicted expression levels using elastic net models in 44 human tissues from218

GTEx as described in the Methods section, and a whole blood model from the DGN cohort presented219

in [11].220

We used a Bonferroni threshold accounting for all the gene-tissue pairs that were tested (0.05/total221

number of gene-tissue pairs ≈ 2.5e-7). This approach is conservative because the correlation between222

tissues would make the total number of independent tests smaller than the total number of gene-tissue223

pairs. Height had the largest number of significantly associated unique genes at 1,686 (based on a224
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GWAMA of 250K individuals). Other polygenic diseases with a large number of associations include225

schizophrenia with 305 unique significant genes (n= 150K individuals), low-density lipoprotein cholesterol226

(LDL-C) levels with 296 unique significant genes (n = 188K), other lipid levels, glycemic traits, and227

immune/inflammatory disorders such as rheumatoid arthritis and inflammatory bowel disease. For other228

psychiatric phenotypes, a much smaller number of significant associations was found, with 8 significant229

genes for bipolar disorder (n = 16,731) and one for major depressive disorder (n = 18,759), probably due230

to smaller sample sizes, but also smaller effect sizes.231

When step 2 from the suggested pipeline is applied, keeping only reliably predicted genes, we are left232

with 739 genes for height, 150 for schizophrenia, 117 for LDL-C levels.233

After step 3, which keeps genes that are without strong evidence of LD-contamination, these numbers234

dropped to 264 for height, 58 for schizophrenia, and 60 for LDL-C levels. After step 4, which keeps only235

genes with strong evidence of colocalization, we find 215 genes for height, 49 for schizophrenia, and 35236

for LDL-C. The counts for the full set of phenotypes can be found in Supplementary Table 4.237

Mostly, genome-wide significant genes tend to cluster around known SNP-level genome-wide signifi-238

cant loci or sub-genome-wide significant loci. Regions with sub-genome-wide significant SNPs can yield239

genome-wide significant results in S-PrediXcan, because of the reduction in multiple testing and the in-240

crease in power arising from the combined effects of multiple variants. Supplementary Table 3 lists a few241

examples where this occurs.242

The proportion of colocalized associations (P4>0.5) ranged from 5 to 100% depending on phenotype243

with a median of 27.6%. The proportion of ‘non colocalized’ associations ranged from 0 to 77% with a244

median of 27.0%.245

See full set of results in our online catalog (gene2pheno.org). Significant gene-tissue pairs are included246

in Supplementary Table 5. To facilitate comparison, the catalog contains all SMR results we generated247

and the S-TWAS results reported by [24] for 30 GWAS traits and GTEx BSLMM models. Note that248

SMR application to 28 phenotypes was reported by [28] using whole blood eQTL results from [29].249

Moderate changes in ClinVar gene expression is associated with milder phenotypes250

We reasoned that if complete knock out of monogenic disease genes cause severe forms of the disease, more251

moderate alterations of gene expression levels (as effected by regulatory variation in the population) could252

cause more moderate forms of the disease. Thus moderate alterations in expression levels of monogenic253
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disease genes (such as those driven by eQTLs) may have an effect on related complex traits, and this effect254

could be captured by S-PrediXcan association statistics. To test this hypothesis, we obtained genes listed255

in the ClinVar database [30] for obesity, rheumatoid arthritis, diabetes, Alzheimer’s, Crohn’s disease,256

ulcerative colitis, age-related macular degeneration, schizophrenia, and autism. Figure 8 displays the QQ257

plot for all associations and those in ClinVar database. As postulated, we found enrichment of significant258

S-PrediXcan associations for ClinVar genes for all tested phenotypes except for autism and schizophrenia.259

The lack of significance for autism is probably due to insufficient power: the distribution of p-values is260

close to the null distribution. In contrast, for schizophrenia, many genes were found to be significant261

in the S-PrediXcan analysis. There are several reasons that may explain this lack of enrichment: genes262

identified with GWAS and subsequently with S-PrediXcan have rather small effect sizes, so that it would263

not be surprising that they were missed until very large sample sizes were aggregated; ClinVar genes may264

originate from rare mutations that are not well covered by our prediction models, which are based on265

common variation (due to limited sample sizes of eQTL studies and the minor allele frequency -MAF-266

filter used in GWAS studies); or the mechanism of action of the schizophrenia linked ClinVar genes may267

be different than the alteration of expression levels. Also, the pathogenicity of some of the ClinVar entries268

has been questioned [31]. The list of diseases in ClinVar used to generate the enrichment figures can be269

found in Supplementary Table 1, along with the corresponding association results.270

Agnostic scanning of a broad set of tissues enabled by GTEx improves discovery271

Most genes were found to be significantly associated in a handful of tissues as illustrated in Figure 9-B. For272

example, for LDL-C levels, liver was the most enriched tissue in significant associations as expected given273

known biology of this trait. (See Supplementary Figure 5). This prominent role of liver was apparent274

despite the smaller sample size available for building liver models (n=97), which was less than a third of275

the numbers available for muscle (n=361) or lung (n=278).276

However, in general, tissues expected to stand out as more enriched for diseases given currently277

known biology did not consistently do so when we looked at the average across all (significant) genes,278

using various measures of enrichment. For example, the enrichment in liver was less apparent for high-279

density lipoprotein cholesterol (HDL-C) or triglyceride levels. We find for many significant associations280

that the evidence is present across multiple tissues. This may be caused by a combination of context281

specificity and sharing of regulatory mechanism across tissues.282
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Next, we illustrate the challenges of identifying disease relevant tissues based on eQTL information283

using three genes with well established biology: C4A for schizophrenia [32] and SORT1 [33] and PCSK9284

both for LDL-C and cardiovascular disease. S-PrediXcan results for these genes and traits, and regulatory285

activity by tissue (as measured by the proportion of expression explained by the genetic component), are286

shown in Figure 9-A. Representative results are shown in Supplementary Tables 6, 7, and 8. Supple-287

mentary Table 9 contains the full set MetaXcan results (i.e. association, colocalization, HEIDI) for these288

genes.289

SORT1 is a gene with strong evidence for a causal role in LDL-C levels, and as a consequence, is290

likely to affect risk for cardiovascular disease [33]. This gene is most actively regulated in liver (close to291

50% of the expression level of this gene is determined by the genetic component) with the most significant292

S-PrediXcan association in liver (p-value ≈ 0, Z = −28.8), consistent with our prior knowledge of lipid293

metabolism. In this example, tissue specific results suggest a causal role of SORT1 in liver.294

However, in the following example, association results across multiple tissues do not allow us to295

discriminate the tissue of action. C4A is a gene with strong evidence of causal effect on schizophrenia296

risk via excessive synaptic pruning in the brain during development [32]. Our results show that C4A is297

associated with schizophrenia risk in all tissues (p< 2.5 × 10−7 in 36 tissue models and p<0.05 for the298

remaining 4 tissue models).299

PCSK9 is a target of several LDL-C lowering drugs currently under trial to reduce cardiovascular300

events [34]. The STARNET study [35] profiled gene expression levels in cardiometabolic disease patients301

and showed tag SNP rs12740374 to be a strong eQTL for PCSK9 in visceral fat but not in liver. Consistent302

with this, our S-PrediXcan results also show a highly significant association between PCSK9 and LDL-C303

(p ≈ 10−13) in visceral fat and not in liver (our training algorithm did not yield a prediction model for304

PCSK9, i.e. there was no evidence of regulatory activity). In our results, however, the statistical evidence305

is much stronger in tibial nerve (p ≈ 10−27). Accordingly, in our training set (GTEx), there is much306

stronger evidence of regulation of this gene in tibial nerve compared to visceral fat.307

Most associations highlighted here have high colocalization probabilities. See Supplementary tables308

6, 7, and 8. However, visceral fat association shows evidence of non colocalization (probability of inde-309

pendent signals P3=0.69 in LDL-C). It is possible that the relevant regulatory activity in visceral adipose310

tissue was not detected in the GTEx samples for various reasons but it was detected in tibial nerve.311

Thus by looking into all tissues’ results we increase the window of opportunities where we can detect the312
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association.313

PCSK9 yields colocalized signals for LDL-C levels in Tibial Nerve, Lung and Whole blood. SORT1314

shows colocalization with LDL-C in liver (P4≈1) and pancreas (P4=0.90). C4A is colocalized with315

schizophrenia risk for the majority of the tissues (29/40) with a median colocalization probability of 0.82.316

These examples demonstrate the power of studying regulation in a broad set of tissues and contexts317

and emphasize the challenges of determining causal tissues of complex traits based on in-silico analysis318

alone. Based on these results, we recommend to scan all tissues’ models to increase the chances to319

detect the relevant regulatory mechanism that mediates the phenotypic association. False positives can320

be controlled by Bonferroni correcting for the additional tests.321

Replication in an independent cohort, GERA322

We used data from the Resource for Genetic Epidemiology Research on Adult Health and Aging study323

(GERA, phs000674.v1.p1) [36, 37]. This is a study led by the Kaiser Permanente Research Program on324

Genes, Environment, and Health (RPGEH) and the UCSF Institute for Human Genetics with over 100,000325

participants. We downloaded the data from dbGaP and performed GWAS followed by S-PrediXcan326

analysis of 22 conditions available in the European subset of the cohort.327

For replication, we chose Coronary Artery Disease (CAD), LDL cholesterol levels, Triglyceride levels,328

and schizophrenia, which had closely related phenotypes in the GERA study and had a sufficiently large329

number of Bonferroni significant associations in the discovery set. Analysis and replication of the type330

2 diabetes phenotype can be found in [38]. Coronary artery disease hits were compared with ‘Any331

cardiac event’, LDL cholesterol and triglyceride level signals were compared with ‘Dyslipidemia’, and332

schizophrenia was compared to ‘Any psychiatric event’ in GERA.333

High concordance between discovery and replication is shown in Figure 10 where dyslipidemia as-334

sociation Z-scores are compared to LDL cholesterol Z-scores. The majority of gene-tissue pairs (92%,335

among the ones with Z-score magnitude greater than 2 in both sets) have concordant direction of effects336

in the discovery and replication sets. The high level of concordance is supportive of an omnigenic trait337

architecture [39]338

Following standard practice in meta-analysis, we consider a gene to be replicated when the following339

three conditions are met: the p-value in the replication set is <0.05, the direction of discovery and340

replication effects are the same, and the meta analyzed p-value is Bonferroni significant with the discovery341
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Discovery Replication # signif genes # replicated π1(all) π1(sig) % replicated # replicated
phenotype phenotype in disc set genes in repl in repl genes coloc or undeterm

Coronary artery Any cardiac 56 6 0.4% 49.1% 10.7% 6
disease event

LDL cholesterol Dyslipidemia 282 219 5.8% 90.8% 78.5% 184
Triglycerides Dyslipidemia 233 100 5.8% 73.1% 43.5% 69
Schizophrenia Any psychiatric 285 60 1.2% 47.6% 21.1% 51

event

Table 1. Replication of results in GERA. Significant genes/tissue pairs were replicated using a
closely matched phenotype in an independent dataset from the GERA cohort [36]. The criteria
consisted in significance threshold for replication at p< 0.05, concordant directions of effect, and meta
analysis p-value less than the Bonferroni threshold in the discovery set. π1 is an estimate of proportion
of true positives in the replication set. π1(all) uses all gene-tissue pairs whereas π1(sig) is computed
using only gene-tissue pairs that were significant in the discovery set. The column ‘# replicated genes
coloc or undeterm’ is the number of replicated genes excluding the ones for which there was strong
evidence of independent GWAS and eQTL signals.

threshold.342

Among the 56 genes significantly associated with CAD in the discovery set, 6 (11%) were significantly343

associated with ‘Any cardiac event’ in GERA. Using ‘Dyslipidemia’ as the closest matching phenotype,344

78.5% and 43.5% of LDL and triglyceride genes replicated, respectively. Among the 285 genes associated345

with schizophrenia in the discovery set, 51 (21%) replicated. The low replication rate for CAD and346

Schizophrenia is likely due to the broad phenotype definitions in the replication.347

We found no consistent replication pattern difference between colocalized and non-colocalized genes.348

This is not unexpected if the LD pattern is similar between discovery and replication sets.349

The full list of significant genes can be queried in gene2pheno.org.350

Discussion351

Here we derive a mathematical expression to compute PrediXcan results without using individual level352

data, which greatly expands its applicability and is robust to study and reference set mismatches. This353

has not been done before. TWAS, which for the individual level approach only differs from PrediXcan on354

the prediction model used in the implementation, has been extended to use summary level data. When355

Gaussian imputation is used, the relationship between individual level and summary versions of TWAS356

is clear. This is not the case when extended to general weights (such as BSLMM). Our mathematical357
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derivation shows the analytic difference between them explicitly.358

The larger proportion of non-colocalized signals from TWAS suggests that by using BSLMM (with359

polygenic component), it could be more susceptible to LD-contamination than PrediXcan, which uses360

elastic net (a sparser model). Improved colocalization methods without single causal variant assumption361

may be needed to strengthen this argument. But the predominantly sparse genetic architecture of gene362

expression traits [27] supports the benefit of elastic net over BSLMM predictors. We show that SMR363

statistics needs to be calibrated and argue that by combining the eQTL and GWAS uncertainties into364

one statistic, it forces the user to apply multiple correction that may be unnecessarily conservative.365

We also add a post filtering step, to mitigate issues with LD-contamination. Based on consistency366

with PrediXcan and interpretability of results, we have chosen to use COLOC for filtering. However,367

colocalization estimation is an active area of research and improved versions or methods will be adopted368

in the future.369

Despite the generally good concordance between the summary and individual level methods, there370

were a handful of false positive results with S-PrediXcan much more significant than PrediXcan. This371

underscores the need to use closely matched LD information whenever possible.372

We applied our framework to over 100 phenotypes using transcriptome prediction models trained in373

44 tissue from the GTEx Consortium and generated a catalog of downstream phenotypic association374

results of gene expression variation, a growing resource for the community.375

The enrichment of monogenic disease genes among related phenotype associations suggests that mod-376

erate alteration of expression levels as effected by common genetic variation may cause a continuum of377

phenotypic changes. Alternatively, a more complex interplay between common and rare variation could378

be taking place such as higher tolerance to loss of function mutations in lower expressing haplotypes379

which could induce association with predicted expression.380

We are finding that most trait associations are tissue specific; i.e. they are detected in a handful381

of tissues. However, we also find that expected tissues given known biology do not necessarily rank382

among the top enriched tissues. This suggests context specificity of the pathogenic mechanism; specific383

developmental stage or environmental conditions may be necessary to detect the regulatory event. On384

the other hand, we are detecting associations in unexpected tissues which suggests a sharing of regulation385

across multiple tissues/contexts or perhaps novel biology that takes place in these tissues. In either case,386

agnostic scanning of a broad set of tissues is necessary to discover these mechanisms.387

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2017. ; https://doi.org/10.1101/045260doi: bioRxiv preprint 

https://doi.org/10.1101/045260
http://creativecommons.org/licenses/by/4.0/


15

Software and Resources388

We make our software publicly available on a GitHub repository: https://github.com/hakyimlab/389

MetaXcan. Prediction model weights and covariances for different tissues can be downloaded from Pre-390

dictDB. A short working example can be found on the GitHub page; more extensive documentation can391

be found on the project’s wiki page. The results of MetaXcan applied to the 44 human tissues and a392

broad set of phenotypes can be queried on gene2pheno.org.393

Methods394

Summary-PrediXcan formula395

Figure 1-B shows the main analytic expression used by Summary-PrediXcan for the Z-score (Wald statis-396

tic) of the association between predicted gene expression and a phenotype. The input variables are the397

weights used to predict the expression of a given gene, the variance and covariances of the markers in-398

cluded in the prediction, and the GWAS coefficient for each marker. The last factor in the formula can399

be computed exactly in principle, but we would need additional information that is unavailable in typical400

GWAS summary statistics output such as phenotype variance and sample size. Dropping this factor from401

the formula does not affect the accuracy of the results as demonstrated in the close to perfect concordance402

between PrediXcan and Summary-PrediXcan results on the diagonal of Figure 2-A.403

The approximate formula we use is:404

Zg ≈
∑

l∈Modelg

wlg
σ̂l
σ̂g

β̂l

se(β̂l)
(1)

where405

• wlg is the weight of SNP l in the prediction of the expression of gene g,406

• β̂l is the GWAS regression coefficients for SNP l,407

• se(β̂l) is standard error of β̂l,408

• σ̂l is the estimated variance of SNP l, and409

• σ̂g is the estimated variance of the predicted expression of gene g,410
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Figure 1. Panel A: Comparison between GWAS, PrediXcan, and Summary-PrediXcan.
Both GWAS and PrediXcan take genotype and phenotype data as input. GWAS computes the
regression coefficients of Y on Xl using the model Y = a+Xlb+ ε, where Y is the phenotype and Xl

the individual SNP dosage. The output is a table of SNP-level results. PrediXcan, in contrast, starts
first by predicting/imputing the transcriptome. Then it calculates the regression coefficients of the
phenotype Y on each gene’s predicted expression Tg. The output is a table of gene-level results.
Summary-PrediXcan directly computes the gene-level association results using the output from GWAS.
Panel B: Components of the S-PrediXcan formula. This figure shows the components of the
formula to calculate PrediXcan gene-level association results using summary statistics. The different
sets involved as input data are shown. The regression coefficient between the phenotype and the
genotype is obtained from the study set. The training set is the reference transcriptome dataset where
the prediction models of gene expression levels are trained. The reference set (1000G, or training set
having some advantages) is used to compute the variances and covariances (LD structure) of the
markers used in the predicted expression levels. Both the reference set and training set values are
pre-computed and provided to the user so that only the study set results need to be provided to the
software. The crossed out term was set to 1 as an approximation. We found this approximation to have
negligible impact on the results.
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Figure 2. Comparison of PrediXcan vs. S-PrediXcan for A) a simulated phenotype under null
hypothesis of no genetic component; B) a cellular phenotype (=intrinsic growth); and C) bipolar
disorder and type 1 diabetes studies from Wellcome Trust Case Control Consortium (WTCCC). Gene
expression prediction models were based on the DGN cohort presented in [11]. For the simulated
phenotype, study sets (GWAS set) and reference sets (LD calculation set) consisted of African (661),
East Asian (504) and European (503) individuals from the 1000 Genomes Project. When the same
study set is used as reference set, we obtained a high correlation: r2 > 0.99999. For the intrinsic growth
phenotype, study sets were a subset of 140 individuals from each of the African, Asian an European
groups from 1000 Genomes Project. The reference set was the same as for the simulated phenotype.
For the disease phenotypes, the study set consisted of British individuals, and the LD calculation set
was the European population subset of the 1000 Genomes Project.
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Figure 3. Colocalization status of S-PrediXcan results.
Panel A shows a ternary plot that represents the probabilities of various configurations from COLOC.
This plot conveniently constrains the values such that the sum of the probabilities is 1. All points in a
horizontal line have the same probability of ‘colocalized’ GWAS and eQTL signals (P4), points on a line
parallel to the right side of the triangle (NW to SE) have the same probability of ‘Independent signals’
(P3), and lines parallel to the left side of the triangle (NE to SW) correspond to constant P1+P2+P3.
Top sub-triangle in blue corresponds to high probability of colocalization (P4>0.5), lower left
sub-triangle in orange corresponds to probability of independent signals (P3>0.5), and lower right
parallelogram corresponds to genes without enough power to determine or reject colocalization. The
following panels present ternary plots of COLOC probabilities with a density overlay for S-PrediXcan
results of the Height phenotype.
Panel B shows the colocalization probabilities for all gene-tissue pairs. Most results fall into the
‘undetermined’ region.
Panel C shows that if we keep only Bonferroni-significant S-PrediXcan results, associations tend to
cluster into three distinct regions: ‘independent signals’, ‘colocalized’ and ‘undertermined’.
Panel D shows that HEIDI significant genes (to be interpreted as high heterogeneity between GWAS
and eQTL signals, i.e. distinct signals) tightly cluster in the ‘independent signal’ region, in concordance
with COLOC. A few genes fall in the ‘colocalized’ region, in disagreement with COLOC classification.
Unlike COLOC results, HEIDI does not partition the genes into distinct clusters and an arbitrary cutoff
p-value has to be chosen.
Panel E shows genes with large HEIDI p-value (no evidence of heterogeneity) which fall in large part
in the ‘colocalized’ region. However a substantial number fall in ‘independent signal’ region, disagreeing
with COLOC’s classification.
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Figure 4. Comparison between S-PrediXcan and S-TWAS.
Panel A depicts how Summary- TWAS and PrediXcan test the mediating role of gene expression level
Tg. Multiple SNPs are linked to the expression level of a gene via weights wX,Tg .
Panel B shows the significance of Summary-TWAS (BSLMM) vs. Summary-PrediXcan (elastic net),
for the height phenotype across 44 GTEx tissues. There is a small bias caused by using S-TWAS results
available from [24], which only lists significant hits. S-PrediXcan tends to yield a larger number of
significant associations (see Supplementary Figure 13). P-values were thresholded at 10−50 for
visualization purposes.
Panel C shows the proportion of non-colocalized associations (distinct eQTL and GWAS signals) from
S-TWAS significant vs S-PrediXcan significant results. For all phenotypes, S-TWAS has a higher
proportion of LD-contaminated signals compared to S-PrediXcan, as estimated via COLOC.
Panel D shows the proportion of colocalized associations (shared eQTL and GWAS signals) from
S-TWAS significant vs S-PrediXcan significant results. For most phenotypes, TWAS has lower
proportion of colocalized signals compared to S-PrediXcan, as estimated via COLOC.
Phenotype Abbreviation: Femoral Neck Bone Density (FNBD), Lumbar Spine Bone Density (LSBD), Body Mass Index (BMI), Height (HEIGHT),
Low-Density Lipoprotein Cholesterol (LDL), High-Density Lipoprotein Cholesterol (HDL), Tryglicerides (TRYG), Chron’s Disease (CHRON),
Inflammatory Bowel’s Disease (INFBOWEL), Ulcerative Colitis (ULCERC), Hemogoblin Levels (HBA1C) HOMA Insulin Response (HOMA-IR)
Schizophrenia (SCZ), Rheumatoid Arthritis (RA), College Completion (COLLEGE), Education Years (EDUCYEARS)
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Figure 5. Comparison between Summary-PrediXcan and SMR.
Panel A depicts how SMR tests the mediating role of gene expression level Tg. The top eQTL is linked
to the phenotype as an instrumental variable in a Mendelian Randomization approach.
Panel B shows a QQ plot for simulated values of TSMR. Under the null hypothesis of significant eQTL
signal and no GWAS association, we generated random values for Z2

GWAS and Z2
eQTL following the

simulations from [16]. TSMR statistic was calculated from these values, and compared to a χ2
1

distribution to illustrate this statistics’ deflation.
Panel C shows the sample mean of TSMR from 1000 simulations, centered close to 0.93, instead of the
expected value of 1 for a χ2-distributed variable.
Panel D shows the significance of SMR vs. the significance of Summary-PrediXcan. As expected, SMR
associations tend to be smaller than S-PrediXcan ones.
Panels E and F show that the SMR statistics significance is bounded by GWAS and eQTL p-values.
The p-values (-log10) of the SMR statistics are plotted against the GWAS p-value of the top eQTL SNP
(panel E), and the gene’s top eQTL p-value (panel F).
Some of the associations, GWAS and eQTL p-values were more significant than shown since they were
thresholded at 10−50 to improve visualization.
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Figure 6. MetaXcan Framework The figure shows a general framework (MetaXcan) which
encompasses methods such as PrediXcan, TWAS, SMR, COLOC among others.
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Figure 7. MetaXcan Framework application. This figure summarizes the application of the
MetaXcan framework with S-PrediXcan using 44 GTEx tissue transcriptomes and over 100 GWAS and
meta analysis results. We trained prediction models using elastic-net [26] and deposited the weights and
SNP covariances in the publicly available resource (http://predictdb.org/). The weights, covariances
and over 100 GWAS summary results were processed with S-PrediXcan. Colocalization status was
computed and the full set of results was deposited in gene2pheno.org.
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Figure 8. ClinVar genes show significant S-PrediXcan associations. Genes implicated in
ClinVar tended to be more significant in S-PrediXcan for most diseases tested, except for schizophrenia
and autism. This suggests that more moderate alteration of monogenic disease genes may contribute in
a continuum of more moderate but related phenotypes. Alternatively, a more complex interplay
between common and rare variation could be taking place such as higher tolerance to loss of function
mutations in lower expressing haplotypes which could induce association with predicted expression.
Blue circles correspond to the QQ plot of genes in ClinVar that were annotated with the phenotype and
black circles correspond to all genes.
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Figure 9. A) S-PrediXcan association for PCSK9, SORT1, and C4A by tissue. This figure
shows the association strength between three well studied genes and corresponding phenotypes. C4A
associations with schizophrenia (SCZ) are significant across most tissues. SORT1 associations with
LDL-C, coronary artery disease (CAD), and myocardial infarction (MI) are most significant in liver.
PCSK9 associations with LDL-C, coronary artery disease (CAD), and myocardial infarction (MI) are
most significant in tibial nerve.
The size of the points represent the significance of the association between predicted expression and the
traits indicated on the top labels. Red indicates negative correlation whereas blue indicates positive
correlation. R2

pred is a performance measure computed as the correlation squared between observed and
predicted expression, cross validated in the training set. Darker points indicate larger genetic
component and consequently more active regulation in the tissue.
B) Tissue specificity of most trait associations. This figure shows a histogram of the number of
tissues for which a gene is significantly associated with height (other phenotypes show similar pattern).
Tissue abbreviation: Adipose - Subcutaneous (ADPSBQ), Adipose - Visceral (Omentum) (ADPVSC), Adrenal Gland (ADRNLG), Artery - Aorta
(ARTAORT), Artery - Coronary (ARTCRN), Artery - Tibial (ARTTBL), Bladder (BLDDER), Brain - Amygdala (BRNAMY), Brain - Anterior cingulate
cortex (BA24) (BRNACC), Brain - Caudate (basal ganglia) (BRNCDT), Brain - Cerebellar Hemisphere (BRNCHB), Brain - Cerebellum (BRNCHA),
Brain - Cortex (BRNCTXA), Brain - Frontal Cortex (BA9) (BRNCTXB), Brain - Hippocampus (BRNHPP), Brain - Hypothalamus (BRNHPT), Brain -
Nucleus accumbens (basal ganglia) (BRNNCC), Brain - Putamen (basal ganglia) (BRNPTM), Brain - Spinal cord (cervical c-1) (BRNSPC), Brain -
Substantia nigra (BRNSNG), Breast - Mammary Tissue (BREAST), Cells - EBV-transformed lymphocytes (LCL), Cells - Transformed fibroblasts
(FIBRBLS), Cervix - Ectocervix (CVXECT), Cervix - Endocervix (CVSEND), Colon - Sigmoid (CLNSGM), Colon - Transverse (CLNTRN), Esophagus
- Gastroesophageal Junction (ESPGEJ), Esophagus - Mucosa (ESPMCS), Esophagus - Muscularis (ESPMSL), Fallopian Tube (FLLPNT), Heart -
Atrial Appendage (HRTAA), Heart - Left Ventricle (HRTLV), Kidney - Cortex (KDNCTX), Liver (LIVER), Lung (LUNG), Minor Salivary Gland
(SLVRYG), Muscle - Skeletal (MSCLSK), Nerve - Tibial (NERVET), Ovary (OVARY), Pancreas (PNCREAS), Pituitary (PTTARY), Prostate
(PRSTTE), Skin - Not Sun Exposed (Suprapubic) (SKINNS), Skin - Sun Exposed (Lower leg) (SKINS), Small Intestine - Terminal Ileum (SNTTRM),
Spleen (SPLEEN), Stomach (STMACH), Testis (TESTIS), Thyroid (THYROID), Uterus (UTERUS), Vagina (VAGINA), Whole Blood (WHLBLD).
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Figure 10. Discovery and replication Z-scores for lipid trait. This figure shows the Z-scores of
the association between dyslipidemia (GERA) and predicted gene expression levels on the vertical axis
and the Z-scores for LDL cholesterol on the horizontal axis. To facilitate visualization, very large
Z-scores where thresholded to 10. Proportions in each quadrant were computed excluding Z-scores with
magnitude smaller than 2 to filter out noise.
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• dosage and alternate allele are assumed to be the same.411

The inputs are based, in general, on data from three different sources:412

• study set (e.g. GWAS study set),413

• training set (e.g. GTEx, DGN),414

• population reference set (e.g. the training set or 1000 Genomes).415

The study set is the main dataset of interest from which the genotype and phenotypes of interest416

are gathered. The regression coefficients and standard errors are computed based on individual-level417

data from the study set or a SNP-level meta-analysis of multiple GWAS. Training sets are the reference418

transcriptome datasets used for the training of the prediction models (GTEx, DGN, Framingham, etc.)419

thus the weights wlg are computed from this set. Training sets can also be used to generate variance and420

covariances of genetic markers, which will usually be different from the study sets. When individual level421

data are not available from the training set we use population reference sets such as 1000 Genomes data.422

In the most common use scenario, users will need to provide only GWAS results using their study set.423

The remaining parameters are pre-computed https://github.com/hakyimlab/MetaXcan.424

Association enrichment425

We display the enrichment for selected phenotypes in Supplementary Figure 5, measured as mean(Z2).426

For visualization purposes, we selected 25 phenotypes from different categories such as anthropometric427

traits, cardiometabolic traits, autoimmune diseases, and psychiatric conditions (please see figure caption428

for the list of selected phenotypes). The simple mean of Z2 for all gene-tissue pairs in a phenotype was429

taken.430

Derivation of Summary-PrediXcan Formula431

The goal of Summary-PrediXcan is to infer the results of PrediXcan using only GWAS summary statistics.432

Individual level data are not needed for this algorithm. We will introduce some notations for the derivation433

of the analytic expressions of S-PrediXcan.434
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Notation and Preliminaries435

Y is the n-dimensional vector of phenotype for individuals i = 1, n. Xl is the allelic dosage for SNP l.436

Tg is the predicted expression (or estimated GREx, genetically regulated expression). wlg are weights to437

predict expression Tg =
∑
l∈Modelg wlgXl, derived from an independent training set.438

We model the phenotype as linear functions of Xl and Tg

Y = α1 +Xlβl + η

Y = α2 + Tgγg + ε,

where α1 and α2 are intercepts, η and ε error terms independent of Xl and Tg, respectively. Let γ̂g and β̂l439

be the estimated regression coefficients of Y regressed on Tg and Xl, respectively. γ̂g is the result (effect440

size for gene g) we get from PrediXcan whereas β̂l is the result from a GWAS for SNP l.441

We will denote as V̂ar and Ĉov the operators that compute the sample variance and covariance, i.e.442

V̂ar(Y ) = σ̂2
Y =

∑
i=1,n(Yi − Ȳ )2/(n − 1) with Ȳ =

∑
i=1,n Yi/n. Let σ̂2

l = V̂ar(Xl), σ̂2
g = V̂ar(Tg) and443

Γg = (X− X̄)′(X− X̄)/n, where X′ is the p × n matrix of SNP data and X̄ is a n × p matrix where444

column l has the column mean of Xl (p being the number of SNPs in the model for gene g, typically445

p << n).446

With this notation, our goal is to infer PrediXcan results (γ̂g and its standard error) using only GWAS447

results (β̂l and their standard error), estimated variances of SNPs (σ̂2
l ), estimated covariances between448

SNPs in each gene model (Γg), and prediction model weights wlg.449

450

Input: β̂l, se(β̂l), σ̂2
l , Γg, wlg. Output: γ̂g/se(γ̂g).451

452

Next we list the properties and definitions used in the derivation:453

γ̂g =
Ĉov(Tg, Y )

V̂ar(Tg)
=

Ĉov(Tg, Y )

σ̂2
g

(2)

and454

β̂l =
Ĉov(Xl, Y )

V̂ar(Xl)
=

Ĉov(Xl, Y )

σ̂2
l

(3)

The proportion of variance explained by the covariate (Tg or Xl) can be expressed as455
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456

R2
g = γ̂2g

σ̂2
g

σ̂2
Y

457

R2
l = γ̂2l

σ̂2
l

σ̂2
Y

By definition

Tg =
∑

l∈Modelg

wlgXl

V̂ar(Tg) = σ̂2
g can be computed as

σ̂2
g = V̂ar

 ∑
l∈Modelg

wlgXl


= V̂ar(WgXg) where Wg is the vector of wlgfor SNPs in the model of g

= W′
gV̂ar(Xg)Wg where Γg is the V̂ar(Xg) = sample covariance matrix of Xg

= W′
gΓgWg (4)

Calculation of regression coefficient γ̂g458

γ̂g can be expressed as

γ̂g =
Ĉov(Tg, Y )

σ̂2
g

=
Ĉov(

∑
l∈Modelg wlgXl, Y )

σ̂2
g

=
∑

l∈Modelg

wlgĈov(Xl, Y )

σ̂2
g

by linearity of Ĉov

=
∑

l∈Modelg

wlgβ̂lσ
2
l

σ̂2
g

using Eq 3 (5)

Calculation of standard error of γ̂g459

Also from the properties of linear regression we know that460

se2(γ̂g) = Var(γ̂g) =
σ̂2
ε

nσ̂2
g

=
σ̂2
Y (1−R2

g)

nσ̂2
g

(6)
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In this equation, σ̂2
Y /n is not necessarily known but can be estimated using the analogous equation (6)461

for βl:462

se2(β̂l) =
σ̂2
Y (1−R2

l )

nσ̂2
l

(7)

Thus:463

σ̂2
Y

n
=

se(β̂l)2σ̂2
l

(1−R2
l )

(8)

Notice that the right hand side of (8) is dependent on the SNP l while the left hand side is not. This464

equality will hold only approximately in our implementation since we will be using approximate values465

for σ̂2
l , i.e. from reference population, not the actual study population.466

Calculation of Z-score467

To assess the significance of the association, we need to compute the ratio of the estimated effect size γ̂g

and standard error se(γg), or Z-score,

Zg =
γ̂g

se(γ̂g)
(9)

with which we can compute the p-value as p = 2Φ(−|Zg|) where Φ(.) is the normal CDF function.

Zg =
γ̂g

se(γ̂g)

=
∑

l∈Modelg

wlgβ̂lσ̂
2
l

σ̂2
g

√
n

σ̂2
Y

σ̂2
g

(1−R2
g)

using Eq. 5 and 6

=
∑

l∈Modelg

wlgβ̂lσ̂
2
l

σ̂g

√
(1−R2

l )

se(β̂l)2σ̂2
l

√
1

(1−R2
g)

=
∑

l∈Modelg

wlg
σ̂l
σ̂g

β̂l

se(β̂l)

√
1−R2

l

1−R2
g

(10)

≈
∑

l∈Modelg

wlg
σ̂l
σ̂g

β̂l

se(β̂l)
(11)

Based on results with actual and simulated data for realistic effect size ranges, we have found that the468

last approximation does not affect our ability to identify the association. The approximation becomes469

inaccurate only when the effect sizes are very large. But in these cases, the small decrease in statistical470

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2017. ; https://doi.org/10.1101/045260doi: bioRxiv preprint 

https://doi.org/10.1101/045260
http://creativecommons.org/licenses/by/4.0/


30

efficiency induced by the approximation is compensated by the large power to detect the larger effect471

sizes.472

Calculation of σg in reference set473

The variance of predicted expression is computed using equation (4) which takes weights for each SNP474

in the prediction model and the correlation (LD) between the SNPs. The correlation is computed in a475

reference set such as 1000G or in the training set.476

Expression model training477

To train our prediction models, we obtained genotype data and normalized gene expression data collected478

by the GTEx Project. We used 44 different tissues sampled by GTEx and thus generated 44 different479

tissue-wide models (dbGaP Accession phs000424.v6.p1). Sample sizes for different tissues range from 70480

(Uterus) to 361 (Muscle - Skeletal). The models referenced in this paper make use of the GTEx Project’s481

V6p data, a patch to the version 6 data and makes use of improved gene-level annotation. We removed482

ambiguously stranded SNPs from genotype data, i.e. ref/alt pairs A/T, C/G, T/A, G/C. Genotype data483

was filtered to include only SNPs with MAF > 0.01. For each tissue, normalized gene expression data484

was adjusted for covariates such as gender, sequencing platform, the top 3 principal components from485

genotype data and top PEER Factors. The number of PEER Factors used was determined by sample486

size: 15 for n < 150, 30 for n between 150 and 250, and 35 for n > 250. Covariate data was provided by487

GTEx. For our analysis, we used protein-coding genes only.488

For each gene-tissue pair for which we had adjusted expression data, we fit an Elastic-Net model based489

on the genotypes of the samples for the SNPs located within 1 Mb upstream of the gene’s transcription490

start site and 1 Mb downstream of the transcription end site. We used the R package glmnet with491

mixing parameter alpha equal to 0.5, and the penalty parameter lambda was chosen through 10-fold492

cross-validation.493

Once we fit all models, we retained only the models q-value less than 0.05 [40]. For each tissue exam-494

ined, we created a sqlite database to store the weights of the prediction models, as well as other statistics495

regarding model training. These databases have been made available for download at PredictDB.org.496
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Online Catalog and SMR, COLOC, TWAS497

Supplementary Table 4 shows the list of GWA/GWAMA studies we considered in this analysis. We498

applied S-PrediXcan to these studies using the transcriptome models trained on GTEx studies for patched499

version 6. For simplicity, S-PrediXcan only considers those SNPs that have a matching set of alleles in500

the prediction model, and adjusts the dosages (2− dosage) if the alleles are swapped.501

To make the results of this study broadly accessible, we built a Postgre SQL relational database to502

store S-PrediXcan results, and serve them via a web application http://gene2pheno.org.503

We also applied SMR [16] to the same set of GWAMA studies, using the GTEx eQTL associations. We504

downloaded version 0.66 of the software from the SMR website, and ran it using the default parameters.505

We converted the GWAMA and GTEx eQTL studies to SMR input formats. In order to have SMR506

compute the colocalization test, for those few GWAMA studies where allele frequency was not reported,507

we filled in with frequencies from the 1000 Genomes Project [41] as an approximation. We also used the508

1000 Genomes genotype data as reference panel for SMR.509

Next we ran COLOC [18] over the same set of GWAMA and eQTL studies. We used the R package510

available from CRAN. We used the Approximate Bayes Factor colocalization analysis, with effect sizes,511

their standard errors, allele frequencies and sample sizes as arguments. When the frequency information512

was missing from the GWAS, we filled in with data from the 1000 Genomes Project.513

For comparison purposes, we have also included the results of the application of Summary-TWAS to514

30 traits publicly shared by the authors [24].515

Comparison with TWAS516

Formal similarity with TWAS can be made more explicit by rewriting S-PrediXcan formula in matrix

form. With the following notation and definitions

W̃g = (σ1w1g, ..., σpwpg)
′

ZSNPs = (Z1, ..., Zp)
′

= (
β̂1

se(β1)
, ...,

β̂p
se(βp)

)′
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and correlation matrix of SNPs in the model for gene g

Σg = diag(
1

σ1
, ...,

1

σp
) · Γg · diag(

1

σ1
, ...,

1

σp
)

it is quite straightforward to write the numerator in (1) and (11) as517

W̃g · ZSNPs

and in the denominator, the variance of the predicted expression level of gene g, as518

W̃
′
g · Σg · W̃g

thus519

Zg =
W̃g · ZSNPs√
W̃
′
g · Σg · W̃g

This equation has the same form as the TWAS expression if we use the scaled weight vector W̃g instead520

of Wg. Summary-TWAS imputes the Z-score for the gene-level result assuming that under the null521

hypothesis, the Z-scores are normally distributed with the same correlation structure as the SNPs; whereas522

in S-PrediXcan we compute the results of PrediXcan using summary statistics. Thus, S-TWAS and S-523

PrediXcan yield equivalent mathematical expressions (after setting the factor
√

1−R2
l

1−R2
g
≈ 1).524

Summary-PrediXcan with only top eQTL as predictor525

The S-PrediXcan formula when only the top eQTL is used to predict the expression level of a gene can

be expressed as

Zs-prediXcan =
∑

l∈Modelg

wlg
σ̂l
σ̂g

β̂l

se(β̂l)
using 11

= w1g
σ̂1√
w2

1gσ
2
1

Z1 only top eQTL is in the model

= Z1
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where Z1 is the GWAS Z-score of the top eQTL in the model for gene. Thus526

Z2
top eqtl s-predixcan = Z2

GWAS (12)

Comparison with SMR527

SMR quantifies the strength of the association between expression levels of a gene and complex traits

with TSMR using the following function of the eQTL and GWAS Z-score statistics:

TSMR =
Z2
eqtlZ

2
gwas

Z2
eqtl + Z2

gwas
(13)

Here Zeqtl is the Z-score (= effect size/standard error) of the association between SNP and gene528

expression, and Zgwas is the Z-score of the association between SNP and trait.529

This SMR statistic (TSMR) is not a χ2
1 random variable as assumed in [16]. To prove this, we performed530

simulations following those described in [16]. We generated 105 pairs of values for Z2
GWAS and Z2

eQTL.531

Z2
GWAS was sampled from a χ2

1 distribution. Z2
eQTL was sampled from a non-central χ2

1 distribution with532

parameter λ = 29 (a value chosen to mimic results from [29], see [16]). Only pairs with eQTLs satisfying533

genome-wide significance (p < 5×10−8) were kept. We performed a QQ plot and observed deflation when534

comparing to random values sampled from a χ2
1 distribution (Supplementary Figure 5-B). This simulation535

was repeated 1000 times, and we observed a mean of TSMR close to 0.93 (Supplementary Figure 5-C).536

Only in two extreme cases, the chi-square approximation holds: when Zeqtl >> Zgwas or Zeqtl <<537

Zgwas. In these extremes, we can apply Taylor expansions to find an interpretable form of the SMR538

statistic.539

If Zeqtl >> Zgwas, i.e. if the eQTL association is much more significant than the GWAS association,540
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TSMR =
Z2
gwas

1 +
Z2
gwas
Z2
eqtl

≈ Z2
gwas

(
1−

Z2
gwas

Z2
eqtl

)
(14)

so for large enough Z2
eqtl relative to Z2

gwas

≈ Z2
gwas = Z2

top eqtl s-predixcan (15)

with the last equality from 12. Thus, in this case, the SMR statistic is slightly smaller than the (top541

eQTL based) S-PrediXcan χ1-square. This reduced significance is accounting for the uncertainty in the542

eQTL association. As the evidence for eQTL association grows, the denominator Z2
eqtl increases and the543

difference tends to 0.544

On the other extreme when the GWAS association is much stronger than the eQTL’s, Zeqtl << Zgwas,

TSMR =
Z2
eqtl

1 +
Z2
eqtl

Z2
gwas

≈ Z2
eqtl

(
1−

Z2
eqtl

Z2
gwas

)
(16)

so for large enough Z2
gwas relative to Z2

eqtl

≈ Z2
eqtl (17)

In both extremes, the SMR statistic significance is approximately equal to the less significant of the545

two statistics GWAS or eQTL, albeit strictly smaller.546

In between the two extremes, the right distribution must be computed using numerical methods.547

When we look at the empirical distribution of the SMR statistic’s p-value against the GWAS and eQTL548

(top eQTL for the gene) p-values, we find the ceiling of the SMR statistic is maintained as shown in549

Figure 5-E and -F. Supplementary Figure 12 shows a comparison of colocalization proportions between550

SMR and PrediXcan.551

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2017. ; https://doi.org/10.1101/045260doi: bioRxiv preprint 

https://doi.org/10.1101/045260
http://creativecommons.org/licenses/by/4.0/


35

GERA imputation552

Genotype files were obtained from dbGaP, and updated to release 35 of the probe annotations published553

by Affymetrix via PLINK [42]. Probes were filtered out that had a minor allele frequency of <0.01, were554

missing in >10% of subjects, or did not fit Hardy-Weinberg equilibrium. Subjects were dropped that555

had an unexpected level of heterozygosity (F >0.05). Finally the HRC-1000G-check-bim.pl script (from556

http://www.well.ox.ac.uk/~wrayner/tools/) was used to perform some final filtering and split data557

by chromosome. Phasing (via eagle v2.3 [43]) and imputation against the HRC r1.1 2016 panel [44] (via558

minimac3) were carried out by the Michigan Imputation Server [45].559

GERA GWAS and MetaXcan Application560

European samples had been split into ten groups during imputation to ease the computational burden on561

the Michigan server, so after obtaining the imputed .vcf files, we used the software PLINK [42] to convert562

the genotype files into the PLINK binary file format and merge the ten groups of samples together,563

while dropping any variants not found in all sample groups. For the association analysis, we performed564

a logistic regression using PLINK, and following QC practices from [14] we filtered out individuals with565

genotype missingness > 0.03 and filtered out variants with minor allele frequency < 0.01, missingness >566

0.05, out of Hardy-Weinberg equilibrium significant at 1e-6, or had imputation quality < 0.8. We used567

gender and the first ten genetic principal components as obtained from dbGaP as covariates. Following568

all filtering, our analysis included 61,444 European samples with 7,120,064 variants. MetaXcan was then569

applied to these GWAS results, using the 45 prediction models (GTEx and DGN).570
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