Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

A Multidisciplinary Approach to Explain Biological Aging and Longevity

View ORCID ProfileBrett N. Augsburger
doi: https://doi.org/10.1101/045633
Brett N. Augsburger
Department of Pathobiology Auburn University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Brett N. Augsburger
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Scientists have been unable to reach a consensus on why organisms age and why they live as long as they do. Here, a multidisciplinary approach was taken in an attempt to understand the root causes of aging. Nonequilibrium thermodynamics may play a previously unappreciated role in determining longevity by governing the dynamics of degradation and renewal within biomolecular ensembles and dictating the inevitability of fidelity loss. The proposed model offers explanations for species longevity trends that have been previously unexplained and for aging-related observations that are considered paradoxical within current paradigms—for example, the elevated damage levels found even in youth within many long-lived species, such as the naked mole-rat. This framework questions whether declining selective pressure is the primary driver of aging, and challenges major tenets of the disposable soma theory. Unifying pertinent principles from diverse disciplines leads to a theoretical framework of biological aging with fewer anomalies, and may be useful in predicting outcomes of experimental attempts to modulate the aging phenotype.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted September 07, 2017.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A Multidisciplinary Approach to Explain Biological Aging and Longevity
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A Multidisciplinary Approach to Explain Biological Aging and Longevity
Brett N. Augsburger
bioRxiv 045633; doi: https://doi.org/10.1101/045633
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
A Multidisciplinary Approach to Explain Biological Aging and Longevity
Brett N. Augsburger
bioRxiv 045633; doi: https://doi.org/10.1101/045633

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4091)
  • Biochemistry (8772)
  • Bioengineering (6487)
  • Bioinformatics (23356)
  • Biophysics (11756)
  • Cancer Biology (9154)
  • Cell Biology (13257)
  • Clinical Trials (138)
  • Developmental Biology (7418)
  • Ecology (11376)
  • Epidemiology (2066)
  • Evolutionary Biology (15095)
  • Genetics (10403)
  • Genomics (14014)
  • Immunology (9126)
  • Microbiology (22070)
  • Molecular Biology (8783)
  • Neuroscience (47395)
  • Paleontology (350)
  • Pathology (1421)
  • Pharmacology and Toxicology (2482)
  • Physiology (3705)
  • Plant Biology (8054)
  • Scientific Communication and Education (1433)
  • Synthetic Biology (2211)
  • Systems Biology (6017)
  • Zoology (1250)