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Abstract

This study describes the development of an integrated dengue alert system (InfoDengue), 
operating initially in the city of Rio de Janeiro, Brazil. It is a project developed as a partnership 
between academia and the municipal health secretariat. At the beginning of each 
epidemiological week, the system captures climate time series, dengue case reporting and 
activity on a social network. After data pre-processing, including a probabilistic correction of 
case notification delay, and calculation of dengue's effective reproductive number, indicators of 
dengue transmission are coded into four dengue situation levels, for each of the city's ten health
districts. A risk map is generated to inform the public about the week's level of attention and the 
evolution of the disease incidence and suggest actions. A report is also sent automatically to the
municipality's situation room, containing a detailed presentation of the data and alert levels by 
health district. The preliminary analysis of InfoDengue in Rio de Janeiro, using historical series 
from 2011 to 2014 and prospective data from January to December 2015, indicates good 
degree of confidence and accuracy. The successful experience in the city of Rio de Janeiro is a 
motivating argument for the expansion of InfoDengue to other cities. After a year in production, 
InfoDengue has become a unique source of carefully curated data for epidemiological studies, 
combining epidemological and environmental variables in unprecedented spatial and temporal 
resolutions. 
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Introduction

Dengue fever transmission is characterized by significant inter-year variability with seasons of 
intense activity separated by periods of very low to no detectable activity. Complex interactions 
between environmental factors (such as temperature and humidity), human factors (such as 
population immunity and mobility) and viral factors (circulating strains) modulate the 
transmission of dengue. This complexity leads to pronounced prediction uncertainties making it 
hard to prepare for and allocate resources to reduce disease burden.

Currently, there is a global effort to improve the sensibility and speed of disease surveillance 
systems by various means (L’Azou et al. 2014): by developing multivariate methods which bring 
together information from different sources; by incorporating alternative sources of information 
such as symptom report in social networks (Milinovich et al. 2014), or the monitoring of search 
terms in search engines (Chan et al. 2011) and by adopting variables not directly associated 
with the transmission such as meteorological variables (Coelho and Carvalho 2015).

Examples of new surveillance approaches for dengue are found in Singapore, Philippines and 
Cambodia (Huy et al, 2010). In Singapore, a web-based alert system (www.dengue.gov.sg) 
classifies sites in terms of transmission risk: low, medium or high. Risk is determined by the 
presence of clusters of cases, defined by two or more cases of dengue occurring within 14 days
within the same locality. An alert map with the case clusters is made available to the population 
to trigger actions against dengue. In 2013, the government of the Philippines launched an online
system (www.dost.gov.ph) through which the population can check the risk of dengue at each 
locality based on weekly monitoring of mosquito populations, carried out by 45 thousand public 
schools throughout the country.  Before the school term starts, the government distributes egg 
traps with larvicide to all schools. Each week, the school coordinator reports how many traps 
are positive, and this amount is translated into colored flags. In most cases, dengue surveillance
systems focus on gathering direct evidence of transmission for situational awareness and/or 
informing control strategies.

Rio de Janeiro is a tropical city with ca. 6.5 million inhabitants within a metropolitan region with 
ca. 12.1 million inhabitants (IBGE, 2014); the hottest and humid season comprehend the period 
from November to April, and the colder and drier from May to October (Câmara et al, 2009). 
Dengue fever is endemic in Rio de Janeiro since 1986-1987, when DENV-1 arrived and caused 
high disease burden, with more than 1 million reported cases. The first isolation of DENV-2 
occurred in 1990, accompanied with the first cases of severe dengue; after this period was 
responsible for an outbreak between 2007 and 2008 (Teixeira et al. 2009, Fares et al. 2015). 
The occurrence of DENV-3 was first reported in 2000, and in 2002 it was responsible for a large 
epidemic with more than 280.000 reported cases (Nogueira et al. 2001, Fares et al. 2015). The 
presence of DENV-4 was detected in 2010 (Nogueira and Eppinghaus 2011, Fares et al. 2015) 
and currently, DENV-1 and DENV-4 are the most prevalent serotypes circulating in Rio de 
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Janeiro (Fares et al. 2015). Due to economic and touristic importance, the city receives a large 
daily influx of people from different regions, a situation that may increase the risk of entry and 
dissemination of new diseases (IBGE 2010, Nogueira et al. 2006, Nogueira and Eppinghaus 
2011 ). High heterogeneity and urban complexity makes surveillance and control of vector-
borne diseases an immense challenge.

Dengue surveillance and control activities are informed by periodic larval surveys (3-4 per year) 
that are used to rank areas according to Aedes aegypti infestation levels; and control charts are 
used to identify excess of notified cases. In Rio de Janeiro, these data are analyzed weekly in 
the city's Dengue Situation Room.  The aim of this paper is to describe the implementation and 
first year of operation of a new method, the InfoDengue nowcasting system, used to improve the
continuous monitoring of dengue fever in Rio de Janeiro, at a useful scale for health 
management. Integrating readily available data from different sources, types and spatio-
temporal resolution, this system was implemented and is operational in the city of Rio de 
Janeiro, Brazil, since January 2015, providing a public website (info.dengue.mat.br) with the 
status of the dengue incidence, which is weekly updated, and a detailed report for the city's 
dengue situation room. 

The key concept behind InfoDengue is “transmission”, measured in terms of the effective 
reproductive number (Rt). In theory, Rt is measured as the mean number of secondary cases 
generated by a primary case at a time t. A number greater than one implies sustained 
transmission, which is important information for public health decision. Our transmission-based 
surveillance system has four levels, coded in a green-yellow-orange-red color scale (Table 1). In
the following sections, we present the development of the system, followed by a description of 
its operation during its first year in Rio de Janeiro.

Table 1. Levels of the InfoDengue system 

Level Meaning Rationale

Green Low transmission  (Rt <1 with low 
probability of changing)

Climate does not favor vector 
competence and there is no evidence
of increased transmission in the 
notification data.

Yellow Attention (Rt < 1 but there is a high 
probability of changing to Rt > 1)

Climate favors transmission or there 
is an increased activity in social 
media. 

Orange Transmission (Rt > 1) Evidence of positive transmission 
calculated from notification data.

Red High incidence (epidemic) Number of cases above a pre-
defined threshold
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Methods

Study site. Rio de Janeiro city (22.9068 S, 43.1729 W) has a population of 6.5 million 
inhabitants distributed in an area of 1200 km2. Due to its size, dengue control and monitoring 
activities are structured in 10 health districts (Áreas Programática da Saúde) (Figure 1 and 
Table 3). AP1 is the downtown area, AP2.1 and AP4 are located at the seashore and house a 
population with average to high income; AP2.2, AP3.1, AP3.2, AP3.3 are in the northern region, 
and are a mixture of very poor and middle class neighborhoods; AP5.1, AP5.2 and AP5.3 are 
located in the periphery, mostly poorer neighborhoods that are strongly connected to the 
neighboring cities of the Rio de Janeiro metropolitan region. The 10 Health Districts also have 
distinct climates, depending on their position in relation to the sea, bay, and mountains that 
cross the city. 

Figure 1. Division of Rio de Janeiro city into its ten health districts. See table 1 for 
further description. 
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Table 2. Rio de Janeiro city is divided into 10 health districts. This table shows the population 
size, dengue's 5 year attack rate, % of weeks with Rt >1 and the meteorological station 
associated to each area (Airport codes). 

Health
district

Population 2010-2014 dengue
attack rate (x100) 

% weeks with Rt > 1
(2010-2014) 

Meteorological
station

AP1 226,963 4.95 14.7 SBRJ

AP2.1 552,691 4.81 20.1 SBRJ

AP2.2 371,120 3.34 17.1 SBRJ

AP3.1 735,788 2.43 18.2 SBGL

AP3.2 489,716 3.90 18.6 SBGL

AP3.3 924,364 4.17 17.8 SBGL

AP4 838,857 2.85 17.0 SBJR

AP5.1 655,874 6.56 20.9 SBAF

AP5.2 665,198 4.24 19.7 SBAF

AP5.3 368,534 3.18 16.3 SBAF

Whole city 5,829,105 3.99 18

Data. A dataset containing time series of air temperature, dengue notifications, and tweets on 
dengue from January 2010 to December 2014 in Rio de Janeiro was used to derive a set of 
rules for the alert system. Climate data consisted of minimum weekly air temperature gathered 
from 4 meteorological stations located at the airports (Table 2). Messages on twiter indicative of 
having dengue and georeferenced to Rio de Janeiro were provided by the Observatorio da 
Dengue at the Federal University of Minas Gerais (UFMG) who carries out automatic message 
classification to remove messages mentioning dengue in other contexts, as described 
elsewhere (Gomide et al. 2011). Reported suspected cases of dengue were obtained from the 
Brazilian National Notification System (SINAN and DENGON). The following variables were 
obtained: date of symptom onset, date of notification, date of database entry, and neighborhood 
of residence within Rio de Janeiro. Notification data were aggregated by the 10 health districts. 

Correction of the delay in case notification. Before proceeding with the analysis, dengue 
notification delay had to be fixed. Typically the SINAN database remains open for six months 
to update case counts retrospectively. Delays reflect the time taken for a patient to visit the 
doctor , the time the doctor takes to fill in the notification form, and the time taken for a 
technician to type and upload the form to SINAN.  We developed a probabilistic model to 
estimate the number of cases at time t from incomplete case reports, considering that 
information at time t is partial (censured) and only will become available in the future. In 
other words, we want to predict the number of cases at time t  that will be known for certain 
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only 6 months ahead. The probabilistic model is detailed in the Appendix.  Figure 2 shows 
the agreement between estimated and true case numbers using this model.   

 

Figure  2. Goodness-of-fit of the probabilistic model used for correcting the 
notification data for the delay between disease onset and entry in the database. The
dashed line is the fraction of cases that are notified within 2 weeks from its 
occurrence. The green line is the number of cases as estimated by the model. The 
black line is the total number of cases that were notified for that week (only known 6 
months later). The model was fitted to the data in the shaded area and validated in 
the subsequent time window.  

 
Measuring disease transmission.  As said before, the core concept in InfoDengue is 
“transmission”. In other words, we want to identify periods of critical (Rt > 1) and subcritical 
transmission (Rt < 1). To estimate Rt from incidence data, after correcting for delay, we 
employed Wallinga and Lipsitch (2007)'s equation:     

(1)

where b(t) is the corrected case count at week t, and g(a) is the distribution of dengue's 
generation interval (defined as the time between symptoms onset in a primary case and 
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symptoms onset in a secondary case). For simplicity, we assumed that g(a) follows a delta 
distribution with mean of 3 weeks, the underlying assumption being that all secondary infections
of a primary case occurred at an interval exactly equal to the mean generation interval (Wallinga
and Lipsitch 2007). Three weeks is approximately the sum of the average intrinsic and extrinsic 
incubation periods of dengue at temperature 25C (6 + 13 days, respectively).  With g(a) being a 
delta distribution, equation 1 is equivalent to the Stallygrass estimator, and  credible intervals for
Rt can be computed using the method described in Coelho and Carvalho (2015). For declaring 
Rt > 1, we considered a cutoff of p(Rt > 1) = 0.9 .      

Figure 3 shows the time series of notified dengue cases in each of the 10 health districts of Rio 
de Janeiro, from January 2010 to December 2014, marking the weeks with Rt > 1 (grey vertical 
bars). We observed Rt > 1 in ca. 17-20% of the weeks, mostly concentrated in the period 
between February and May (late summer - early fall).  Isolated week estimates of Rt are quite 
volatile. To avoid raising false alarms, an orange alert indicating sustained transmission was 
only issued after 3 consecutive weeks with Rt > 1. This period corresponds to one generation 
time which is the natural scale for dengue dynamics.   
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Figure 3. Time series of dengue notification in the 10 health districts of Rio de Janeiro (Jan 
2010 – Dec 2014). The grey lines indicate weeks with Rt > 1 (p-value < 0.1).
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Reproduction rate x temperature. To study the association between temperature and dengue 
transmission, the city was divided into 4 sub-areas (corresponding to the health districts under 
the influence of each meteorological station, as in Table 2). In each of the four sub-areas, Rt 
was calculated from local incidence data as described above.  Figure 4A compares the 
distribution of temperature in weeks with critical and subcritical transmission. The boxplots are 
similar among health districts 1 to 4, suggesting a single common temperature cutoff to 
discriminate critical and subcritical weeks. To identify this cutoff, a ROC curve was fitted to each 
of the four temperature-dengue datasets (Figure 4 B). A cutoff point at 22C presented sensitivity
above 80% to detect Rt > 1, with reasonable specificity in the health districts 1 to 4.   

Figure 4. (A) boxplots of temperature values in weeks with Rt above or below 1. 
Each color corresponds to a different area of the city. (B) sensitivity-specificity plot of
different cutoff points of temperature to discriminate weeks with Rt > 1. Dots indicate
the cutoff used (22C).

For Health Districts 5.x, a 22C cutoff is too high. This district also had significantly lower 
temperatures than the other areas. No geographical feature of the area explains this difference 
in temperature, and we wonder if this could be due to some specificity of the meteorological 
station of the airport. For simplicity, we kept the same cutoff point for all districts, and the effect 
of this decision is discussed later.
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Tweeting is linearly associated with dengue incidence 
Twitter is a realtime source of information on dengue symptoms activity in a population. 
Tweeting on dengue showed strong correlation with the number of notified cases (Figure 5A. 
Pearson's r = 0.75, p < 0.001). Looking at the time series, however, it is clear that the 
association is stronger during the increasing and decreasing phases, than during the disease 
peaks (Figure 5C), emaning that epidemic peaks are not correctly captured by the tweets. 
As an alternative, we considered the computation of Rt(tweet) calculated as if tweets were the 
actual cases of disease, using equation (1). The Pearson's correlation between Rt(dengue) and 
Rt(tweet) is somewhat smaller (Figure 5B, Pearson's r = 0.65, p < 0.001), but the relationship is 
more linear. We therefore investigated the association between Rt(dengue) and Rt(tweets), by 
fitting regression models. A gaussian additive mixed model was required to proper fit the 
relationship between the reproductive numbers of dengue cases and tweets.

Rt(dengue)s = intercept + ß*Rt(tweet)s + f(week) + εs   
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Figure 5. Time series of dengue notifications  in the city of Rio de Janeiro (Jan 2010
– Dec 2014) and the number of twits indicative of dengue symptoms during the 
same period.

An auto-regressive term of order 1 (AR-1), which models the residual at time s as a function of 
the residual of time s-1 and noise (εs = ρεs−1 + ηs) was included in order to account for the 
significant autocorrelation, that was present in a previously adjusted model without 
autoregressive term (Phi=0.60). The final model has β = 0.27 (SE=0.054, p<0.001).

In the alert system, the Twitter time series is in the following way: a significant increase in social 
media activity (measured as Rt(tweet) > 1) is used as a warning (yellow alert). More 
sporadically, when the notification dataset is offline, the number of tweets is used to infer the 
number of cases using a linear regression model fitted to the last one year of data.
  

The InfoDengue pipeline 

The analysis described above suggested a strong association between temperature, twits and 
dengue and the feasibility of developing a nowcasting system for dengue transmission using 
these data. An analytic pipeline was developed and implemented  as shown in Figure 6.  

At the beginning of each new week, the pipeline receives an updated value of minimum 
temperature (Tmin), number of tweets (Tw) and estimated number of cases ( Y ), per health 
district. Based on these data, a set of rules is applied to define the alert level.      

A = 1 if Tmin > 22 for 3 consecutive weeks, 0 if otherwise
B = 1 if Rt(tweet) > 1,  with probability > 0.9 for 3 consecutive weeks, 0 if otherwise
C = 1 if Rt > 1 with probability > 0.9 for 3 consecutive weeks, 0 if otherwise
D = 1 if estimated incidence > 100 cases per 100.0000 inhabitants, 0 if otherwise 

with these rules, we build the color code system (Table 3).
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Figure 6. InfoDengue pipeline

Table 3. Confusion matrix showing the agreement between the classification of dengue risk 
proposed by specialists and by the automated rule system. 

Classification InfoDengue

Green Yellow Orange Red

Specialist

Green 0.807 0.082 0.060 0.049

Yellow 0.567 0.290 0.142 0

Orange 0.058 0.058 0.783 0.003

Red 0 0.011 0.011 0.977
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Confusion matrix. To measure the adherence of the proposed rules to a gold standard, we 
asked two specialists to manually classify the incidence series from 2011 to 2014, according to 
our 4-level alert system. The same period was also classified using the automated methodology.

The result is presented in the form of a confusion matrix,  , whose elements , are the 

fraction of weeks classified by the specialist as and by the system as . So in a perfect 

system we would have the main diagonal of the matrix composed of just ones while the 
remaining elements are zero.

First year of operation. The system was launched in January 2015. To assess the 
performance of the system between weeks 201501 and 201544, we first analyzed the quality of 
the notification delay correction. Dengue data with and without correction (for the delay) were 
compared using the following measurement of error:

Without correction: error(w) = (all reported cases with onset at week w – reported cases with 
onset at week w, known at week w+1)

With correction: error(w) =  (all reported cases with onset at week w – estimated cases using 
correction model)

Secondly, the alert level provided at real time was compared to the level ascertained 
retrospectively, after complete information was collected. This comparison is only qualitative, 
since the time series is still short for a more formal statistical analysis.   

Results 

Figure 7 shows the time series of dengue cases for each Health District, from Jan 2011 to Dec 
2015 (note that the system was prospectively operated from Jan 2015 on). The colors indicate 
the level of alert defined by the InfoDengue rule system. In general, the system moved gradually
from green to yellow to orange and, in some cases, to red. This is the desirable state of a 
warning system. In the Health Districts 5.x, mainly in 2012, the triggering of the orange level 
was not preceded by the yellow alert. This suggests that the temperature cutoff was actually to 
high for this area, as already predicted by the ROC analysis (Figure 4). In 2014 the system went
only up to yellow alert, indicating adequate climatic conditions for transmission and lack of an 
actual incidence increase. This was one of the driest years in the last decade, a possible 
explanation for the unusually low dengue transmission. 
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Figure 7. Time series for notified cases of dengue in Rio de Janeiro's health district 
APS 1 and the classification of the alert levels generated by InfoDengue.
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In general, the automated nowcasting system displayed good adherence to the post-hoc 
classification by specialists, with agreements of 87% in green, 78% in orange and 97% in red 
weeks (Table 3).  The yellow level had the lowest agreement, 29%. More specifically, 
InfoDengue classified as Green, 57% of weeks that a specialist would classify as Yellow. This 
means that the system was less sensitive than the specialist classification. Since the yellow 
level is the first wake-up call for health care workers, in principle the more sensitive the better. 
On the other hand, a system that overemphasizes sensitivity, at the cost of reducing specificity, 
might loose credibility. It is important to note that, in deciding the color level, specialists had 
access to the full case report time series. This means that, while deciding the level at a given 
week, they had information with respect to future weeks. Since our alert system is used for now-
casting, it only has historical and current data to base its decision on. For that level, this poses a
particular challenge to rely only on reported cases, which lead us to adopt complementary 
environmental data.

 
With respect to reported cases, if there is enough sustained transmission the system will 
already issue at least an orange alert. What triggers the yellow level is when that situation is not 
yet present but environmental conditions are prone to its occurrence -- be it favorable climate for
mosquito activity, be it significant attention level on social media --, factors that were not taken 
into account by the specialists. The later is considered since significant activity in social media 
combined with low case report can indicate higher underreporting. Nonetheless, we are working
on enhancements on that particular level for better agreement. A possible alternative would be 
to incorporate forecasting into the model, which is a challenge in itself. 

Dengue seasonality 

Figure 8 shows the seasonality of dengue transmission in Rio de Janeiro, according to our 
models. The dengue season (orange + red) is well contained within the warm season indicated 
by the yellow area. Sustained transmission tends to occur from late January to late April, and 
the epidemic season is concentrated between March and May.
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Figure 8. Seasonality of dengue transmission in Rio de Janeiro, from 2010 to 2014. 
Green means low transmission risk; yellow means proper conditions for dengue 
transmission; orange means evidence of sustained transmission; red means high 
dengue activity (above 100 cases :100,000 inhabitants). The top figure, within the 
grey area, shows the 2015 transmission pattern of suspected dengue. Later, we 
came to know that an unknown fraction of these cases were actually Zika virus 
infections.

Assessment of the first year of operation

A total of 20,773 suspected cases of dengue were reported in 2015. Due to reporting delay, only
23.8% of the cases were known in the first week from occurrence. The error introduced by this 
delay is seen in Figure 9  (left boxplot), which shows the distribution of the difference between 
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known-cases minus all yet-to-be-known cases. This difference is mostly negative, but can be 
positive as sometimes some suspected cases are discarded (infrequent).  The delay correction 
procedure provided an unbiased estimation of the yet-to-be-known cases (Figure 9 right 
boxplot). The average error was of -3 cases, in comparison with -29 for the uncorrected 
estimator. Contrasting with the crude measurement, the estimated incidence both overestimated
and underestimated the number of cases. In practice, both corrected and uncorrected 
measurements of incidence were included in the weekly reports.

 

Figure 9. Performance of InfoDengue during the 2015 season. Left boxplot: 
distribution of the cases missed by the reporting delay as measured by the 
difference between all cases eventually reported, and those reported readily in the 
first week. Right box: distribution of the same measurement error, after applying the 
delay correction model (see text for details). 

During the first year of operation, Rio de Janeiro was in yellow alert from January to mid March, 
due to the summer temperatures. During the first two months 30-60 cases/week occurred, but in
March, incidence started to increase steadily reaching 1000-1500 cases/week between April-
June. Sustained transmission (orange alert) was ascertained for the first time in April 29 and 
remained so until June 24. Only the Health Districts APS 3.1 and 3.3 stayed Orange during the 
whole period, the remaining shifted between Orange and Yellow. APS 1, 2.1 and 5.3 were the 
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least affected (only 0 – 2 weeks with orange flag). After June 24, all Health Districts return to the
Green state, with a stable incidence level of 200-300 cases/week during the winter and spring 
months of 2015.  No red alert was raised during 2015.
 
 

Discussion 

This paper presents a rule-based alert system for real-time assessment of dengue transmission.
It was tailored for Rio de Janeiro, a densely populated city where dengue is highly endemic. 
Rio de Janeiro differs from Singapore and other places with ongoing dengue alert systems due 
to the continuous transmission of dengue (even during winters). From 2010 to Dec 2015, there 
was not a single week with zero reported cases.  

Dengue transmission in Rio de Janeiro is seasonal, modulated by temperature, which affects 
Aedes aegypti vectorial capacity. Aedes aegypti is found all year round in the city but its 
abundance varies with temperature (Costa et al, 2015). Honorio et al (2009) found a nonlinear 
association between temperature and mosquito abundance, with a linear positive association 
only at temperatures below 22-24 ºC. Above this temperature, mosquito abundance is high and 
non sensitive to further increase. This result provides an entomological explanation for the 
temperature threshold at 22ºC found for dengue transmission in the city. In all of these studies, 
and ours, the strongest association is always with minimum temperature (instead of medium or 
high temperature).  Other meteorological variables, such as humidity and rainfall, are known to 
affect mosquito biology. Their inclusion in the system is under consideration. 

In the literature, there are many proposed early warning systems for dengue. Hii et al (2012) 
examined the optimal leading time for dengue forecast in Singapore using climate data. They 
found that a rise of temperature precedes dengue increasing by 1 to 5 months, more strongly 
with 3-4 months. This approach to modeling dengue, which is commonly used, seeks to 
associate dengue intensity with temperature, as if they were directly associated. However, 
biologically speaking, increasing temperature should affect the mosquito abundance and 
vectorial capacity; in its way, an increased vectorial capacity should affect transmission, that is, 
the rate of production of new cases. Here, we show that the association between transmission 
rate and temperature (Rt and temperature) has not such long delay.       

Since 2014, outbreaks of an acute exanthematous illness were reported in different parts of the 
country, mostly diagnosed as dengue. Only in April 2015, Zika virus was detected as the 
etiological agent. Zika and dengue viruses belong to the flavivirus genus and serological tests 
do not distinguish between them (Cardoso et al, 2015). In 2015, InfoDengue detected a 
sustained transmission of dengue starting at April 29 and lasting until June 24. In comparison 
with previous years, this was a late dengue season, which raised the attention of the city's 
Dengue Situation Room. Only later, it was confirmed that at least a fraction of these cases were 
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actually Zika infections, what is currently posing a new challenge for the disease notification 
system. 

Desirable features for an online disease alert system are: Sensitivity, to detect outbreaks,  
speed, to provide instant information, stability to provide comparability with other years and 
localities, and also flexibility, data quality, representativeness, acceptability, accuracy and 
positive predictive value (Runge-Ranzinger et al. 2008). The InfoDengue system has provided 
the city with a faster and more sensitive method for detecting dengue transmission. This is 
possible because it incorporates climate data which allows detecting favorable transmission 
conditions before transmission actually starts; and social media data, which allows detection of 
sudden changes in the social report of dengue symptoms. Still, there is space for further 
improvement. An investment in better data quality can greatly contributes for the performance of
the system. Currently, only four meteorological stations provide temperature data. Satellite data 
are another potential source of data with better spatial resolution, although not the same 
temporal resolution. Also, surveillance will gain with a faster notification process, if speed is 
accompanied by proper digital curation of the data.
 
Disease alerts are only useful if they trigger actions. For dengue, actions include environmental 
prophylaxis triggered by an Yellow alert (removal of garbage and covering of containers that can
become mosquito breeding sites); mosquito population reduction activities (insecticide, 
biological control, transgenic mosquitos) triggered by increased transmission (orange alert); and
increased medical awareness and health infrastructure for assistance when alert is orange or 
red. Some of these actions are carried out by health professionals, but the population can also 
collaborate and demand if the information is made available. Either directly via the site, or 
indirectly through newspapers (informed by consulting our website), the alert information 
reached the population. 

The adaptation of the Alerta  Dengue system to other cities requires a validation of the current 
set of rules. For similar climates, we expect the same rules will suffice. The expansion of the 
Alerta Dengue to all 93 cities in Rio de Janeiro's state is mostly complete, exposing some new 
challenges, for example, the availability and quality  of the various data streams, particularly in 
small communities. In order to accommodate for that we are planning to aggregate multiple 
small communities into a larger area until it reaches the desired statistical stability. Another 
source of information, which could be included in the future, is virological surveillance data.  We 
are already working towards integrating entomological surveillance by working with cities that 
want to start their own system of vector surveillance by means of inexpensive egg traps. Of 
great importance is the support of public health authorities and their willingness to integrate the 
results of the Alerta Dengue in their decision making routine. The importance of involvement of 
local health authorities cannot be overstated, since the maintenance of a fast cycle between 
data collection and the availability of analytical results, is paramount for the relevance of Alerta 
Dengue. Also, as we have learned from  experience, the definition of a set of well defined alert 
levels can help turn dengue control more efficient and effective. 
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Finally, we believe that all the effort invested in combining, cleaning and enriching the various 
data-streams which feed the Alerta Dengue system, could be of great value as a publicly 
accessible data source for scholar and health professionals alike. Having more eyes 
continuously looking at the data can only benefit society's fight to control Dengue and other 
Aedes aegypti borne infections in the long run.
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Appendix 1. Model for correcting the case counts

Let  be the number of cases occurring at day t . At day  , only a fraction of 

is known while   is still unknown (censured). From historical data, we have 

access to uncensored data where we know exactly the time taken for each record to be 

typed. This dataset is used to compute  which is the average proportion of cases

known as a function of time . Once this proportion is defined, it can be used to estimate 
the unknown cases by the following probabilistic model: 

where 

Candidate functions for were the accumulated lognormal, accumulated weibull, logistic 

and log functions. All functions were fitted to the empirical proportion of cases already notified at
delay using the survival library in R (R Core Team, 2015; Therneau, 2015)  and the best 

model (lognormal) chosen by AIC. The fitted function was  

where Φ is the lognormal function.
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Figure S1. Black: observed proportion of cases still not typed days below the onset. Red: fitted 
lognormal function.
  
To test the procedure, we created an artificial time series containing only records that where 
known within two weeks from occurrence. Using the notation of the model, this corresponds to

. The solid black line is , the total cases that we want to predict. The predicted 
number of cases (in green) shows good agreement with the observed cases, suggesting that 
this approach is adequate for case estimation. 
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