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Abstract

Background

In silico bacterial, viral, and human truth datasets were generated to evaluate available metagenomics
algorithms. Sequenced datasets include background organisms, creating ambiguity in the true
source organism for each read. Bacterial and viral datasets were created with even and staggered
coverage to evaluate organism identification, read mapping, and gene identification capabilities of
available algorithms. These truth datasets are provided as a resource for the development and
refinement of metagenomic algorithms. Algorithm performance on these truth datasets can inform
decision makers on strengths and weaknesses of available algorithms and how the results may be best
leveraged for bacterial and viral organism identification and characterization.

Source organisms were selected to mirror communities described in the Human Microbiome Project as
well as the emerging pathogens listed by the National Institute of Allergy and Infectious Diseases. The
six in silico datasets were used to evaluate the performance of six leading metagenomics algorithms:
MetaScope, Kraken, LMAT, MetaPhlAn, MetaCV, and MetaPhyler.

Results

Algorithms were evaluated on runtime, true positive organisms identified to the genus and species
levels, false positive organisms identified to genus and species level, read mapping, relative abundance
estimation, and gene calling. No algorithm out performed the others in all categories, and the
algorithm or algorithms of choice strongly depends on analysis goals. MetaPhlAn excels for bacteria
and LMAT for viruses. The algorithms were ranked by overall performance using a normalized
weighted sum of the above metrics, and MetaScope emerged as the overall winner, followed by Kraken
and LMAT.

Conclusions

Simulated FASTQ datasets with well-characterized truth data about microbial community composition
reveal numerous insights about the relative strengths and weaknesses of the metagenomics algorithms
evaluated. The simulated datasets are available to download from the Sequence Read Archive
(SRP062063).

Keywords
FASTQsim, Metagenomics, in silico, evaluation, Kraken, LMAT, MetaPhlAn, MetaPhyler, MetaScope,
MetaCV

Background

Continuing advances in sequencing technologies are increasing the feasibility of sequencing entire
microbial communities rather than individual organisms. This has led to rapid developments in the field
of metagenomics aimed at studying genomic material recovered directly from environmental and
medical samples. Sequencing the metagenome enables the capture of greater genetic diversity than
can be sampled with highly targeted approaches such as microarrays. Metagenomic sequencing has a
number of applications for medical diagnostics (i.e. human gut microbiome analysis), environmental
profiling (i.e. soil samples), and homeland defense[1-3]. Metagenomic techniques also enable the study
of communities of organisms simulated in vitro[4].

Simultaneously, a number of bioinformatics tools have been developed to analyze metagenomic


https://doi.org/10.1101/046532
http://creativecommons.org/licenses/by/4.0/

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63

64
65
66
67
68
69
70
71
72
73

74
75
76
77
78
79
80
81
82

83
84
85

86
87
88
89

90
91
92

bioRxiv preprint doi: https://doi.org/10.1101/046532; this version posted March 31, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

sample data. They employ a variety of techniques to achieve the opposing goals of high accuracy and
low runtime. In this study, the performance of these varied approaches to metagenomic sequence
classification was evaluated on a suite of in silico datasets with perfectly characterized composition.
MetaScope, winner of the Defense Threat Reduction Agency’s Grand Challenge[5], relies on sequence
analysis using spaced seeds followed by an augmented least common ancestor algorithm to map reads
and assign genes for input FASTQ samples[6, 7]. Kraken[8] uses exact alignment of k-mers in
combination with an optimized database and another version of the least common ancestors algorithm.
MetaPhlAn[9] relies on unique clade-specific marker genes identified from 3000 reference genomes.
The Livermore Metagenomic Analysis Toolkit (LMAT) exploits genetic relationships between different
organisms by pre-computing the occurrence of each short sequence across the entire reference
database and storing the evolutionarily conserved sequence patterns[10-12]. MetaCV translates
nucleotide sequences into six frame peptides, which are then decomposed into k-mers. The k-mer
frequency is computed in a protein-reference database and used to assign k-mer weights[13]. Finally,
MetaPhyler uses a precomputed database of reference phylogenetic marker genes to build a sequence
classifier. The classifier, based on BLAST, uses trained thresholds for various combinations of
taxonomic ranks, sequence length, and reference genomes[14].

Simulated in silico datasets are a valuable tool for metagenomic research and provide capabilities to
evaluate algorithm performance as well as to test hypotheses that cannot be examined through
empirical observation. For example, simulated data has revealed biases and heterogeneity in the
estimation of diversity metrics from metagenomics samples[15]. Additionally, multiple studies have
demonstrated the usefulness of simulated metagenomics datasets for benchmarking sequence
assembly and gene prediction pipelines[16-18]. Simulated datasets are also an effective means of
parameter optimization for improved algorithm performance and can be used to optimize study design.
Sequence simulation can aid with answering questions about coverage requirements, necessary
sequence length, and whether paired-end or single-end sequencing should be used. For example, the
ART simulator was successfully used by the 1000 Genomes Project Consortium to examine the effects
of read length and PE insert size on a read’s ability to map to the human genome[19].

In this study, six in silico datasets were simulated by the FASTQsim tool. Figure S1 illustrates the
composition of each dataset. These datasets contained sequences from reference bacterial and viral
genomes, as most human pathogens are members of these taxa. The HMP Even and HMP Staggered
datasets were generated to include sequences from the 20 organisms from the Human Microbiome
Project[20] (Supplementary Table 1). The HMP organisms were selected for inclusion after an attempt
to benchmark the performance of MetaScope with the HMP dataset revealed potential contamination
in the dataset. As the HMP benchmark dataset was generated by sequencing organisms cultured in
vitro, there was no absolute truth for any background contaminant organisms in the dataset and it was
not possible to determine whether the contamination was real or whether MetaScope was calling false
positive organisms.

The bacterial dataset (Supplementary Table 2) was designed to test algorithm specificity. Four genera
of pathogens were selected from the National Institute of Allergy and Infectious Diseases list of
biodefense and emerging infectious disease agents[21] due to their relevance to disease diagnostics
from metagenomics samples. These included Yersinia, Coxiella, Brucella, and Salmonella. Additionally,
the Escherichia genus was added to the list due to the high abundance of representative sequences in
GenBank[22].

Two virus datasets were generated with 21 species across 11 representative genera (Supplementary
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93 Table 3). As with the bacterial dataset, candidates were selected due to their inclusion on the NIAID list
94 of emerging pathogens (Marburg virus, Machupo virus, Sudan ebolavirus, Junin virus, Guanarito virus,
95 Chapare virus, Omsk hemorrhagic fever virus) as well as abundance of representative organisms in

96 GenBank (HIV 1, HIV 2, Influenza A virus).

97 Finally, a dataset of human reads from build GRCh38 at 10x (22 million reads) coverage was generated

98 to test host-filtering capabilities of each algorithm. This dataset was generated to measure how well

99 algorithms can overcome the challenges posed by human sequence contamination in public reference
100 databases[23]. For example, endogenous retroviral remnants may be incorrectly classified as belonging
101 to viral genomes in a sample[24-26].

102 Methods

103

104 Improvements to FASTQsim

105 The FASTQsim toolkit was augmented to annotate gene information for simulated reads[27]. The

106 “FASTQmapGenes” functionality was added, allowing users to specify NCBI accession ids to use for

107 annotating gene information in simulated reads. The FASTQsim toolkit uses the Entrez and SeqlO

108 libraries from BioPython[28] to download the specified files from GenBank in .gb format. The

109 GenbankParser[29] java application is then used to parse the .gb files in order to extract all information

110 encoded in the CDS and Gene tags. These gene and CDS annotations are appended to the headers
111 within the simulated FASTQ files generated by FASTQsim, such that all reads that fall within a CDS or

112 gene region are annotated with the corresponding CDS and gene information.

113

114 In silico data generation

115 The FASTQsim toolkit was used to generate six in silico datasets. All were generated with the Illumina

116 error and read length profile included with FASTQsim version 2.0, with no host background added.

117 Specifically, read length of 150 bases was used, with single base mutation, insertion, and deletion rates
118 as specified in the FASTQsim v. 2.0 documentation

119 (http://sourceforge.net/p/fastqsim/code/ci/master/tree/params/illumina/). NCBI identifiers for all
120 input data are listed in Supplementary Tables 1-3. The Krona toolkit[30] was used to visualize

121 evaluation dataset composition.

122 Two in silico datasets were generated — “HMP Even” and “HMP Staggered” (Supplementary Table 1).

123 For the HMP even dataset, FASTQsim was executed to provide equal number of reads for each species
124 of organism (approximately 60,000 reads per species), with one exception -- 559 reads for Streptococcus
125 agalactiae were added to simulate a low-level contaminant organism. Version 2.0 of the FASTQsim

126 algorithm probabilistically simulated read counts and error distributions based on a provided model.
127 Due to the probabilistic nature of the algorithm, coverage levels deviated slightly from the specified

128 60,000 reads, with the largest deviation observed for the E. faecalis organism (52,290 reads). For the
129 HMP Staggered dataset, coverage levels varied from 11.3x (217,512 reads) for Actinomyces

130 odontolyticus to 0.001x (2 reads) for Neisseria meningitidis. The goal of the staggered dataset was to
131 evaluate the ability of metagenomic algorithms to detect organisms present at very low concentrations,
132 i.e. less than 5 reads.

133

134 The bacterial dataset included reads from the genear Yersinia, Coxiella, Brucella, Salmonella, and
135 Escherichia. For each of the five genera, several representative species were selected (i.e., Brucella
136 abortus, Brucella melitensis, Brucella suis). Next, several representative strains were selected for each

137 species (i.e. Brucella melitensis ATCC 23457, Brucella melitensis biovar abortus 2308, Brucella melitensis
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138 biovar 1 strain 16M, and Brucella melitensis M28). Organisms were spiked into a FASTQ dataset with
139 coverage levels ranging from 10x to 0.00002x (1 read).

140

141 For the Virus Even dataset, 10x coverage of each organism was simulated. For the Virus Staggered
142 dataset, coverage varied from 100x for Sudan ebolavirus to 0.5x for the Human coronavirus HKU1.
143

144 Metagenomic algorithm execution

145 Six metagenomic algorithms were selected for execution on the evaluation datasets. These included:
146 e MetaScope — winner of the Defense Threat Reduction Agency’s Grand Challenge[7] (version
147 2.0)

148 e MetaPhlAn[9] (version 1.7.8, https://bitbucket.org/nsegata/MetaPhlAn/src/),

149 e MetaCV[13] (version 2.3.0, http://sourceforge.net/projects/metacv/files/),

150 e MetaPhyler[14] (version 1.13, http://MetaPhyler.cbcb.umd.edu/#download),

151 e Kraken[8] (v0.10.5, https://ccb.jhu.edu/software/kraken/),

152 e LMAT[10-12] (v1.2.5, http://sourceforge.net/projects/Imat/).

153

154 All algorithms were executed on each of the evaluation datasets using a machine with 512 GB of
155 RAM, 64 cores, 1 TB hard drive, running the Fedora 17 operating system. All algorithms were

156 executed with the default set of databases described in their respective documentation, downloaded
157 on March 1, 2015. Algorithms were evaluated using 60 of the 64 available cores.

158 Attempts were also made to install and run the SURPI (v1.0, https://github.com/chiulab/surpi)[31] and

159 compressed BLAST (v0.9, http://cast.csail.mit.edu/)[32] algorithms, but these were unsuccessful.
160

161 Algorithm performance evaluation

162 Runtime in seconds, true positive genus and species calls, false positive genus and species calls, read
163 mapping, and relative abundance results at the species level were computed for all algorithm results.
164 Additionally, correct gene calls were calculated for the set of algorithms that provided gene calling

165 results (MetaScope, MetaCV, LMAT). The Gene ID Conversion function in the DAVID Bioinformatics
166 Database[33] was used to convert across gene representation formats utilized by the three algorithms.
167 Genes were marked as true positives if they matched the gene id, official gene symbol, locus tag,

168 protein id, or specific product name of the truth data.
169

170 Availability of supporting data

171 The FASTQsim toolkit can be downloaded from SourceForge: http://sourceforge.net/projects/fastqsim/
172

173 In silico evaluation datasets can be downloaded from the Sequence Read Archive: SRP062063

174 SRR2146185 — Virus Staggered dataset
175 SRR2146184-- Virus Even dataset

176 SRR2146183—Bacterial dataset

177 SRR2146181—HMP Staggered dataset
178 SRR2146182 - HMP Even dataset

179 Results and Discussion

180 Runtime in seconds, true positive genus and species identification, false positive genus and species
181 identification, and false negative species calls were determined for each of the metagenomic algorithms
182 (Figure 1). Among the algorithms evaluated, only MetaScope mapped a small number of reads in our

183 datasets to a taxon rank below species. Consequently, although the initial focus of the Bacterial dataset
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184 was to assess the ability of the algorithms to distinguish between different strains of the same species,
185 it was decided to evaluate both true and false positives at species and genus level. To determine an
186 overall rank of the algorithms across the datasets, the area occupied by each in the radar plot was

187 computed (Table 1). When the polygon area was calculated using the MATLAB polyarea function and
188 summed across all datasets, MetaScope emerges as the winner, with the largest overall area. Kraken
189 and LMAT are the runner-ups, and MetaPhyler performed the worst. In addition to the algorithms’
190 rank overall, several trends can be noted in the individual performance categories.

191 The algorithms diverged in runtime by several orders of magnitude (Table 2). Overall, MetaPhlAn had
192 the shortest runtime. The algorithm had the fastest time on the three bacterial datasets —22.64 s for
193 HMP Even, 53.3 s on HMP staggered, and 220 s. on Bacteria. The second fastest times for these three
194 datasets were 5 to 10 times slower: 233 s (MetaPhlAn), 261 s (MetaScope), and 2,700 s (LMAT),

195 respectively. MetaPhlAn is able to execute quickly partly because it does not perform a host-filtering
196 step. MetaPhlAn came in second for the virus datasets, with a runtime of 11 seconds on both,
197 compared to 9 and 7 seconds for Kraken. MetaPhlAn failed to run on the human dataset. Kraken,

198 MetaScope, and LMAT exhibited similar runtimes on all datasets, averaging 353 s on HMP Even, 354 s
199 on HMP staggered, and 3,595 s on Bacteria. On the other end of the spectrum, MetaPhyler was an

200 outlier for high runtime, requiring 15,480 s on HMP Even, 19,231 s on HMP staggered, and 129,600 s on
201 Bacteria.

202 In addition to its high speed, MetaPhlAn also achieved the highest accuracy, defined as ratio of true
203 positives to false positives, on the bacterial datasets. It identified all 20 species in the HMP even
204 dataset with only a single false positive organism. On HMP staggered, it missed 4 species out of 20 but

205 reported only 2 false positive species. MetaScope, the runner up, reported a single false negative

206 species but 414 false positives. However, the MetaPhlAn reference database is customized for

207 bacteria, and no support exists at the time of this writing for profiling viruses or eukaryotes.

208 MetaScope achieved the second- highest ratio of true positives to false positives, reporting slightly
209 more true positives and approximately half as many false positives as Kraken. LMAT was the least
210 conservative and reported the highest number of false positive organisms. MetaPhyler made highly
211 conservative calls—false positives were low, but so were true positives. Additionally, MetaPhyler, and

212 MetaCV, as well as MetaPhlAn, did not report results for the viral datasets.

213 Algorithm performance on the Human dataset (Figure 2k) illustrates the efficacy of the host-filtering

214 step for each algorithm. The human reference genome is incomplete[34, 35] and misses regions

215 specific to individual host subjects. These missed regions show up as false positives on the Human
216 evaluation dataset — algorithms assign them to organisms other than the human host because these
217 reads are not removed during the host filtering step. For example, MetaScope reports 152 organisms,
218 with fewer than 100 reads assigned to each. Kraken has a similar false positive profile; it reports 1,266
219 species that account for <1% of the reads in the dataset. MetaCV reports 2,998 false organisms with
220 low read count, and LMAT reports 1,118 species that account for less than 0.01% of the reads.

221 MetaPhyler does not report results more specific than the Class taxonomy level for the Human

222 dataset, in line with the conservative approach of this algorithm. MetaPhlAn crashes with a

223 segmentation fault on the Human dataset, which most likely is an artifact of the non-host-filtering
224 approach used by this algorithm.

225

226 The algorithms were evaluated based on their ability to correctly map reads and predict relative

227 abundance of the organisms in the data (Figures 2,3). For the bacterial datasets, Kraken and MetaScope
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228 classified the highest number of reads correctly for both the genus and species level, and cluster closest
229 to the truth in the dendrogram. However, for the viral datasets, LMAT performed best, classifying the
230 most reads correctly.

231 Although the Actinomyces odontolyticus (NZ_DS264586.1) organism had the highest coverage (11.3x,
232 217512 reads) in the HMP staggered dataset, the algorithms on the whole did not perform well on this
233 organism. It was not identified by the Kraken, MetaCV, and MetaPhyler algorithms, and called at a low
234 level by MetaScope (153 reads) (Figure 2g) MetaCV mapped the most reads correctly —108,211 (49.7%)
235 and MetaPhlAn was second best, identifying 22,647 (10.4%) of the reads. None of the algorithms

236 identified any of the 2,045 A. odontolyticus genes (Figure 5b). This poor performance likely results from
237 the fact that A. odontolyticus genome annotation in GenBank is incomplete[36]. Conversely, at the
238 species level, five of the six algorithms mapped a high number of reads to Streptococcus agalactiae for
239 both the HMP even and HMP staggered datasets (Figure 2f, 2g), but only a small number of reads for
240 this organism were present in the truth data. The relative abundance of Streptococcus mutans is lower
241 in the algorithm calls as compared to truth, while the relative abundance of Streptococcus agalactiae
242 is higher, suggesting that a number of the reads called for S. agalactiae are actually from S. mutans
243 (Figure 3b, 3d). This implies difficulty distinguishing between closely related species. Similarly, a high
244 number of reads are assigned correctly to the Yersinia and Escherichia genera by Kraken and

245 MetaScope (Figure 2c.) However, the algorithms under-assign reads for Escherichia albertii and over-
246 assign reads for Yersinia pseudotuberculosis, which indicates difficulty in distinguishing between these

247 species (Figure 2h).

248 Overall, algorithms were equally as able to identify organisms in the staggered datasets as in the even
249 datasets, suggesting that accurate read mapping depends more on the database supplied to the

250 algorithm rather than the abundance of the organism in the dataset. Additionally, for the bacterial
251 datasets, Kraken, MetaScope, LMAT, and MetaPhlAn generally agreed on read mapping assignments.

252 However, for the viral datasets, the algorithms missed different sets of organisms —i.e., in Figure 3i,
253 LMAT failed to map reads for HIV1, Influenza A virus, Marburg virus, and Machupo virus, whereas

254 MetaScope and Kraken correctly mapped reads for these organisms. However, MetaScope and Kraken
255 both failed to map reads for Human papillomavirus 5, SARS coronavirus, Human papillomavirus 32, and
256 Canine papillomavirus 3, while LMAT succeeded in mapping reads for these organisms. This suggests

257 that for viral datasets, it might be worthwhile to execute both LMAT and one of Kraken or MetaScope,
258 and calculate the union of the results.

259 The algorithms were also evaluated based on false positive hits (Figure 4). MetaCV and LMAT have

260 diverse error profiles — small numbers of reads are mapped to a high number of false positive

261 organisms. Our past experiences with the MetaScope algorithm suggest that this false positive profile
262 indicates an algorithm has difficulty classifying organisms that are not present in the reference database.
263 Ideally, when an algorithm encounters a novel organism, it should regress up the taxonomic tree until a
264 nearest neighbor for the unknown organism can be established. However, the algorithm may instead
265 report all reference organisms that match the unknown sample to a certain threshold. In contrast,

266 Kraken has a highly concentrated error profiles; fewer than 20 false positive organisms are reported, but
267 several thousand reads are mapped to each of them, suggesting high confidence calls. Figure 4c and 4d
268 summarizes the top 20 organisms in terms number of mapped reads, indicating high agreement

269 b etw e en Kraken and MetaScope. On the list of false positive genera are several members of the
270 Enterobacteriaceae family, including Shigella, Klebsiella, and Enterobacter. The true positive genera

271 Salmonella, Escherichia, and Yersinia are members of this family as well. More difficult to explain is the
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272 presence of the Methanolobus genus, which is a member of the kingdom Archaea and is distantly
273 related to the bacteria in the truth data.

274 For the viral datasets, MetaCV returned a high number of false positives and exhibited poor

275 performance. Kyasanur forest disease virus, a close relative to the true positive Omsk hemorrhagic
276 fever virus was the sole false positive for LMAT, and MetaScope did not report any false positive
277 organisms for either viral dataset.

278 Finally, the gene calling capabilities of the algorithms were evaluated (Figure 5). Only MetaScope,
279 LMAT, and MetaCV call genes, so these three were included for analysis. For the HMP
280 Even/Staggered, Bacteria, and Virus Staggered datasets, MetaScope identified the most genes

281 correctly out of the three algorithms. LMAT identified more correct genes on the Virus Even dataset
282 (101, compared to 93 for MetaScope).

283

284 Conclusions

285 In summary, in silico datasets with known truth data for read and gene distribution across different
286 taxons serve as a valuable tool for evaluating algorithm performance. The HMP Even/Staggered,

287 Bacteria, Virus Even/Staggered, and Human datasets generated with FASTQsim elucidate multiple

288 patterns in performance for leading metagenomics algorithms. No algorithm out performed the others
289 in all categories, and the algorithm of choice strongly depends on analysis goals. For bacterial datasets,
290 MetaPhlAn is a clear winner, achieving the lowest runtime, highest ratio of true positives to false

291 positives, and the most precise read mapping. However, MetaPhlAn does not assign genes and does not
292 work on taxons other than Bacteria. LMAT is a clear winner for viral datasets in terms of accuracy, and
293 also provides gene calling functionality. The algorithm most closely matched the relative abundance
294 profile of the truth genera and species across all datasets. However, LMAT also reported the highest
295 rate of false positive genera and species calls on the bacterial datasets. Kraken and MetaScope were
296 the runners up in terms of runtime, ratio of true positives to false positives, and read mapping.

297 MetaScope also performed best for gene mapping, which Kraken does not do. These algorithms

298 performed solidly across all categories evaluated and can be applied most universally across versatile
299 metagenomic applications. MetaPhyler and MetaCV came in last for runtime, ratio of true positives to
300 false positives, and read mapping. They also do not provide results out of the box for viral datasets.
301 Although viral, bacterial, and human datasets were simulated for this study, the techniques described
302 here can be extended to evaluate metagenomic algorithm performance for other taxa. For example,
303 fungal contamination incidents at medical facilities such as the 2012 incident at the New England

304 Compounding Center[37] can be contained more quickly and effectively with the aid of metagenomic

305 sequencing. Other potential applications include rapid diagnosis of parasite infections[38].
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307
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309 RAM — random-access memory

310 s —seconds
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Figure 3.

relative abundance of genera and species added to the in silico FASTQ input file.
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Figure 4. False positive organisms identified to the genus and species level by the 6 metagenomic
algorithms. Heatmap color scales are log10 (number of incorrectly assigned false positive reads) for a
genus or species. a. All false positive genera identified in the bacterial dataset. b. All false positive species
identified in the bacterial dataset. c. 20 false positive genera for the bacterial dataset with the most
assigned reads. d. 20 false positive species for the bacterial dataset with the most assigned reads. e. All
false positive genera identified in the virus even dataset. f. All false positive species identified in the virus
even dataset. g. 20 false positive genera for the virus even dataset with the most assigned reads.

h. 20 false positive species for the virus even dataset with the most assigned reads.
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Figure 5. Number of genes correctly identified to the species level across the 5 evaluation datasets (the

6" evaluation dataset consisting of human host reads is not shown). “Truth” column indicates the

number of genes with non-zero read coverage in the dataset. MetaScope, MetaCV, and LMAT

algorithms provide gene assignment capabilities; Kraken, MetaPhyler, and MetaPhlAn do not call genes

and were not included in this evaluation.
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171 Tables

472 Table 1. Radar plot area in normalized units across six evaluation datasets. Higher areas, indicative of better
473 performance, are colored in blue.
174
Dataset Human Virus Staggered VirusEven Bacteria HMP Staggered HMPEven Area Sum
MetaScope [I12:54 1.90 214 223 2.03 232 1315
Kraken 1.64 2.36 1.21 1.75 1.90 1.76 10.62
LMAT 141 245 225 138 1.46 1.59  10.54
MetaPhlAn 0.48 0.99 2.25 1.88 2.02 7.62
MetaCV 0.82 0.09 0.14 1.43 1.25 1.08 4.80
MetaPhyler 1.88 0.60 0.09 0.67 0.57 0.63 4.44
475
176  Table 2. Algorithm runtime in seconds across six evaluation datasets.
Dataset Human Virus Virus Bacteria HMP HMP Even
Staggered Even Staggered
MetaScope 2160 327 427 3686 261 233
Kraken 600 7 9 4400 300 400
LMAT 2428 20 39 2700 502 427
MetaPhlAn Seg Fault 12 12 220 53 23
MetaCV 3873 120 150 11966 2337 1322
MetaPhyler 25200 2640 3100 129600 19231 15480
477
178
479 Supplementary Materials
180
181 Supplementary Table 1. Source organisms and coverage levels for HMP Even and HMP Staggered datasets.
182 Supplementary Table 2. Source organisms and coverage levels for Bacterial dataset.
183
184 Supplementary Table 3. Source organisms and coverage levels for Virus Even and Virus Staggered datasets.
185
186 Figure S1. FASTQSim in silico dataset composition to strain level. a. 20 bacteria from the Human Microbiome
187 Project (HMP), even coverage levels. b. Same 20 bacteria from HMP, staggered coverage levels. c. 22 species of
188 viruses across 11 genera, even coverage levels. d. Same 22 species of viruses, staggered coverage levels.e. 33
189 strains of bacteria representing 13 species and 5 genera. See Krona HTML files for a-e.
190
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