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Abstract 

Gene set analysis (GSA) summarizes individual molecular measurements to more interpretable pathways or gene 

sets and has become an indispensable step in the interpretation of large scale omics data. However, GSA methods 

are limited to the analysis of single omics data. Here, we introduce a new computation method termed multi-omics 

gene set analysis (MOGSA), a multivariate single sample gene-set analysis method that integrates multiple 

experimental and molecular data types measured over the same set of samples. The method learns a low dimensional 

representation of most variant correlated features (genes, proteins, etc.) across multiple omics data sets, transforms 

the features onto the same scale and calculates an integrated gene set score from the most informative features in 

each data type. MOGSA does not require filtering data to the intersection of features (gene IDs), therefore, all 

molecular features, including those that lack annotation may be included in the analysis. We demonstrate that 

integrating multiple diverse sources of molecular data increases the power to discover subtle changes in gene-sets 

and may reduce the impact of unreliable information in any single data type. Using simulated data, we show that 

integrative analysis with MOGSA outperforms other single sample GSA methods. We applied MOGSA to three 

studies with experimental data. First, we used NCI60 transcriptome and proteome data to demonstrate the benefit of 

removing a source of noise in the omics data. Second, we discovered similarities and differences in mRNA, protein 

and phosphorylation profiles of induced pluripotent and embryonic stem cell lines. We demonstrate how to assess 

the influence of each data type or feature to a MOGSA gene set score. Finally, we report that three molecular 

subtypes are robustly discovered when copy number variation and mRNA profiling data of 308 bladder cancers 

from The Cancer Genome Atlas are integrated using MOGSA. MOGSA is available in the Bioconductor R package 

“mogsa”.  
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Introduction 

Increasing numbers of studies report comprehensive molecular profiling using multiple different experimental 

approaches on the same set of biological samples. These multi-omic studies can potentially yield great insights into 

the complex molecular machinery of biological systems. High-throughput sequencing allows quantification of 

global DNA variation and whole transcriptome RNA expression (1, 2). Mass spectrometry (MS)-based proteomics 

can identify and quantify the majority of proteins expressed in a human tissues or cell lines(3). Emerging single cell 

sequencing technologies enable simultaneous measurement of transcriptomes and protein markers expressed in the 

same cell, using CITE-seq or REAP-seq (4, 5). Integrating, interpreting and generating biological hypothesis from 

such complex data sets is a considerable challenge. 

Gene-set analysis (GSA) is widely used in the analysis of genome scale data and is often the first step in the 

biological interpretation of lists of genes or proteins that are differentially expressed between phenotypically distinct 

groups (6). These methods use external biological information, including gene ontologies, to reduce thousands of 

genes or proteins into lists of gene-sets that describe cellular pathways, subcellular localization, transcription factors 

or miRNA targets etc., thus facilitating hypothesis generation.  

Large scale omics studies or single cell studies may have limited a priori knowledge of phenotype groups or may 

aim to discover new molecular subtypes in a panel of experimental conditions or tissues with complex phenotypes, 

exemplified by The Cancer Genome Atlas (TCGA) (7) and the Clinical Proteomic Tumor Analysis Consortium 

(CPTAC) (8). Classical GSA methods which require phenotypically distinct groups (6) have limited application in 

such cases and several unsupervised, single sample GSA (ssGSA) methods have been developed (9–12). These 

methods do not require prior availability of phenotypic or clinical data. Arguably, one of the most popular 

approaches is single-sample GSEA that ranks genes according to the empirical cumulative distribution function and 

calculates a single sample-wise gene-set score by comparing the scores of genes that are inside and outside a gene-

set (10). A related method, gene-set variation analysis (GSVA), also calculates sample-wise gene set enrichment as a 

function of the genes that are inside and outside a gene set, and also uses a similar Kolmogorov-Smirnov-like rank 

statistic to assess the enrichment score, but genes are ranked using a kernel estimation of a cumulative density 

function (9). These single-sample GSA methods are designed for the analysis of a single data set, and do not 

integrate or calculate a single sample GSA score on multiple data sets simultaneously. 
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Here, we present a novel unsupervised single-sample gene-set analysis that calculates an integrated enrichment score 

using all of the information in multiple omics data sets, named “multi-omics GSA” (MOGSA). The method relies on 

matrix factorization (MF), powerful methods that can be used to learn patterns of biological significance in high 

dimensional data (13) as well as identify and exclude batch effects (14). Coupled or tensor MF methods can learn 

latent correlated structure within and between omics data sets (15–18) and have been applied to the analysis of 

molecular data from different technology platforms (19) and integration of diverse multi-omics data (15, 17).  

An attractive characteristic of coupled or tensor MF approaches, is that they identify global correlated patterns 

among samples or observations, and, therefore, do not require pre-filtering of gene identifiers in each data set to a 

common intersecting subset of features (genes/proteins). All features, whether they have annotation or not, can be 

included in the analysis, and, therefore, the method can be applied to analyzing data from experimental platforms 

that include unknown molecules (for example lipidomics, metabolomics), novel identifiers or molecules that are 

difficult to map one-to-one between data sets (e.g. transcript variants to proteins). Whilst coupled MF or latent factor 

methods are powerful, they identify components, the interpretation of which, can be challenging and may require 

domain knowledge (15, 20–22). MOGSA uses the components to calculate scores for gene sets in each biological 

sample, providing simple, accessible biological interpretation. We show that integrative ssGSA by MOGSA has 

higher sensitivity and specificity for the detection of differentially expressed gene-sets compared to popular ssGSA 

approaches when applied to simulated data. To demonstrate the result interpretation and application, we applied 

MOGSA to both small and large scale biological data from high throughput experiments. 

Experimental Procedures 

Experimental Design and Statistical Rationale 

This project describes a new algorithm called MOGSA. The mathematical details of the algorithm are provided in 

the supplementary methods. We rigorously tested and validated the performance of the method using four distinct 

use-cases. In the first case, we used simulated data to benchmark the performance of MOGSA and compared it to 

the most widely used methods in the field. Using diverse scenarios, each with 100 simulated data sets, we 

demonstrated that MOGSA outperforms other methods because it can integrate multiple data sets thus increasing the 

sensitivity to identify gene sets with subtle perturbations. Secondly, using well-characterized multi-omics cell line 

data, we demonstrate the benefit of removing a source of noise (batch effect/biological bias) by excluding a 
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component to amplify the signal in gene set analysis. We applied this to removing the effect of cell line doubling 

time in multiple transcriptomics data sets of 59 cell lines. The third use-case examined one of most common needs 

of biological laboratories; the integrative analysis of diverse molecular data obtained on a small number of 

biological samples. We integrated transcriptome, proteome and phosphoproteome data on four iPS ES cell lines and 

demonstrated how to interpret the gene set scores to reveal which data set contributed most to a specific biology 

process. Finally, the fourth use-case examined molecular subtype discovery using multi-omics data by the 

integrative analysis of copy number variation and transcriptome data of 308 bladder tumors. We demonstrate how to 

rigorously apply the multi-omics single sample GSA method to discover molecular subtypes and interpret the 

biological basis for each tumor subtype in a large scale multi-omics studies. In each case, the data are publically 

available, and we provide details on the methods and code such that our analysis can be reproduced. 

Data simulation 

We simulated 100 multiple omics data projects. Each simulated data set was a triplet (K=3) containing three data 

matrices (Figure S1), each matrix had the dimension 1000×30, representing 30 matched observations (n=30) and 

1,000 features (pk=1,000). Each data set had an annotation matrix, which assigned each feature to one of 20 non-

overlapping "gene-sets". The binary annotation matrix had dimensions of 1,000 features × 20 gene sets. Each gene 

set contained 50 genes. The 30 observations were defined by 6 equal sized clusters with 5 samples per cluster.  

In each observation, 5 out of 20 gene-sets were simulated as differentially expressed (DE). For observations in the 

same cluster, the same set of DE gene-sets were randomly selected as we assumed that differentially expressed (DE) 

gene-sets define the difference between clusters. For a DE gene-set, a number of genes was randomly simulated as 

DE genes (DEG), denoted as DEGj. Random selection of DEGs means that the DEGs in different data sets may 

overlap. In separate simulations, we varied the number of DEGs per gene-set (eg 5, 10 and 25 out of 50) or mean 

signal to noise ratio. 

We used the following linear additive model adapted from (9), the expression or abundance of gene on ith row and 

jth column is simulated as 

ijijliijx  +++=  (1) 
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where with i = 1, …, p is a gene specific effect. ),0N(~ sl ==   is the cluster effect. For observations 

belonging to the same cluster l, the same 
l was applied. The cluster effect factor (categorical variable) was 

introduced following the hypothesis that observations from the same clusters are driven by some common pathways 

or “gene-sets” and ensures that observations from the same cluster have a higher within than between cluster 

correlation. The six correlated clusters in the simulated data were captured by the first five components. The cluster 

effect ),0N(~ sl ==  was sampled from a distribution with a mean of 0 and standard deviation s. The 

standard deviation (s) adjusts the correlation between observations in the same cluster, and thus each cluster can 

have different within cluster variance and different proportions of variance would be captured by the top five 

components. In this study, we set s = 0.3, 0.5 and 1.0, which led to 25%, 30% and 50% of total variance captured by 

the top 5 components. )1,0N(~ ==   is the noise factor. γij is the differential expression factor describing if 

a gene is differentially expressed (DE): 





=

==

otherwise

DEGiifm j

ij
0

)1,N(~ 
  (2) 

Apart from the retained variance by top five components, two other parameters were tuned in the simulation study. 

First, the number of DEGs in a DE gene-set (5, 10 and 25 out of 50 DEGs). The second parameter was different 

signal-to-noise ratios, which was tuned through modifying m in expression (2). The candidate values of m were 0.3, 

0.5 and 0.8 standing for low, medium and high signal-to-noise ratio. In total, 100 projects of triplet data sets were 

generated. The three matrix triplets were analyzed by MOGSA. NMM, GSVA and ssGSEA, only accept one matrix 

as input; therefore, the three simulated matrices were concatenated into one grand matrix in these analyses. The 

performance was assessed by the area under the ROC curve (AUC).  

Downloading and Processing of NCI60 Cancer data 

Processed mRNA expression data (normalized score averaged from 5 microarray platform) and clinical information 

were downloaded from CELLMINER (download date: 2017-06-01) (23). Quantitative proteome profiles were 

downloaded from the supplementary table of Moghaddas Gholami et al. (24). The proteome data were quantified 

and normalized using the iBAQ method (25) and iBAQ values were transformed by xi = log10(iBAQi + 1). The LC 

cell line SNB19 and melanoma cell line MDAN were missing mRNA data and were therefore excluded from the 

analysis. 
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Determining the number of components that capture the correlated structure between NCI60 transcriptome 

and proteome data 

A random sampling method was applied to determine the number of components that represented significant 

correlated structure between data sets. First, MFA was applied to NCI60 transcriptome and proteome data and the 

(true) variance associated with each MFA component was recorded. Next, cell line labels were randomly shuffled in 

both transcriptomics and proteomics data and the variance of components were calculated from the randomly labels 

data. We repeated this process 20 times in order to estimate the null distribution of variances associated with each 

component. The variance of the top three components was significantly higher than the null distribution (Figure S2).   

Downloading and processing of the iPS ES 4-plex data 

The transcriptomics (RNA-sequencing), proteomics and phoshphoproteomics data were downloaded from Stem 

Cell-Omic Repository (Table S1, S2 and S5 from http://scor.chem.wisc.edu/data.php) (26). In this study, we used 

the 4-plex data, which consisted of 17,347 genes, 7,952 proteins and 10,499 sites of phosphorylation in four cell 

lines. For the transcriptomics data, the expression levels of genes were represented by RPKM values. Three 

replicates were available and we used the mean RPKM value of the three replicates. Genes with duplicated symbols 

and low expression values (summed RPKM < 12) were removed. The iTRAQ quantification of protein and 

phosphorylation sites was performed by TagQuant (27), as describe in (26). Protein and sites of phosphorylation 

with low intensity (summed intensity <20) were removed. In the proteomics data, proteins that were not mapped to 

an official gene symbol were removed. Finally, all the data were logarithm transformed (base 10). After filtering, 

10,961, 5,817 and 7,912 features were retained in the transcriptomic, proteomic and phospho-proteomic data sets. A 

few missing values were still present and replaced with zero values. The enrichment analysis was done on the gene 

symbol levels, the specific phosphorylation sites were not considered.  

PCA of each individual data set is shown in Figure S3. The strongest signal (first PCs) in all three data sets was the 

difference between NFF cells and the stem cell lines, and this difference was particularly apparent in the proteomics 

data sets. The second and third components represented subtle differences between iPSC and ESC lines.  

Downloading and Processing of TCGA Bladder Cancer data 

Normalized mRNA gene expression, copy number variation (CNV), microRNA (miRNA) expression data and 

clinical information of BLCA were downloaded from TCGA (Date: 26/09/2014) using TCGA assembler (28). The 
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processed mRNA gene expression had been obtained on the Illumina HiSeq platform and the MapSplice and RSEM 

algorithms had been used for the short read alignment and quantification (Referred as RNASeqV2 in TCGA) (29, 

30). The gene level CNV was estimated by the mean of copy numbers of the genomic region of a gene (retrieved by 

TCGA assembler directly). Patients that were present in both gene expression and the CNV data were included in 

the analysis (n=308).  

GISTIC2.0 (31) data for copy number gains/deletion in 24,776 unique genes were downloaded from TCGA 

firehouse (http://gdac.broadinstitute.org/; download date 2015-03-09). The GISTIC encodes homozygous deletions, 

heterozygous deletions, low-level gain and high-level amplifications as -2, -1, 1 and 2 respectively. The four types 

of events were counted for each of the patients. The total number of events was calculated by summing all four types 

of events 

Before applying MOGSA, minimal non-specific filtering of low variance genes was performed on both data sets. 

RNA sequencing data (normalized count + 1) were logarithm transformed (base 10). Genes were filtered to retain 

those with a total row sum greater than 300 and median absolute deviation (MAD) greater than 0.1, which retained 

14,692 unique genes (out of 20,531 genes). Then, RNAseq gene expression data were median centered. For the 

CNV data, genes with standard deviation greater than the median were retained. A PCA of each individual data set 

of CNV and mRNA is shown in Figure S4. From scree plots of the first 10 eigenvalues, an elbow in each plot 

appears between 4-6 components suggesting this number of components is needed to capture most of the variance 

(Figure S4), which was consistent with the reported molecular heterogeneity in these data. 

BLCA subtype clustering  

To determine the optimal number of components as input to MOGSA, we performed MOGSA on the BLCA mRNA 

gene expression and CNV data (n=308) with a range of components from 1 to 12. For each gene-set in the GSS 

matrix, gene-sets were ranked by the number of tumors in which they were significantly regulated (either positive or 

negative GSS, p<0.05), such that gene-sets that were significant in most tumors had the highest ranks. Most gene-

sets were insignificant in all tumors and no gene-set was significant in all 308 tumors. For p<0.05, we examined the 

10, 20, 40, 100, 200, 500 and 1000 highest ranked gene-sets and examined the stability of gene-set ranking when 

additional components were included (Figure S5). Increasing the number of components (from 1 to 5) increased the 

stability of gene set lists, however there was little additional gain after five components in all cases (Figure S5). In 
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addition, we confirmed that these five components were not correlated with batch effects including TCGA batch ID, 

plates, shipping date or tissue source sites.   

Next, consensus clustering was used (32, 33) to cluster the top five latent variables with Pearson correlation distance 

and Ward linkage for the inner loop clustering. Eighty percent of patients were used in the re-sampling step of 

clustering. Stability analysis showed there was no effect when different resampling proportions (50%, 60%, 70%, 80% 

and 90%) were used in the inner and outer loop of consensus clustering (Figure S6). Average agglomeration 

clustering was used in the final linkage (linkage for consensus matrix) (32).  

Determining the number of BLCA clusters 

Whilst consensus clustering analysis indicated high confidence in either two or three subtypes (Figure S7), 

silhouette analysis (Figure S7E) suggested three subtypes. A recent report highlighted limitations in consensus 

clustering (34), and therefore, in parallel, we also used the “prediction strength” algorithm, to discover the number 

of stable subtypes that can be predicted from the data (35). In the prediction strength method, all samples were 

assigned a “true” subtype label according to the clustering obtained from a given number of clusters. Then, the 

patients were divided into “training” and “testing” sets. The KNN classifier was used to classify the patients in the 

testing set. Cross-validation suggested that there is no obvious good choice of K (Figure S8), and, therefore, we used 

a wide range of odd K from 1-17 (Figure S9). For each test, the agreement in assignment between predicted and true 

labels were computed. The prediction strength was defined by the lowest proportion among all the subtypes. It 

indicates the similarity between the true and predicted labels and ranges from 0 to 1, where a value > 0.8 suggests a 

robust subtype classification (36). Therefore, the model with the greatest number of subtypes and prediction 

strength > 0.8 can be considered “optimal”. In this study, we performed 100 random separations of training and 

testing sets and the prediction strength of each randomization was calculated. The prediction strength analysis 

clearly supported three subtypes (Figure S9). Therefore, using two independent approaches, we determined that the 

data (5 components of the integrated analysis) supported three BLCA molecular subtypes.  

Sources of Gene-set annotation 

Molecular Signature Database MSigDB (version 4.0) (37) gene sets included subsets C2 curated pathways, C3 motif 

pathways which included transcription factor target (TFT, n=617) target gene-set and C5 gene ontology (GO) 

biological process (BP, n=825), cellular component (CC, n=233) and molecular function (MF, n=396) terms. The 
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pathway databases, Biocarta, KEGG and Reactome had 217, 186 and 674 gene-sets respectively. We excluded gene 

ontology terms that had more than 500 genes and less than 5 genes that mapped to features across all data sets. For 

example, in the BLCA analysis, gene-sets (1,454 in total) were filtered to exclude those with less than 5 genes in a 

list of the concatenated features of CNV and mRNA data resulting in 1,125 retained gene-sets. 

 

 

Figure 1 - Schematic representation of the MOGSA algorithm. The algorithm requires pairs of matrices as input; 

multiple omics data matrices and corresponding gene-set (GS) annotation matrices. In step 1, the multiple matrices 

are analyzed using a multivariate analysis (MVA) method resulting in an observation space and gene space. Next, 

the gene-set annotation matrices are projected on the same space, and the resulting matrix contains the gene-set 

space. The last step is to reconstruct gene-set-observation by multiplying the observation and gene-set spaces.  
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Results  

Outline of MOGSA algorithm 

MOGSA integrates multi-omic features measured on the same set of observations (e.g. cell lines, disease tissues) 

and learns multi-omics patterns of gene-sets that are significantly altered in these samples (Figure 1). Omics studies 

can include multiple data matrices such as RNA sequencing counts of gene expression, abundance measurements of 

proteins, metabolites, DNA methylation, mutation or CNV data or other omics molecular data. The number of 

features may exceed the number of observations. We refer to genes, proteins or other biological molecules as 

features for simplicity below. Figure 1 describes the three steps of the algorithm; Input omics data matrices must 

have matched observations but may have different and unmatched features. The number of features may exceed the 

number of observations. In order to map features to gene-sets, MOGSA also requires an incidence matrix of gene to 

gene-set membership associations for each data matrix, called “gene-set annotation matrix”, in which rows are 

features and columns are annotation vectors of gene-sets, a value of 1 indicates that a feature (e.g. gene) is a member 

of a gene-set. A feature may belong to multiple gene-sets simultaneously, that is a row sum may exceed 1.   

In the first step, several (k) input data matrices are integrated using multiple factor analysis (MFA) (20). MFA is a 

multiple table extension of principal component analysis (PCA) that is well suited to integrating multiple omics data 

since it reduces high dimensional omics data to a relative small number of components that capture the most 

prominent correlated structure among different data sets (20, 38). To prevent data sets with more features or 

different scales dominating a MFA result, each data set is divided by the first eigenvalue of a decomposition of each 

individual data set. MFA generates matrices of latent variables (components) in observation (P) and feature (Q) 

space (Figure 1). The number of components is typically less than the number of observations. We retain and 

examine the first few components as these represent most of the variance in the data. One can select non-contiguous 

components (to filter or omit one or more component). Approaches for choosing the number of components are 

discussed later. MOGSA makes use of an attractive property of MF approaches in that supplementary data such as 

gene-set information (e.g. Gene Ontology annotations) can be projected onto the observations space to aid 

interpretation (16, 17, 39). In the next step (step 2, Figure 1) each gene-set annotation matrix (G1..k) is projected as 

additional information onto the gene-set space (Q1..k) generating a score for each gene-set in the same projected 

space (W1..k), where k is the number of data sets. In the final step (step 3, Figure 1), MOGSA multiplies the latent 
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variables of the observations (P) and latent variables of gene-sets (W1..k) to generate a matrix (Y) with a gene-set 

score (GSS) for each gene-set in each observation (Y).  

A gene-set with a high GSS are driven by features that explain a large proportion of the global correlated 

information among data matrices. These features could be from one, many or all data matrices, and may be non-

overlapping. For example a GSS of a gene set with features A-H, could be driven by high levels of gene expression 

in genes A,B,C, and increased protein levels in proteins C,D,E and amplifications in copy number in gene H. The 

GSS matrix (Y) may be decomposed with respect to each data set (X) or latent variable space (P,Q) so that the 

contribution of each individual data set or component to the overall score can be evaluated (see Experimental 

Procedures for more details).  

Multiple omics GSA has greater sensitivity to identify regulated gene-sets  

Biological pathways are regulated by a complex network of cellular molecules that can be measured using 

transcriptomics, phosphoproteomic,  metabolomics, lipidomics or other molecular profiling methods. Popular 

ssGSA approaches, such as ssGSEA and ssGSVA are designed for analysis of a single data set. We postulated that 

there would be a greater power to detect gene sets or cellular pathways if methods integrated more diverse data types. 

To this end, we compared the performance of MOGSA to ssGSA methods that were developed for the analysis of 

one data set including the widely used GSVA and ssGSEA and naïve matrix multiplication (NMM) methods (9, 10). 

Figure 2 shows the performance of each method applied to 100 simulated data sets. In each data set, we simulated a 

study of 30 observations with three omics data types that measured 1,000 features each (Figure S1; see Experimental 

Procedures section). Each features was a member of one of the 20 gene-sets. Each gene-set had 50 genes. The 

observations were grouped into 6 clusters and each clusters had 5 differentially expressed (DE) gene-sets compared 

to the other observations. The triplets were analyzed by MOGSA directly, however matrices were concatenated for 

NMM, GSVA and ssGSEA as these methods can only accept one matrix as input.  

We expected that MOGSA would be especially powerful at identifying altered gene-sets in heterogeneous noisy data. 

That is because MOGSA, uses only the top few most informative latent variables, thus omitting the signal of many 

features with little variance, which are potentially noise. Therefore we explored the power of the methods to detect 

DE gene-sets when there was a strong or weak gene expression signal. First we simulated increasing DEG signal-to-

noise by changing the mean gene expression of DEGs in the cluster and secondly we altered the number of DE 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2018. ; https://doi.org/10.1101/046904doi: bioRxiv preprint 

https://doi.org/10.1101/046904
http://creativecommons.org/licenses/by-nc/4.0/


14 
 

genes in a DE gene-set (5, 10 and 25 genes). Specificity and sensitivity of the methods detecting the DE gene-sets 

were evaluated and the performances were summarized as the area under the receiver operating characteristic curve 

(AUC). As expected, the performance of all methods was better when the signal-to-noise ratio or the number of DE 

genes in DE gene-sets increased (Figure 2A and 2B). MOGSA consistently outperformed the other methods and the 

difference was even more apparent when the signal-to-noise ratio was low or when there were few DE genes (5 or 

10 of 50 genes) (Figure 2B).   

Next we compared the performance of each method using data with a simple or complex structure which reflect the 

complexity of phenotypes in a study. In data with a simple phenotype, a few components should easily capture most 

of the variances. However in data with a complex phenotype, for example a heterogeneous tumor data set, with 

mixed histology, grade and response to treatment, there are many signals so that many latent variables may be 

required to capture even half of the variance. In the simulated data, observations grouped into six clusters, which 

could be captured by the first five components. Therefore, we simulated data such that the first 5 components 

captured 50%, 30% or only 25% of the total variance (Figure 2C). Again, MOGSA outperformed the other methods 

and was relatively robust to changes in the variance retained (Figure 2D). The performance (AUC) of all methods 

decreased when greater variance was retained, which can be explained by higher intra-cluster correlation that leads 

to a lower signal-to-noise ratio in data sets (see Experimental Procedures).  

Given the many fundamental differences between MOGSA and the other ssGSA methods, we repeated the 

simulations adjusting for technical aspects of the MOGSA approach that might give it an “unfair edge”, but these 

did little to improve the performance of the other methods. Because GSVA and ssGSEA were designed for analysis 

of single data sets, we compared the performance of GSVA and ssGSEA on a single data sets of the triplet compared 

to the concatenated triplet. Concatenating multiple data matrices neither improved nor decreased the performance 

compared to analysis of single data sets, which is most likely caused by the signal-to-noise ratio increased 

accordingly with concatenation (Figure S10). In addition, since MFA weighs input matrices by their first singular 

value before MOGSA, we examined the effect of data set weighting on the other methods and found MOGSA still 

outperformed ssGSEA and GSVA when data matrices of the triplet were weighted before concatenation (Figure 

S11). 
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Figure 2 – Comparison of MOGSA with NMM, GSVA and ssGSEA. The performance of each method was accessed 

by their ability to identify differentially expressed gene-sets over 100 simulations in every condition (as indicated by 

the area under the ROC curve; AUC). (A) Comparison of GSA methods using data with different signal-to-noise 

ratios. (B) Comparison of data with different number of differentially expressed (DE) genes in each of the DE gene-

set. From left to right, 5, 10 and 25 of total 50 genes are differentially expressed in each of the three simulated data 

matrices if a gene-set is defined as DE gene-sets. (C) Scree plots show representative eigenvalues in each of the 

conditions in (D). (D) AUCs with different proportion of variance are capture by the top 5 components. From left to 

right, 25%, 30% and 50% of total variance are captured. The darker bars represent the top 5 components.  
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MOGSA provides an easy-approach to selectively filter or enrich for components  

Large scale omics studies often have several sources of unwanted variance, due to technical batch effects (40) or 

unwanted biological sources, for example, tumor purity in bulk tumor studies (41) or cell cycle genes in single cell 

molecular studies (42). In our previous study, that integrated the proteome and transcriptome of 60 National Cancer 

Institute (NCI) cell lines, we observed that one of the top components in both data sets was correlated with cell 

doubling time (24). Cell doubling time in cell culture is a characteristic of the cell culture conditions and may not 

reflect the cell doubling time when cells are grown in more physiologically relevant three dimensional culture 

models (43) or indeed those of tumors in vivo. We hypothesized that MOGSA would capture the doubling time 

effect as a component. A benefit of MF methods is that we can specifically exclude a component in order to remove 

the variance associated with it. In this case, by removing the component associated with doubling time (a feature of 

in vitro cell culture) we can potentially observe different gene set scores which might be closer to in vivo biology. In 

our analysis, the significantly correlated structure between transcriptomic and proteomic data was captured in three 

components (see Figure S2 and Experimental Procedure) and the first component which represented 6% variance 

was significantly correlated with cell doubling time (Figure S12, Pearson Correlation R = 0.61, p=3x10-7). 

Excluding the first component from score computations, removed the effect of cell doubling time (Figure S13), 

generating alternative gene set scores. For example, the gene set score (GSS) for cell cycle checkpoint was 

significant (p<0.001) in 31 cell lines, and after excluding the first component, was no significant in any of the cell 

lines (Figure 3A). 

Application of MOGSA to the interpretation of stem cell mRNA and proteomics data 

We applied MOGSA to study profiles of mRNA (n=10,961), protein (n=5,817) and phosphorylation sites of proteins 

(n=7,912) of four cell lines − two embryonic stem cell lines (ESC; H1 and H9), one induced pluripotent cell line 

(iPSC; DF19.7) and a fibroblast cell line (newborn foreskin fibroblast; NFF). Induced pluripotent stem cells (iPSC) 

are adult cells that have been reprogrammed to be more like embryonic stem cells (ESC) and have great potential in 

the field of regenerative medicine. These cells express ESC markers and can differentiate into different cell types 

(26). Induced pluripotent cells are often derived from NFF cells. .  

MFA recapitulated the PCA of the individual data sets (Figure S14, S3). The three data sets contributed similar 

variance in the integrated analysis, as indicated by the weights of each data set in MFA. The variance of the first PCs 
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were 0.24, 0.26 and 0.26 for the transcriptome, proteome and phospho-proteome data set respectively. Most of the 

variance was captured in the first component and it discriminated between NFF and other cell lines. The variance of 

the molecular differences between the ESC cells (captured by the second component) was greater than the difference 

between ESC and iPSC cell lines (component 3) (Figure S14).  

MOGSA of gene ontology (GO) biological processes (BP) discovered 228 GO terms (out of 825) that had 

significant up or down-regulated gene-set scores (GSSs) in at least one cell line (BH corrected p value < 0.01). 

These 288 GO terms grouped into 21 broad categories, when overlaps of gene membership to GO terms was 

reduced using hierarchical clustering analysis (Hamming distance and complete linkage) (Table S1). GSS of 

representative GO terms from each category are shown in Figure 4A. Biological processes associated with more 

differentiated cell types were associated with the NFF cells and included up-regulation of vesicle-mediated transport, 

immune related responses and cell adhesion. In contrast, cell proliferation GO terms such DNA replication, and cell 

cycle processes had significantly higher GGS in the highly proliferative stem cell lines. These results are consistent 

with previous findings (26). 

In the integrative analysis of multiple omics data, it is important to evaluate the relative contribution (either 

concordant or discrepant) of each data set to the overall GSS. Data-wise decomposition of the GSSs (see 

supplementary methods) are shown in Figure 4B. The three data sets had concordant contributions to most of the 

GO terms, including vesicle mediate transport, cell matrix adhesion, cell cycle processes in NFF line; chromosome 

organization and biogenesis in H9 and NFF cell lines. However, we also observed differences in the contribution of 

mRNA, proteins and phosphoprotein data to the GSS, for example chromosome organization and biogenesis had 

significant positive GSS in the stem cells and significant negative GSS in the NFF cells, and were driven by 

differences in the phosphorylation data. Another case where the mRNA and protein were incongruent is the GO 

class “glycoprotein metabolic process”. The GSSs of this term are 9.7 (p<0.001), -8.6 (p<0.01), -5.3 (p<0.01) and 0 

(p>0.05) in NFF, iPSC, H9 and H1 cells respectively. Up-regulation in NFF mainly reflected up-regulation on the 

protein level. However, down-regulation in iPSC DF19.7 cells was due to low expression of related mRNAs. The 

GO term “wound healing” has previously been shown to be differentially upregulated in fibroblast NFF cells 

compared to ESC (26). Consistently, we also found wound healing to be upregulated in NFF compared to ESC; the 

GSS for wound healing were 14.2 (p<0.01), -5.4 (p<0.01), -5.2 (p<0.01) and -3.6 (p<0.001) for NFF, iPSC, H9 and 
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H1 cells respectively (Table S1). Down-regulation of wound healing in H9 cell line was dominated by mRNA data, 

and the two proteomics data sets contributed little to the negative GSS. In contrast to previous studies (26), we did 

not observe significant differences in wound healing between iPSC and ESC. This difference could be because 

MOGSA is more sensitive (than single data GSA) in detecting gene-sets that have subtle but consistent changes in 

multiple data sets. More importantly, the contribution of individual gene-sets could be evaluated by the 

decomposition of GSS with respect to data sets 

Application of MOGSA to molecular subtype discovery in bladder cancer  

BLCA is a molecularly heterogeneous cancer with between 2 and 5 molecular subtypes (reviewed by (44, 45)). 

Briefly, Sjödahl et al. first defined five major subtypes termed urobasal A (UroA), UroB, genomically unstable 

(GU), squamous cell carcinoma-like (SCCL) and ‘infiltrated’ (36). The TCGA study defined four expression 

clusters (I–IV) (44). The two subtype model consists of basal-like and luminal subtypes (46) which was extended by 

Choi et al. who defined a ‘p53-like’ luminal subtype apart from basal-like and luminal subtypes (47). Since MOGSA 

performs unsupervised integrative ssGSA, the integrative components can be applied to cluster discovery in multi-

omics data (48) and the incorporation of gene set annotation will greatly facilitate the interpretation of the defined 

subtypes. We learned an integrative subtype model of BLCA in an MOGSA of CNV (n=12,447) and mRNA 

(n=14,719) data of 308 muscle invasive urothelial bladder cancer (BLCA) patients (obtained as part of the TCGA 

project). In our analysis, the top five MFA components captured a quarter of the total variance and were not 

dominated by either CNV or mRNA (CNV 50.6%, mRNA 49.4%; Figure 5A). We performed extensive analyses to 

confirm that 5 components captured sufficient variance and was the optimal number of components as input to 

MOGSA (see Experimental procedures). We examined 1,125 gene-sets using MOGSA in every individual patient. 

The number of significant MOGSA gene-sets per patient (p<0.05) ranged from 183 to 595 (Figure S15). Each 

patient had both positive (up) and negative gene set scores (GSSs). We focused on the 73 gene-sets that were 

significantly regulated (positive or negative GSS scores, p value<0.05) in most patients (≥ 200 of the 308 patients) 

(Table S3 and Figure S16). Cluster analysis of the GSS matrix (73 selected gene-sets x 308 tumors) revealed three 

clusters of gene-sets.  
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Figure 3 – Different gene set scores by excluding components corresponding to unwanted variance. (A) The BH 

corrected P value of cell cycle checkpoint pathway (REACTOME) is increased by excluding components well 

correlated with cell doubling time (component 1). The corrected p value increased from <10-12  to >10-3 in MCF7 

and MDA_MB_231 cells because component 1 is the driving force of statistical significance in these two cell lines 

(see Figure S13). 

Validation of the number of BLCA clusters  

In order to identify the number of robust BLCA clusters, we applied several cluster analyses to the five components 

(which were input to MOGSA) and tested how many clusters were supported by the data.  We applied rigorous 

cluster robustness analysis using methods including prediction strength and confirmed that the data supported three 

subtypes (Figure 5B), the final three subtype model were learned from consensus clustering (32) of the five 

components and the robustness of the three BLCA subtype model was extensively validated (see Experimental 

procedures). The three integrative BLCA subtypes consisted of two larger subtypes C1, C2 containing 148 and 103 

patients respectively, and a robust smaller group C3 with 57 patients (Figure 5C).   

The clusters obtained by hierarchical clustering analysis of the 73 gene-sets scores from MOGSA were consistent 

with the three clusters obtained by consensus clustering of the five components. A large number of GSS were 

associated with the C1 patients (p<0.05), more than C2 or C3 (Figure S16). A large cluster of 51 gene-sets had 
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positive GSS scores in C1 but negative scores in C2 or C3. Two smaller clusters of gene-sets of 16 and 6 gene-sets 

had positive GSS scores in C2 and C3 respectively (Figure S16).  

We compared the overlap between the integrative BLCA subtypes and with BLCA subtypes reported in previous 

studies (44) (Table S2, Figure S17). Subtypes C2 and C3 were similar to the Damrauer luminal subtype (46). But, 

the C3 subtype contained more low-grade tumors and showed a strong overlap with the UroA subtype of the Sjödahl 

study and type I of the TCGA subtype model. Subtype C2 tumors overlapped with the genomically unstable subtype 

defined by Sjödahl (Table S2). Accordingly, we observed higher mutation rates in the C2 patients (Figure S18). The 

integrative subtype C1 included a high number of patients in the type III and IV of the TCGA subtypes, the 

infiltrated and SCCL subtypes of the Sjödahl study (36) and the basal-like subtype identified by Damrauer (BH 

corrected p-value < 0.05, Table S2) (46). 

Gene sets enriched in the 3 BLCA molecular subtypes 

The large number of the C1 basal-like/SCC-like BLCA gene-sets (31/51) were associated with “immune response”, 

which supports associations between immune regulation and the basal-like cluster that have been previously 

reported (36) The most significant gene-sets, “immune response” and “immune system process” had significant 

positive or negative GSS in 270 and 265 of 308 patients respectively (Table S3). The median GSS for the gene-set 

“immune system process” was 0.82, -0.75, -0.61 in C1, C2 and C3 respectively (Figure 5C;S19) indicating that 

immune related processes have high gene expression or copy number amplification in the C1 subtype and much 

lower in C2 and C3.  

The remaining 20/51 gene-sets in the C1 cluster of gene-sets reflected “extracellular”, function, cell morphogenesis, 

migration and muscle cell development, “apoptosis” (2 gene- sets), and “G protein coupled receptor” (6 gene-sets) 

(Figure 5C;S19) and EMT related gene sets (Figure S20), which is consistent with reports that the Basal-like 

subtype has more muscle-invasive and metastatic disease at presentation (36). Gene-sets related to “cell cycle” (9 

gene-sets) and “DNA repair and chromosome related” (7 gene-sets) had high GSS in luminal gnomically unstable 

C2 (49) (and some C1) and “mitochondrion” (4 gene-sets) in C3 (Figure 5C;S19). The mitochondrial component has 

been described in bladder cancer and other cancers previously (49, 50) and our study particularly associated this 

function with C3 low-grade papillary-like subtype in BLCA.  
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Figure 4 – integrative gene-set analysis of iPS ES 4-plex data. (A) Heatmap showing the gene-set score (GSS) for 

significantly regulated gene-sets in the cell lines. The white colored blocks/cells indicate that the change of gene-

sets are non-significant. (B) Data-wise decomposition of the GSS for some of the gene-sets. The contribution of each 

of the data is represent by a bar. The Y-axis is the data-wise decomposed gene-set score.  

Discovery of transcription factors that might regulate gene expression in BLCA subtypes 

To identify transcription factors (TF) that may regulate gene expression in the three tumor subtypes, we used 

transcriptional factor target (TFT) gene-sets to annotate the tumors. Similar to the selection of GO terms, we focused 

on TFT gene-sets with more than 200 significant GSSs across 308 patients (Table S2). The GSSs of the E2F family 

target gene-set were significantly different in most of the tumors and are particularly low for the C3 tumors. Four 

identified TFs that were highly elevated in the C1 subtype; MADS (MCM1, Agamous, Deficiens, and SRF) box 

superfamily member, SRF and several TFs associated with transactivation of cytokine and chemokine genes, 

including NFkB1, ETS1 and IRF1 (Figure 5D). The genes exhibiting the largest GIS in the IRF1 and NFkB1 target 

gene-sets included ACTN1, CXorf21, ICAM1, MSN, TNFSF13B, IL12RB1 and CDK6 (Table S5). Further, we 

examined the correlations between GSSs and the mRNA expression. All five TFs showed that the TF mRNA and 
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GSSs are significantly correlated (Figure 5E, Figure S21). The boxplot of GSS distribution in different are shown in 

Figure S19.  

 

 

Figure 5 – Data integration using MOGSA and integrative subtype defined by latent variables. (A) Bar plot showing 

the eigenvalues of components defined by MFA. The top 5 components were selected in the analysis. (B) Prediction 

strength was used to evaluate the robustness of classification into two to eight subtypes. The boxplot shows the 

prediction strength of 100 randomizations. Two and three are relative robust subtype models (prediction strength > 
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0.8). (C) Gene ontology (GO) and transcriptional target (TFT) gene-sets annotation of tumors. Heatmap showing 

the GSSs for selected gene-sets. The gene-sets “immune-related, apoptosis, G protein receptor, collagen, 

extracellular region and cell migration” are strong in the C1 (basal-like) subtype, whereas the mitochondrial 

related gene-sets are over represented in the C3 (luminal A-like) subtype of tumors. (D) The most significant 

transcriptional factor (TF) target gene-sets. The gene-set scores suggest that 4 out of the 5 TFs are hyperactive in 

the C1 subtype, except E2F family is active in the C2 subtype of cancer. The white spaces in (A) and (B) denote non-

significant GSSs. (E) The scatter plots display the correlation between gene-set scores and the mRNA level of 

selected TFs. The expression of selected TFs is significantly correlated with their gene-set scores (also see Figure 

S21).  

The gene influence score (GIS scores) - evaluating influence of individual genes in gene set scores  

In studies trying to define molecular biomarkers, a single or small number of genes or proteins are often preferred as 

opposed to a gene set, which may contain hundreds of genes. To evaluate the importance of individual features in a 

gene-set, we calculated a gene influential score (GIS) using a leave-one-out procedure (see supplementary methods). 

The maximum GIS value for a gene in a gene-set is 1, which indicates that this gene contributes a high proportion of 

variance to the overall variance of the GSSs. A GIS close to 1 often suggests a high correlation between the gene 

expression value and GSS. Gene influential scores of the gene-set immune system process in BLCA suggested that 

the top ranked genes included ITGB2, SPI1, DOCK2, LILRB2 and LAT2. Other highly ranked genes included drug 

target genes such as CD4, IL6, the interferon induced proteins IFITM2 and IFITM3 and the G protein coupled 

receptors GPR183 and CMKLR1 (Table S4). Moreover, the C3 subtype tumors had higher GSSs in mitochondrial 

related gene-sets and lower expression of genes related to cell cycle process and DNA replication. GIS analysis 

suggested that two families of genes, NADH dehydrogenases (NDUFs) and mitochondrial ribosomal proteins 

(ABCC1/MRP) influenced the mitochondrial proteins (Table S4). 

Decomposing GSS scores by data -type 

We decomposed the GSSs with respect to the data sets and performed a gene influential score (GIS) analysis to learn 

the mRNA and CNV features that influenced each GSS. For example, Figure 6A shows a GIS analysis of the GSS 

“cell cycle process”, where we found that mRNA expression strongly influenced the GSS, particularly the low GSS 

of the C3 subtype patients. The top 30 most influential genes were all observed in mRNA expression data (Figure 
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6B), including RACGAP1, DLGAP5, FBXO5, AURKA, KERA (CNA2) and CDKN3 (Figure 6C). Indeed, data-wise 

decomposition of GSS identified several GSSs that were driven by the mRNA data, including the immune system 

process, DNA replication and mitochondrion gene-set (Figure S22). By contrast, both CNV and mRNA data 

influenced the gene-set “G protein coupled receptor activity” (Figure 6D) and the most influential genes (the GIS 

analysis) included both mRNA and CNV data (Figure 6E), and these differentiated the C3 subtype (Figure 6F). The 

features that scored highly in the GSS “G protein couple receptor activity” included CNV of GRM6, NMUR2 and 

adrenergic receptors, and the gene expression of ADGRL4 (ELTD1), CMKLR1 (Figure 6F). In this gene set, the 

cancer driver gene and drug target PDGFRB were identified on both CNV and mRNA levels.  

Computational performance 

We applied MOGSA to various data set sizes and compared its computational efficiency to other methods. It 

performs comparably or marginally slower than ssGSEA, but it is faster than GSVA (Figure S23) and much faster 

than coGAPS (data not shown as it failed to compute on larger breast cancer and panCancer TCGA data sets in our 

studies).   
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Figure 6 – CNV and mRNA data contribute unequally to defining subtype and gene-set scores. (A) Data-wise 

decomposition of gene-set scores for “cell cycle process”. The bar plot shows the normalized mean of data-wise 

decomposed GSSs in each subtype (the black vertical line on the bars show the 95% confidence interval of the 

mean). (B) The bar plot shows the gene influential scores (GISs) of genes in the “cell cycle process” gene-sets. The 

expression of the top 30 most influential genes in the gene-set are shown in (C). (D-F) Same as (A-C) for “G protein 

couple receptor activity”. Gene names in (F) with asterisks indicate genes from CNV data. 

Discussion 

In this manuscript, we introduced a new approach for multi-omics ssGSA, termed MOGSA that enables the 

discovery of e. g. biological pathways with correlated profiles across multiple complex data sets. MOGSA uses 

tensor MF or multivariate latent variable analysis to explore correlated global variance structure across data sets and 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2018. ; https://doi.org/10.1101/046904doi: bioRxiv preprint 

https://doi.org/10.1101/046904
http://creativecommons.org/licenses/by-nc/4.0/


26 
 

then extracts the gene-sets or pathways with the highest variance that are most strongly associated with this 

correlated structure across observations. By combining multiple data types, we can compensate for missing or 

unreliable information in any single data type so we may find gene-sets that cannot be detected by single omics data 

analysis alone (15).  

MOGSA is fundamentally different from other gene-set enrichment analysis methods which use a ‘within 

observation summarization’ such as the mean or median of gene expression of genes in a gene-set (9, 10, 38). 

MOGSA has several unique characteristics that make it well suited for generating integrated multi-omics gene set 

scores. First, MOGSA uses MFA, a multi-table extension of PCA to reduce the complexity of the original data by 

transforming high dimensional data to a low dimensional representation of the data on a few orthogonal components 

(latent variables). The components with the highest eigenvalues capture the most prominent or variant structure that 

is shared among the different data sets. Keeping the first few components (with high eigenvalues) and excluding 

lower ranked components with low variance may increase the signal-to-noise ratio of data, as they may be 

associated with low variant, noise or artifact variance (51, 52). In MOGSA, the entire set of features from each 

platform is decomposed onto a lower dimension space. The linear combination of feature loadings is used in the 

calculation of the gene-set scores. Features that contribute low variance contribute little to the score and thus the 

dimension reduction within MOGSA provides an intrinsic filtering of noise. The advantages of intrinsic variance 

filtering of features can be clearly seen when we applied MOGSA to simulated data. MOGSA outperformed ssGSA 

approaches including ssGSEA and GSVA which do not include a noise-filtering component. Second, data 

integration of features is achieved at the gene-sets level rather than scoring individual features. This greatly 

facilitates the biological interpretation among multiple integrated data sets. There is no requirement to pre-filter 

features in a study or map features from different data sets to a set of common genes. Therefore, MOGSA can be 

used to compare technology platforms that have different or missing features. 

There is great potential for applying multi-table unsupervised GSA approaches for discovery of new subtypes and 

pathways in integrated data analysis of complex diseases such as cancer. In this study, we applied MOGSA in 

combination with clustering analysis. Dimension reduction approaches such as MOGSA and MFA are well suited to 

cluster discovery data because these approaches consider the global variance in the data and as such are 
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complementary to hierarchical or k-means clustering approaches which focus on the pair-wise distance between 

observations (52–55). 

The number of components is an important input parameter to consider when applying MOGSA to gene-set analysis 

or cluster discovery. Similar to PCA, the optimal number of MFA components may be assessed by examining the 

variance associated with each component. The first component will capture most variance and the variance 

associated with subsequent component decreases monotonically. Scree plots (Figure 2C, 4A) may be used to 

visualize if there is an elbow point in the eigenvalues, allowing one to select the components before the elbow point. 

Alternatively, one may select the number of components that capture a certain proportion of variance (50%, 70%, 

etc.). In addition, one may include components that are of biological interest. For example, in the iPS ES example, 

there is a clear biological meaning in the third component (ES vs iPS cell line). In the analysis of the BLCA data, we 

examined a range of components (1-12), and showed that there is little gain of information once a minimum number 

of components with high variance are included (Figure 6B). Users should also consider that the variance of retained 

components should not be dominated by one or a few data sets. To facilitate biological interpretation of components, 

the GSS could be decomposed with regard to components. In the BLCA example, the second and forth component 

are largely contributed by CNV, whereas mRNA is more important in defining the third and fifth components. 

Including five components ensured that both data sets contributed relatively similar variance to the total gene set 

score.  

An issue might arise with latent variables analysis if components with large variance capture information unrelated 

to biological variance (51) such as technical artifacts or batch effects. In practice, this is rare in MFA, because it 

focuses on components that capture global correlation among all data sets. Often batch effects are specific to a 

platform and thus a component that captures information that is entirely uncorrelated to the global structure will be 

omitted from the set of highly variant integrated components. Despite that the decomposition of gene sets by 

components makes it is easy to remove unwanted variance, gene set scores calculated from the components 

reflecting variance of interest may lead to the better interpretation of interesting biology. However, it is still wise to 

perform careful batch effect control, especially in large scale omics studies. With moGSA, one may select non-

contiguous components to enrich for specific patterns, or exclude attributes. For example we excluded the first 

component in the NCI60 cell line data which was associated with cell doubling time. One can perform linear 
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regression analysis on the PCs (components) to generate GSS on features that are associated with a phenotype or 

clinical variable (eg stage, survival) of interest. A more detailed description of batch effect detection is described in 

(40). Another consideration when applying MOGSA is that it is most efficient in detecting gene-sets that have broad 

correlation patterns among data types. It may fail to discover gene-sets with few genes, particularly if they had low 

variances on the selected components.  

Finally, MOGSA is computationally efficient, and performed comparable to ssGSA approaches ssGSEA and 

ssGSVA even when applied to large ‘omics integrative analysis of mRNA and CNV data of over 10,000 tumors. 

Open source, well documented code is provided in the Bioconductor package mogsa which includes a detailed 

vignette tutorial and example datasets. Whilst we do not include examples applied to multi omics single cell 

sequencing technologies that provide simultaneous measurement of transcriptomes and protein markers expressed in 

the same cell, (eg CITE-seq or REAP-seq (4, 5), MOGSA can be applied to integrating, interpreting and generating 

biological hypothesis from complex high dimensional  data sets from bulk sequencing or single cell technologies. 
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Description of additional data files 

SupplementaryInformation.pdf – Supplementary methods and 23 supplementary Figures 

Table_S1.xlsx - Table S1 - the gene-set score (GSS) matrix of Gene ontology (GO) for iPS ES 4-plex data. 

Table_S2.xlsx - Table S2: The Chi square test of association between integrative subtypes and previously published 

subtypes.  

Table_S3.xlsx - Table S3 - the gene-set score (GSS) matrix of Gene ontology (GO) and transcriptional factor target 

(TFT) gene-set with more than 200 significant GSSs for BLCA data. 

Table_S4.xlsx - Table S4 - the gene influential score (GIS) for selected gene-sets (from Gene Ontology). The 

document contains GIS analysis for 9 gene-sets. 

Table_S5.xlsx - Table S5 - the gene influential score (GIS) for selected transcriptional factor gene-sets. The 

document contains GIS analysis for 2 gene-sets. 
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