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1 Abstract

In a recent publication, Sood et al. [2015] presented a set of 150 probe-sets which
could be used in a diagnosis of Alzheimer disease (AD) based on gene expression. We
reproduce some of their experiments, and show that the performance of their particular
set of 150 probe-sets does not stand out compared to that of randomly sampled sets
of 150 probe-sets from the same array.

2 Correspondence

The first part of the experiments in Sood et al. [2015] builds their signature and assesses
its ability to predict chronological age in different settings. This first part involves eight
gene expression studies: six from muscle, one from brain and one from skin samples.
The skin study was done on Illumina Human HT-12 V3 arrays and all the others on
Affymetrix HGU133plus2 arrays. The first muscle dataset involves muscle samples
from 15 young and 15 old healthy individuals and is only used to build the signature.
The selection process retains probe-sets which are both differentially expressed between
young and old samples as measured by limma [Ritchie et al., 2015] and predictive of
chronological age in the context of a 5 nearest neighbor classifier, along with other
selected probe-sets. The 150 probe-sets selected constitute the healthy ageing gene
signature (HAGS) and they are then used in a 5 nearest neighbor classifier to predict
the chronological age of samples in the other studies; the study used to select the
signature is not used anymore in the rest of their experiments. Sood et al. [2015]
use two different protocols to evaluate the prediction performance. For all except the
skin data, they use external validation: the samples from one of the muscle studies
(Campbell) are used as neighbors to predict the age of the tested samples in the four
remaining muscle and the brain study. For the skin study, they use leave one out cross
validation (LOOCV). They also use LOOCV on two of the muscle studies and the brain

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2016. ; https://doi.org/10.1101/047050doi: bioRxiv preprint 

https://doi.org/10.1101/047050
http://creativecommons.org/licenses/by-nc-nd/4.0/


study to produce ROC curves on their Figure 2. They obtain reasonably high AUCs
and conclude that their 150 probe-sets are predictive of chronological age regardless of
the tissue and platform.

In the last part of their experiments, the 150 HAGS probe-sets are used to predict
AD status from blood gene expression samples in two cohorts. Gene expression is
measured using Illumina Human HT-12 V3 and V4 arrays respectively. Samples are
selected within each cohort to make AD status independent of potential confounders
such as age, gender or ethnicity. The 150 probe-sets are mapped to Illumina probe-sets.
They lead to LOOCV Areas Under the ROC Curve (AUCs) of 0.73 and 0.66.

We reproduce some of the experiments from Sood et al. [2015], showing that the
HAGS is indeed able to discriminate between old and young samples in several gene
expression studies, and AD from control patients using blood gene expression in two
cohorts. We also show that its performance does not stand out compared to that of
randomly selected sets of 150 probe-sets from the same array, most of which lead to
reasonable performance on these datasets. Finally, our results on random sampling of
both arrays and probesets suggest that prediction of either chronological age or AD
status on new samples following the same conditional distribution as the ones in these
studies would be done, on average, about as well by a random set of genes as by the
HAGS. The code used to produce all figures in this report is freely available.

3 Comparison of the healthy ageing gene expres-

sion signature with random gene sets

We first reproduce the experiments done by Sood et al. [2015] on age data. We obtained
the data from the public repositories indicated in the original article. The Affymetrix
studies are normalized using RMA as implemented in the Bioconductor affy package.
We do not try to reproduce the gene selection process, but use the list provided in the
first tab of Additional file 1 of Sood et al. [2015] instead. We extract the list of arrays
used in the experiments and the age of the corresponding patients from the third tab
of the same additional file. For each of the four muscle studies and the brain study,
we measure the AUC obtained by both LOOCV and external validation using the
samples from the Campbell dataset as neighbors. For the skin data, we only measure
the AUC by LOOCV, as in Sood et al. [2015]. We map the 150 Affymetrix probe-
sets to all Illumina probes which match the same gene symbols using the annotate

Bioconductor package. Selecting a single Illumina probe for each Affymetrix probe-sets
(the one with highest intensity) does not affect the result much so we keep the map
using all matching probes, as it does not rely on expression data. The AUCs obtained
are represented as green dots on Figure 1, and are generally consistent with the ones
obtained by Sood et al. [2015]. The observed differences may be caused by changes in
the pre-processing: for example, Sood et al. [2015] use frozenRMA in some cases but
we could not understand precisely how. We keep to regular RMA, as it does not seem
to affect the performances qualitatively.
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Figure 1: Area Under the ROC Curves obtained by external validation (left panel)
and LOOCV (right panel) of a 5 nearest neighbor classifier using the HAGS probe-
sets (green dots) and 1000 random selections of 150 probe-sets (boxplots), over the six
ageing gene expression studies used in Sood et al. [2015].

We then follow the same protocol using 150 probe-sets randomly sampled from the
Affymetrix HGU133plus2 array. For the external validation runs, we sample among
the probe-sets that are both present in all studies and in the upper quartile of median
absolute deviation in the muscle study that was used by Sood et al. [2015] to select
their probe-sets. Sampling among all probes only marginally changes the results. The
boxplots on Figure 1 show the distribution of performances obtained on each study
across 1000 repetitions of the random sampling. The green dot on each boxplot rep-
resents the performance of the 5 nearest neighbor predictor with Euclidean distance
using the HAGS, thus quantifying for each study how exceptional its performance is
in a context of randomly sampled probe-sets. For most studies the performance of the
HAGS does not stand out, and when it does, it is sometimes better and sometimes
worse than the median performance of randomly sampled probe-sets.

This first experiment only tells us something about the exceptionality of the HAGS
for these six studies. Looking across the studies suggests that the HAGS is not ex-
pected to behave differently from 150 randomly selected probe-sets, on average, on new
samples from the same distribution1. In order to get more evidence on this point, we
reproduce the LOOCV evaluation protocol, with further sampling of the arrays: for
each of the 1000 repetitions, we perform LOOCV on a randomly sampled 50% of each
dataset, with both the HAGS and a new random selection of 150 probe-sets each time.

1More precisely, we expect similar performances on average on new samples from the same distri-
bution of the phenotype conditional to the expression of all genes as these six studies.
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Figure 2: Area Under the ROC Curves obtained by LOOCV of a 5 nearest neighbor
classifier over 1000 random selections of 50% of the arrays, using the HAGS probe-sets
(.sig suffix) and a new random selection of 150 probe-sets each time (.rand suffix), over
the six ageing gene expression studies used in Sood et al. [2015].

The results are shown in Figure 2. The comparison of the two empirical distributions
on each study tells us which of the HAGS or the random signatures performs better
on arrays sampled from the same distribution. For two of the six studies (Trappe and
Derby), the distributions are very close. For two others (Kraus and the skin study),
the HAGS generally performs better than random signatures. For the last two studies
(Hoffman and brain), the HAGS performs worse than random signatures.

Finally, we reproduce the AD status prediction experiments, using the same two
random sampling protocols as for the ageing experiments: sampling gene sets and
sampling both gene sets and arrays. We stratify our array sampling by status to
make sure that the proportion of AD and control status remains unchanged. Further
stratifying by age and gender did not change the result. We use the same subset of
samples from each cohorts used in Sood et al. [2015], creating two classes by merging
the MCI (mild cognitive impairment) and AD status – we refer to this merged class as
AD in the remainder of this discussion. For each of the 1000 repetitions, we sample 150
probe-sets from the Affymetrix HGU133plus2 array and map these probe-sets to the
Illumina Human HT-12 V3 and V4 probes. We also map the HAGS to the Illumina
probes. As for the ageing experiments, when mapping an Affymetrix signature we
keep all Illumina probes associated with a gene symbol which is also associated with
a probe-set from the signature. Here again, keeping a single Illumina probe for each
Affymetrix probe-set does not affect the results. We also obtain the same results by
mapping the HAGS to the Illumina probes and then sampling sets of Illumina probes
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Figure 3: Area Under the ROC Curves obtained by external validation (left panel)
and LOOCV (right panel) of a 5 nearest neighbor classifier using the HAGS probe-sets
(green dots) and 1000 random selections of 150 probe-sets (boxplots), over the two AD
cohorts used in Sood et al. [2015].

of the same size as the mapped HAGS. External validation is done by using one cohort
as the neighbors to predict the status of arrays in the other cohort.

Figure 3 shows the performance obtained by randomly sampling probes only. The
performance of the HAGS for discriminating controls from AD patients is not atypical
in either of the two cohorts, for either external validation or LOOCV.

Figure 4 further shows that when sampling patients from these two cohorts, the
distribution of performances obtained by using the HAGS and by using a different
random set of 150 probe-sets for each patient sampling are very similar. This result
suggests that when sampling patients from the same distributions as these cohorts, a
random set of genes will yield equally good AD status predictions on average as the
HAGS.

The fact that random gene sets perform as well as a set of genes which were selected
for their predictive power is not too surprising since the HAGS was selected on a very
small number of samples (15 young and 15 old patients) and gene regulation processes
make gene expression profiles very highly correlated. It was already noted by Ein-Dor
et al. [2005] that sampling from a small set of arrays leads to the selection of different
gene expression signatures for breast cancer prognosis. They concluded that “The
main lesson is that whenever any arbitrary decision (e.g. choice of training and test
set) is taken throughout analysis of the data, one has to generate a large ensemble of the
different ways in which this arbitrary decision could be taken, and perform a statistical
analysis of the results obtained over this ensemble.” Haury et al. [2011] further studied
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Figure 4: Area Under the ROC Curves obtained by LOOCV of a 5 nearest neighbor
classifier over 1000 random selections of 50% of the arrays, using the HAGS probe-sets
(.sig suffix) and a new random selection of 150 probe-sets each time (.rand suffix), over
the two AD cohorts used in Sood et al. [2015].

the stability of feature selection methods, also showing that perturbing the training
data leads to the selection of very different signatures, and that small sample sizes
are the main reason for this lack of stability. More importantly, they observed in
their experiments that a “paired ANOVA test detects no method significantly better
than the random selection strategy”. Our finding that randomly selected sets of probes
perform as well as the HAGS on average is consistent with their observation. We
note two possible reasons for this phenomenon. One is that the phenotypes that are
being predicted (25 year old versus 65 year old, diagnosed with AD or MCI versus
not diagnosed) may have a strong effect on gene expression, making many sets of
genes predictive. The other, regarding AD, is that the HAGS genes were selected as
discriminating between young and old healthy patients, making their association with
AD status less direct and implying that many other subsets perform equally well at
predicting the AD status.

4 Implications for using the healthy ageing gene

expression signature for AD diagnosis

The results of Section 3 suggest that the HAGS is no better than other sets of 150
probes for predicting the AD status of patients from blood samples, but it does not
necessarily imply that the HAGS should not be used for AD diagnosis. Along with most
random sets of probes, the HAGS yields reasonably good predictions on both cohorts.
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Figure 5: Projection of blood expression samples onto their first two principal compo-
nents (top) and proportion of variance explained by each principal component (bottom)
for cohort 1 (left), 2 (middle) and a combination of both (right).

Figure 5 shows the projection of the samples on their first two principal components,
with color coded AD status. The first principal component (PC1) explains about 25%
of the total variance in both cohorts, and separates the two status rather well. This is
consistent with the fact that predicting the AD status from the expression of most 150
probes yields good results, although it may have been the case that only few probes
were associated with this PC1. Directly taking the PC1 projection as a predictor of AD
status (without using any labeled example) actually yields AUCs of 0.76 and 0.67 on
cohorts 1 and 2 respectively. Similar observations can be made when merging the two
cohorts and using a linear model to remove the cohort effect (right panels of Figure 5).
The AUC obtained is then 0.68.

We also note that 24% of the probes in the first cohort are differentially expressed
between AD and control patients (Student’s t-test p-value lower or equal to 0.05)2.
This proportion is 20% for the second cohort. A uniform sampling of 150 probes would
therefore contain 30–40 differentially expressed probes on average.

A possible explanation of the fact that this prediction problem is relatively easy
to solve is the presence of an unobserved confounding variable associated with both
gene expression measurements and AD status. It is often hard to be entirely sure
that no such variable is present, but the authors of Sood et al. [2015] were generally
careful to avoid them, in particular blocking by gender, ethnicity and age in their

2We do not apply a multiple testing correction to these p-values as we are interested in the pro-
portion of discriminating probes for this particular dataset, as opposed to differential expression in a
population from which these patients would be sampled.
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experimental design. Another possiblity is that the problem of discriminating between
controls and patients diagnosed with AD from blood gene expression is actually a
feasible one because the presence of AD at this stage has a sufficiently strong effect
on the overall gene expression. In this case, the question moves to deciding whether
a good predictor of current AD status is also a good predictor of future AD status.
The latter is arguably a more important objective [Lovestone and Thambisetty, 2009],
allowing mass population screenings to detect those at risk, but could prove more
difficult than the former as it may be associated with more subtle effects on gene
expression. Clinical studies should be able to determine the extent to which the HAGS
or other gene expression based predictors are able to diagnose future AD from early
blood samples.
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