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Abstract—Mathematical models of biochemical networks are
useful tools to understand and ultimately predict how cells utilize
nutrients to produce valuable products. Hybrid cybernetic models
in combination with elementary modes (HCM) is a tool to
model cellular metabolism. However, HCM is limited to reduced
metabolic networks because of the computational burden of
calculating elementary modes. In this study, we developed the
hybrid cybernetic modeling with flux balance analysis or HCM-
FBA technique which uses flux balance solutions instead of
elementary modes to dynamically model metabolism. We show
HCM-FBA has comparable performance to HCM for a proof
of concept metabolic network and for a reduced anaerobic E.
coli network. Next, HCM-FBA was applied to a larger metabolic
network of aerobic E. coli metabolism which was infeasible for
HCM (29 FBA modes versus more than 153,000 elementary
modes). Global sensitivity analysis further reduced the number
of FBA modes required to describe the aerobic E. coli data,
while maintaining model fit. Thus, HCM-FBA is a promising
alternative to HCM for large networks where the generation of
elementary modes is infeasible.

Index Terms—Metabolic models, flux balance analysis, cyber-
netic models

I. INTRODUCTION

Biotechnology harnesses the power of metabolism to pro-
duce products that benefit society. Constraints based models
are important tools to understand and ultimately to predict
how cells utilize nutrients to produce products. Constraints
based methods such as flux balance analysis (FBA) [1] and
network decomposition approaches such as elementary modes
(EMs) [2] or extreme pathways (EPs) [3] model intracellular
metabolism using the biochemical stoichiometry and other
constraints such as thermodynamical feasibility under pseudo-
steady state conditions. FBA has been used to efficiently
estimate the performance of metabolic networks of arbitrary
complexity, including genome scale networks, using linear
programming [4]. On the other hand, EMs (or EPs) catalog
all possible metabolic behaviors such that any flux distribution
predicted by FBA is a convex combination of the EMs
(or EPs) [5]. However, the calculation of EMs (or EPs) is
computationally expensive and currently infeasible for genome
scale networks [6].

Cybernetic models are an alternative to the constraints based
approach which hypothesize that metabolic control is the out-
put of an optimal decision. Cybernetic models have predicted
mutant behavior [7, 8], steady-state multiplicity [9], strain spe-
cific metabolism [10], and have been used in bioprocess con-
trol applications [11]. Hybrid cybernetic models (HCM) have
addressed earlier shortcomings of the approach by integrating
cybernetic optimality concepts with EMs. HCMs dynamically
choose combinations of biochemical modes (each catalyzed
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by a pseudo enzyme whose expression is controlled by an
optimal decision) to achieve a physiological objective (Fig.
1A). HCMs generate intracellular flux distributions consistent
with other approaches such as metabolic flux analysis (MFA),
and also describe dynamic extracellular measurements superior
to dynamic FBA (DFBA) [12]. However, HCMs are restricted
to networks which can be decomposed into EMs (or EPs).

In this study, we developed the hybrid cybernetic modeling
with flux balance analysis (HCM-FBA) technique. HCM-
FBA is a modification of the hybrid cybernetic approach
of Ramkrishna and coworkers [12] which uses FBA solu-
tions (instead of EMs) in conjunction with cybernetic control
variables to dynamically simulate metabolism. Since HCM
showed superior performance to DFBA, we compared the per-
formance of HCM-FBA to HCM for a prototypical metabolic
network, along with two real-world E. coli applications. HCM-
FBA performed comparably to HCM for the prototypical
network and a reduced anaerobic E. coli network, despite
having fewer parameters in each case. Next, HCM-FBA was
applied to an aerobic E. coli metabolic network that was
infeasible for HCM. HCM-FBA described cellmass growth
and the shift from glucose to acetate consumption with only
a few modes. Global sensitivity analysis allowed us to further
reduce the aerobic E. coli HCM-FBA model to the minimal
model required to describe the data. Thus, HCM-FBA is a
promising approach for the development of reduced order
dynamic metabolic models and a viable alternative to HCM
or DFBA, especially for large networks where the generation
of EMs is infeasible.

II. RESULTS

HCM-FBA was equivalent to HCM for a prototypical
metabolic network (Fig. 1). The proof of concept network,
consisting of 6 metabolites and 7 reactions (Fig. 1B), generated
3 FBA modes and 6 EMs. Using the EMs and synthetic
parameters, we generated test data from which we estimated
the HCM-FBA model parameters. The best fit HCM-FBA
model replicated the synthetic data (Fig. 1C). The HCM and
HCM-FBA kinetic parameters were not quantitatively identi-
cal, but had similar orders of magnitude; the FBA approach
had 3 fewer modes, thus identical parameter values were not
expected. The HCM-FBA approach replicated synthetic data
generated by HCM, despite having 3 fewer modes. Thus, we
expect HCM-FBA will perform similarly to HCM, despite
having fewer parameters. Next, we tested the ability of HCM-
FBA to replicate real-world experimental data.

The performance of HCM-FBA was equivalent to HCM for
anaerobic E. coli metabolism (Fig. 2A). We constructed an
anaerobic E. coli network [12], consisting of 12 reactions and
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Fig. 1. HCM proof of concept metabolic study. A: HCMs distribute uptake
and secretion fluxes amongst different pathways. For HCM, these pathways are
elementary modes; for HCM-FBA these are flux balance analysis solutions.
HCM combines all possible modes within a network; whereas HCM-FBA
combines only steady-state paths estimated by flux balance analysis. B:
Prototypical network with six metabolites and seven reactions. Intracellular
cellmass precursors A,B, and C are balanced (no accumulation) while the
extracellular metabolites (Ae, Be, and Ce) are not balanced (can accumulate).
The oval denotes the cell boundary, qj is the jth flux across the boundary,
and vk denotes the kth intracellular flux. C: Simulation of extracellular
metabolite trajectories using HCM-FBA (solid line) versus HCM (points) for
the prototypical network.

19 metabolites, which generated 7 FBA modes and 9 EMs.
HCM reproduced cellmass, glucose, and byproduct trajectories
using the kinetic parameters reported by Kim et al. [12] (Fig.
2A, points versus dashed). HCM-FBA model parameters were
estimated in this study from the Kim et al. data set using sim-
ulated annealing. Overall, HCM-FBA performed within 5% of
HCM (on a residual standard error basis) for the anaerobic E.
coli data (Fig. 2A, solid), despite having 2 fewer modes and
4 fewer parameters (17 versus 21 parameters). Thus, while
both HCM and HCM-FBA described the experimental data,
HCM-FBA did so with fewer modes and parameters.

HCM-FBA captured the shift from glucose to acetate con-
sumption for a model of aerobic E. coli metabolism that was
infeasible for HCM (Fig. 2B). An E. coli metabolic network
(60 metabolites and 105 reactions) was constructed from litera-
ture [14, 15]. Elementary mode decomposition of this network
(and thus HCM) was not feasible; 153,000 elementary modes
were generated before the calculation became infeasible. Con-
versely, flux balance analysis generated only 29 modes for the
same network. HCM-FBA model parameters were estimated
from cellmass, glucose, and acetate measurements [13] using
simulated annealing (Fig. 2B, solid). HCM-FBA captured
glucose consumption, cellmass formation, and the switch to
acetate consumption following glucose exhaustion. HCM-FBA
described the dynamics of a network that was infeasible for
HCM, thereby demonstrating the power of the approach for
large networks. Next, we demonstrated a systematic strategy to
identify the critical subset of FBA modes required for model
performance.

Global sensitivity analysis identified the FBA modes es-
sential to model performance (Fig. 3). Total order sensi-
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Fig. 2. HCM-FBA versus HCM performance for small and large metabolic
networks. A: Batch anaerobic E. coli fermentation data versus HCM-FBA
(solid) and HCM (dashed). The experimental data was reproduced from Kim
et al. [12]. Error bars represent the 90% confidence interval. B: Batch aerobic
E. coli fermentation data versus HCM-FBA (solid). Model performance is
also shown when minor modes (dashed) and major modes (dotted) were
removed from the HCM-FBA model. The experimental data was reproduced
from Varma & Palsson [13]. Error bars denote a 10% coefficient of variation.

tivity coefficients were calculated for all kinetic parameters
and enzyme initial conditions in the aerobic E. coli model.
Five of the 29 FBA modes were significant; removal of the
most significant of these modes (encoding aerobic growth
on glucose) destroyed model performance (Fig. 2B, dotted).
Conversely, removing the remaining 24 modes simultaneously
had a negligible effect upon model performance (Fig. 2B,
dashed). The sensitivity analysis identified the minimal model
structure required to explain the experimental data.

III. DISCUSSION

In this study, we developed HCM-FBA, an effective mod-
eling technique to simulate metabolic dynamics. HCM-FBA
uses flux balance analysis solutions in conjunction with cy-
bernetic control variables to dynamically simulate metabolism.
We studied the performance of HCM-FBA on a prototypical
metabolic network, along with two E. coli networks. First, we
showed that the performance of HCM-FBA and HCM were
comparable for the prototypical network and a small model
of anaerobic E. coli metabolism. For the anaerobic case, both
approaches described the experimental data. However, HCM-
FBA (which was within 5% of HCM and slightly better than
HCM for lactate secretion) had fewer modes and parameters.
Next, HCM-FBA was applied to an aerobic E. coli metabolic
network that was not feasible for HCM. Elementary mode
decomposition of the aerobic network generated over 153,000
elementary modes. Conversely, the HCM-FBA approach de-
scribed cellmass growth and the shift from glucose to acetate
consumption with only 29 FBA modes. Global sensitivity
analysis further showed that only 5 of the 29 FBA modes were
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Fig. 3. Global sensitivity analysis of the aerobic E. coli model. Total order variance based sensitivity coefficients were calculated for the biomass yield on
glucose and acetate. Sensitivity coefficients were computed for kinetic parameters and enzyme initial conditions (N = 183,000). Error bars represent the 95%
confidence intervals of the sensitivity coefficients.

critical to model performance. Removal of these modes crip-
pled the model, but removal of the remaining 24 modes had a
negligible impact. These insignificant modes were associated
with maintenance, thus they would likely not impact model
predictions for a growing culture. HCM-FBA is an alternative
approach to HCM, especially for large networks where the
generation of elementary modes is infeasible. Elementary
modes show the complexity of a cell, displaying the many
routes it can take but mathematically FBA has an objective
superiority for large networks.

HCM-FBA is a promising approach to model large
metabolic networks where elementary modes calculations are
infeasible, and where kinetic models of such systems have
intractable identification problems. However, there are addi-
tional studies that should be performed. First, the intracellular
flux distribution predicted by HCM-FBA should be compared
to HCM and to flux measurements calculated using MFA
or FBA/DFBA in combination with carbon labeling. HCM
predicted intracellular fluxes that were similar to MFA results
[12]; however, the fluxes predicted by HCM-FBA have not yet
been validated. Next, the performance of HCM-FBA should be
compared to lumped hybrid cybernetic models (L-HCM). L-
HCMs, which combine elementary modes into mode families
based upon metabolic function [10, 16], have been applied to
an E. coli network with 67 reactions and a Saccharomyces
cerevisiae network with 70 reactions; both cases had satis-
factory fits to extracellular experimental data. However, while
L-HCM reduces the dimension of possible alternative modes
that must be considered, it still requires the calculation of an
initial set of modes. For metabolic networks of even moderate
size, EM (or EP) decomposition may not be possible. On the
other hand, the generation of flux balance solutions (convex
combinations of the elementary modes or extreme pathways)
is trivial, even for genome scale metabolic networks. Thus,
HCM-FBA opens up the possibility for dynamic genome
scale models of bacterial and perhaps even of mammalian
metabolism.

IV. MATERIALS AND METHODS

The HCM-FBA approach is a modification of HCM, where
elementary modes are replaced with flux balance analysis
solutions. Thus, extracellular variables are dynamic while
intracellular metabolites are at a pseudo steady state. The
abundance of extracellular species i (xi), the pseudo enzyme
el (catalyzes flux through mode l), and cellmass are governed
by:

dxi
dt

=

R∑
j=1

L∑
l=1

σijzjlql (e,k,x) c i = 1, . . . ,M

del
dt

= αl + rEl (k,x)ul − (βl + rG) el l = 1, . . . ,L
dc

dt
= rGc

where R and M denote the number of reactions and ex-
tracellular species in the model and L denotes the number
of FBA modes. The quantity σij denotes the stoichiometric
coefficient for species i in reaction j and zjl denotes the
normalized flux for reaction j in mode l. If σij > 0, species
i is produced by reaction j; if σij < 0, species i is consumed
by reaction j; if σij = 0, species i is not connected with
reaction j. Extracellular species balances were subject to the
initial conditions x (to) = xo determined from experimental
data. The term ql (e,k,x) denotes the specific uptake/secretion
rate for mode l where e denotes the pseudo enzyme vector,
k denotes the unknown kinetic parameter vector, x denotes
the extracellular species vector, and c denotes the cell mass;
ql (e,k,x) is the product of a kinetic term (q̄l) and a control
variable governing enzyme activity. Flux through each mode
was catalyzed by a pseudo enzyme el, synthesized at the
regulated specific rate rE,l (k,x), and constitutively at the rate
αl. The term ul denotes the cybernetic variable controlling the
synthesis of enzyme l. The term βl denotes the rate constant
governing non-specific enzyme degradation, and rG denotes
the specific growth rate through all modes. The specific
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uptake/secretion rates and the specific rate of enzyme synthesis
were modeled using saturation kinetics. The specific growth
rate was given by:

rG =
L∑
l=1

zµlql (e,k,x)

where zµl denotes the growth flux µ through mode l. The
control variables ul and vl, which control the synthesis and
activity of each enzyme respectively, were given by:

ul =
zslq̄l

L∑
l=1

zslq̄l

vl =
zslq̄l

max
l=1,...,L

zslq̄l

where zsl denotes the uptake flux of substrate s through mode
l. The model equations were implemented in Julia (v.0.4.2)
[17] and solved using SUNDIALS [18]. The model code is
available at http://www.varnerlab.org under a MIT license.

Elementary mode and flux balance analysis: Elementary
modes were calculated using METATOOL 5.1 [19]. FBA
modes were defined as the solution flux vector through the
network connecting substrate uptake to cellmass and extra-
cellular product formation. The FBA problem was formulated
as:

max
w

(
wobj = θTw

)
Subject to : Sw = 0

αi ≤ wi ≤ βi i = 1, 2, . . . ,R
where S denotes the stoichiometric matrix, w denotes the
unknown flux vector, θ denotes the objective selection vector
and αi and βi denote the lower and upper bounds on flux wi,
respectively. The flux balance analysis problem was solved
using the GNU Linear Programming Kit (v4.52) [20]. For
each FBA mode, the objective wobj was to maximize either
the specific growth rate or the specific rate of byproduct
formation. Multiple FBA modes were calculated for each
objective by allowing the oxygen and nitrate uptake rates to
vary. For aerobic metabolism, the specific oxygen and nitrate
uptake rates were constrained to allow a maximum flux of 10
mM/gDW·hr and 0.05 mM/gDW·hr, respectively. Each FBA
mode was normalized by the specified objective flux.

Global sensitivity analysis: Variance based sensitivity anal-
ysis was used to estimate which FBA modes were critical
to model performance. The performance function used in this
study was the biomass yield on substrate. Candidate parameter
sets (N = 182,000) were generated using Sobol sampling
by perturbing the best fit parameter set ±50% [21]. Model
performance, calculated for each of these parameter sets, was
then used to estimate the total-order sensitivity coefficient for
each model parameter.

Estimation of model parameters: Model parameters were
estimated by minimizing the difference between simulations
and experimental measurements (squared residual):

min
k

T∑
τ=1

S∑
j=1

(
x̂j (τ)− xj (τ,k)

ωj (τ)

)2

where x̂j (τ) denotes the measured value of species j at time
τ , xj (τ,k) denotes the simulated value for species j at time

τ , and ωj (τ) denotes the experimental measurement variance
for species j at time τ . The outer summation is with respect
to time, while the inner summation is with respect to state.
The model residual was minimized using simulated annealing
implemented in the Julia programming language.
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