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Abstract

Motivation: Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a widely used
approach to study protein-DNA interactions. Often, the quantities of interest are the differential occupancies
relative to controls, between genetic backgrounds, treatments, or combinations thereof. Current methods
for differential occupancy of ChIP-seq data rely however on binning or sliding window techniques, for which
the choice of the window and bin sizes are subjective.
Results: Here, we present GenoGAM (Genome-wide Generalized Additive Model), which brings the
well-established and flexible generalized additive models framework to genomic applications using a
data parallelism strategy. We model ChIP-Seq read count frequencies as products of smooth functions
along chromosomes. Smoothing parameters are objectively estimated from the data by cross-validation,
eliminating ad-hoc binning and windowing needed by current approaches. GenoGAM provides base-level
and region-level significance testing for full factorial designs. Application to a ChIP-Seq dataset in yeast
showed increased sensitivity over existing differential occupancy methods while controlling for type I error
rate. By analyzing a set of DNA methylation data and illustrating an extension to a peak caller, we further
demonstrate the potential of GenoGAM as a generic statistical modeling tool for genome-wide assays.
Availability: Software is available from Bioconductor: https://www.bioconductor.org/

packages/release/bioc/html/GenoGAM.html

Contact: gagneur@in.tum.de
Supplementary information: Supplementary information is available at Bioinformatics online.

Introduction
Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq)
is the reference method used for genome-wide quantification of protein-
DNA interactions (Robertson et al., 2007). It is used to study a wide range
of fundamental processes covering transcription, replication, and genome
maintenance.

ChIP-Seq consists of cross-linking DNA with chromatin, followed by
DNA fragmentation and immunoprecipitation of the protein of interest
along with its bound DNA fragments. The DNA fragments are then
released, amplified, and sequenced. ChIP-Seq has been applied to study
DNA-bound proteins of various functions and therefore with various
patterns of distribution along the genome. These include transcription
factors that are bound at discrete binding sites (Johnson et al., 2007; Barski
et al., 2007), histone modifications (Albert et al., 2007; Barski et al., 2007)
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which are found at nucleosomes, or the transcription (Barski et al., 2007)
and replication machinery which are even more broadly distributed.

Often, the quantities of interest are the occupancies relative to
technical controls such as the input (a sample that was not subject to
the immunoprecipitation step), between genetic backgrounds, treatments,
or combinations thereof. Testing for local ocupancy differences between
multiple groups of ChIP-Seq samples is therefore an important goal in
ChIP-Seq analysis.

In principle, testing could be performed at every single base of the
genome. However, the per-base coverage is in practice too low and too
noisy for such an approach to have enough statistical power. Testing
for differential occupancy has been therefore done by integration of data
over larger regions. Generally, benchmarks have shown that differential
occupancy perform better if they handle replicate samples (Steinhauser
et al., 2016). DESeq tests for differential overall occupancies at pre-
defined regions of interest by testing for differences in number of reads
overlapping the region (Anders and Huber, 2010). Complementary to
testing for overall occupancies, MMdiff (Schweikert et al., 2013) allows
testing for differences in shapes in given regions. Other approaches are
scanning the genomes or large areas for local differential occupancies.
These include diffReps (Shen et al., 2013), where a sliding window moves
along the genome in a fixed step size and a robust test based on negative
binomial distribution is performed on the number of reads falling into the
window. PePr (Zhang et al., 2014) follows a similar scanning approach and
estimates local variance. Lun et al. (Lun and Smyth, 2014) devises how
to test differential occupancies across windows in given regions while
properly controlling for false discovery rate. Their approach has been
published in an R package called csaw. THOR (Allhoff et al., 2016) uses
a Hidden Markov Model approach to segment the genome into regions that
are enriched, depleted or not differentially occupied. Of these methods,
only DESeq and csaw, which are based on generalized linear models
(Nelder and Wedderburn, 1972), can go beyond comparisons between
two groups of samples by supporting any full factorial designs including
crossed designs. Moreover, all current methods rely on binning or sliding
window techniques, for which the choice of the window and bin sizes are
not data-driven but subjective.

Here, we introduce GenoGAM, which brings generalized additive
models to genomic applications (Fig. 1). Generalized additive models
are extensions of generalized linear models for which covariates can
be modeled as smooth functions (Hastie et al., 1986). We use them to
model ChIP-Seq count rates along the genome. GenoGAM normalizes for
sequencing depth and can handle factorial experimental designs, including
biological replicates and multiple controls. The amount of smoothing is
estimated in an automatic, data-driven manner and thus avoids introducing
subjectivity from the analyst. When analyzing differential binding in a
factorial design, we obtain well-calibrated per-base-pair p-values and
region-wise p-values. Application to a dataset of yeast shows that
GenoGAM is more sensitive than state-of-the art differential occupancy
methods.

GenoGAM brings further modeling flexibility for which we provide
proof-of-principle applications. As a generalized additive model,
GenoGAM offers flexible choice of the response distribution. Using
proportions rather than absolute counts as response variables, we show that
GenoGAM is applicable to estimate DNA methylation rate from bisulfite
sequencing data. Moreover, the smooth functions fitted by GenoGAM
can be analyzed analytically. Our results indicate that this can be used
to identify summits of narrow ChiP-Seq peaks with accuracy close to
state-of-the art peak callers.

Methods

A generalized additive model for ChIP-Seq data

We consider an experiment consisting of a set of ChIP-Seq samples. A data
point is defined by a pair of a ChIP-Seq sample and a genomic position.
We denote by xi the genomic position of the i-th data point, by ji its ChIP-
Seq sample and by yi ≥ 0 the number of fragments in sample ji centered
at position xi. For single-end libraries, the fragment center is estimated
by shifting the read end position by a constant. In case of single end
data, the fragment length dwas estimated using the Bioconductor package
chipseq and its coverage method. It is defined as the optimal shift for
which the number of bases covered by any read is minimized. Thus, the
center was taken as the start of the read shifted by d

2
downstream. When

reducing ChIP-Seq data to fragment centers rather than full base coverage,
each fragment is counted only once. This reduces artificial correlation
between adjacent nucleotides.

We model the counts yi using the following generalized additive
model:

yi ∼ NB(µi, θ) (1)

log(µi) = oi +

K∑
k=1

fk(xi) zji,k (2)

The counts yi are assumed to follow a negative binomial distribution
with means µi (Equation 1) and a dispersion parameter θ that relates the
variance to the mean such that Var(yi) = µi + µ2i /θ. Consequently, the
model accounts for dispersion beyond Poisson noise (Anders and Huber,
2010).

The logarithm of the mean µi is the sum of an offset oi and one or
more smooth functions fk (Equation 2). The offsets oi are predefined
data-point specific constants that account for sequencing depth variations
(see subsection Sequencing depth variations). The indicator variable zji,k
is 1 if the smooth function fk contributes to the mean counts of sample
ji and 0 otherwise. As shown below, this formulation allows modeling IP
versus input experiments as well as factorial experimental designs.

We model IP versus input experiments using GenoGAM with two
smooth functions: finput that contributes to both input and IP samples,
and fprotein that only contributes to IP samples. More specifically, finput

models local ChIP-Seq biases common to input and IP, whereas fprotein

models the protein log-occupancy up to one genome-wide scaling factor.
Figure 1b shows the application of this model to one ChIP-Seq library for
the S. cerevisiae general transcription factor TFIIB and its input control
(Supplementary Methods).

In GenoGAM, the smooth functions are represented by cubic spline
curves, which are written as linear combinations of a set of regularly spaced
basis functions br , i.e. fk(x) =

∑
r
βrbr(x). We chose second order B-

splines as basis functions, which are bell-shaped cubic polynomials over a
finite support (De Boor, 1978). To avoid overfitting, regularization of the
functions fk is carried out by penalization of the second order differences
of the spline coefficients, which approximately penalizes second order
derivatives of fk – an approach called P-splines or penalized B-splines
(Eilers and Marx, 1996). The optimization criterion for P-splines is the sum
of the negative binomial log-likelihood (depending on the response vector
y and the vector β containing the coefficients of all smooth functions) plus
a penalty function that is weighted by the smoothing parameter λ:

β̂ = argmax lNB(β;y, θ)− λβ>Sβ, (3)

where S is a symmetric positive matrix that encodes the squared second
order differences of the coefficients β (Eilers and Marx, 1996). This
regularization allows dense placements of the basis functions (between 20
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Fig. 1. GenoGAM applications and concept. (a) GenoGAM provides a general framework to analyze ChIP-Seq data for both absolute (left arrow) and differential protein (center arrow)
occupancy. It can also be applied to infer DNA methylation rate from bisulfite sequencing data (right arrow). (b) ChIP-Seq analysis with GenoGAM yields base-pair resolution occupancy
profiles with confidence bands. Input (black) and IP (blue) centered read counts (dots) and fitted smooth (solid line) with 95% confidence intervals (ribbons) for the transcription factor
TFIIB for a section of the chromosome XIII of S. cerevisiae. Additionally, the extracted fold change of IP over Input (green) and gene annotation at the very bottom. Simplified equations
depict model constituents.

and 50 bp), while relying on the smoothing parameter λ to protect against
overfitting. Large values ofλyield smoother functions. A single smoothing
parameter common to all smooth functions proved to be sufficient for
our applications. For given λ and θ, model fitting was performed using
penalized iteratively re-weighted least squares (See subsection Model
fitting).

Adapting a Bayesian view, the penalized likelihood can be interpreted
as a posterior probability, and the penalization term arises from a Gaussian
prior on the coefficients β. Large-sample approximations then yield a
multivariate Gaussian posterior distribution for β, and, by the linearity of
fk(x) =

∑
r
βrbr(x), Gaussian posteriors for the point estimates fk(x).

This allows for the construction of pointwise confidence bands (Wood,
2006). An example of the fitted smooth functions and their confidence
bands for the yeast transcription factor TFIIB is shown in Figure 1b.

Fitting of a GAM on a genome-wide scale, given the
smoothing and dispersion parameters λ and θ

Since the computation time of a GAM grows polynomially with the number
of basis functions, fitting one model to a whole chromosome is unfeasible.
Instead, we propose to fit separate GAMs on sequential overlapping
intervals (or tiles, Supplementary Fig. S1a). Each chromosome was
partitioned into equally-sized intervals called chunks. Tiles were defined
as chunks extended on either side by equally-sized overhangs. The
generalized additive model was fitted on each tile separately using the
gam function of the R package mgcv. Point estimates at each base pair
of the smooth functions and their standard errors were extracted with the
predict function on the fitted object setting “type” parameter to “iterms”.
The tile fits were then restricted to their chunk to define the chromosome-
wide fit. As overlap length increases, agreement of the fit at the midpoint
of the overlapping region increases. A genome-wide fit is obtained by
joining together tile fits at overlap midpoints (Supplementary Fig. S1a).
This approximation yields computation times that are linear in the number
of basis functions at no practical precision cost (Fig. S1b). Furthermore,
it allows for parallelization, with speed-ups being linear in the number
of cores (Supplementary Fig. S1c). This approximation parallelizes the
computation over the data, which will allow future implementation of
GenoGAM in map-reduce frameworks such as Spark (Zaharia et al., 2010).

Data-driven determination of the smoothing and dispersion
parameters λ and θ

To determine the optimal value for λ and θ, we tried generalized
cross-validation, an analytical leave-one-out large-sample approximation
(Wood, 2006). However, this yielded very wiggly fits indicative of
overfitting. We thus developed an empirical cross-validation scheme.

For efficiency, cross validation was performed using only a subset of
the data. We selected a sufficiently large set of distinct regions that are long
enough to not suffer from border effects common to spline fitting. Using
20 or more distinct regions containing at least 100 basis functions gave
satisfactory empirical results (Supplementary Table S1). For peak calling
purposes, regions were selected that had the most significant fold change
of IP versus input read counts.

In each region, 10-fold cross-validation was performed, where a tenth
of the data points were removed, the model was fitted on the remaining
data points, and the log-likelihood of the left-out data points was computed.
To avoid overfitting due to short range correlations, each cross-validation
fold did not consist of randomly selected single genomic positions, which
would recapitulate the leave-one-out scheme, but of short intervals. The
length of these intervals was was set to 20 bp (approximately a tenth of the
fragment length.) in absence of replicates and twice the average fragment
sizes when replicates were available.

For a given pair of values for λ and θ, the score function was defined as
the sum of out-of-sample log-likelihood over all cross-validation folds and
all tiles, restricted to the data points within chunks to not depend on poor
fitting in overhangs. Investigation on grid values of θ andλ showed that the
out-of-sample log-likelihood was typically unimodal. We therefore used
a numerical optimizer to jointly fit the two parameters (R function optim,
BFGS method with default finite-difference approximation of the gradient)
(Broyden (1970), Fletcher (1970), Goldfarb (1970), Shanno (1970)).

Sequencing depth variations

We used an approach originally suggested by Meyer and Liu (2014)
that was robust to variations in signal-to-noise ratio. Variations for
sequencing depth was controlled by using size factors computed by
DESeq2 (Love et al. (2014) version 2_1.10.0). This method robustly
estimates fold-changes in overall sequencing depth by comparing read
counts of predefined regions. The selection criteria for these regions was
application-specific. For differential binding application, all tiles were
considered. For IP versus input comparisons (TFIIB and peak calling
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applications see Supplementary information), the selected regions were the
1,000 tiles with smallest p-value according to DESeq2 test for enrichment
of IP over input performed on total read counts per tile. This allowed to
select tiles that were most likely containing peaks.

TFIIB dataset

This dataset consisted of two samples: one input and one IP without
replicates (Processing in Supplementary information). Hence, there was
no need for an offset. We used the following GenoGAM model:

yi ∼ NB(µi, θ)

log(µi) = finput(xi) + fprotein(xi)zji,protein,

where zji,protein = 1 whenever ji is the index of an IP sample and
zji,protein = 0 whenever ji is the index of an input sample. Further
parameter details are given in Supplementary Table S1.

Differential binding

Data
This dataset consisted of four samples: two biological replicate IPs for the
wild type strain and two biological replicate IPs for the mutant strain. Data
processing and gene boundaries definition are described in Supplementary
information.

GenoGAM model
We used a GenoGAM model that compares the mutant with the wildtype
ChIP data as follows:

yi ∼ NB(µi, θ)

log(µi) = log(sji ) + fWT(xi) + fmutant/WT(xi)zji,mutant

where zji,mutant = 1 for j index of mutant samples and 0 for wild-type
samples. The offsets log(sji ) are log-size factors computed to control for
sequencing depth variation and overall H3K4me3 across all four samples
(see ’Sequencing depth variations’ above).

Position-level significance testing
Null hypotheses of the form H0 : fk(x) = 0 for a smooth function fk()
at a given position x of interest were tested assuming approximate normal
distribution of the corresponding z-score, i.e.:

Tk(x) =
f̂k(x)

σ̂2
fk(x)

∼ N(0, 1)

where f̂k(x) and σ̂2
fk(x)

denote point estimate and standard error of the
smoothed value using the predict function of the R package mgcv (Wood,
2006).

False discovery rate for predefined regions
Let R1, ..., Rp be p regions of interest, where a region is defined as a set
of genomic positions. Regions are typically, but not necessarily, intervals
(e.g. genes or promoters). For instance, all exons of a gene could make up a
single region. Regions can be a priori defined or defined on the data using
independent filtering (Bourgon et al., 2010). For instance, when testing
for significant differences between two conditions, regions can be selected
for having a large total number of reads over the two conditions (Lun and
Smyth, 2014).

For j in 1, .., p, let Hj
0 be the composite null hypothesis that the

smooth function fk values 0 at every position of the regionRj . The False
Discovery Rate was controlled as in Lun and Smyth (2014):

1. Position-level p-values at all region positions were computed using
position-level significant testing as described above.

2. Within each region Rj , position-level p-values were corrected for
multiple testing using Hochberg family-wise error rate correction
(Hochberg, 1988). The p-value for the null hypothesis Hj

0 was
then computed as the minimal family-wise error rate corrected
position-level p-value. This step gives one p-value per region.

3. FDRs were controlled using the Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995) applied to the region-level p-values.

Benchmarking
THOR allows to restrict the search to pre-defined regions. However,
running THOR in this mode yielded worse results. We therefore called
differential binding sites with a genome-wide run of THOR and then
overlapped them with the gene coordinates. The same was done for PePr
and diffReps, because these methods do not allow for a fixed set of regions
as input. Supplementary information gives further details on how the
competitor methods were run.

Gene expression levels were computed as the median normalized probe
levels for the three replicate YPD conditions of all tiling array probes
provided by Xu et al. (2009) overlapping gene coordinates defined by Xu
et al. (2009). Genes from Xu et al. (2009) and from Thornton et al. (2014)
were matched by symbol.

To compute ROC curves, binary labels (expressed = 1 if above a given
expression level quantile cutoff, or not = 0 otherwise) were assigned to
each gene, and for each method, genes were ranked according to their
respective significance value. For THOR, PePr and diffReps, genes that
did not overlap any differentially bound site, p-values were set to 1. Then,
ROC curves and AUC for all expression level quantile cutoffs in steps of
0.01 were computed.

Methylation data

To model yi, the number of reads of methylated state, out of ni, the total
number of reads, we used the quasi-binomial model defined by:

E(yi/ni) = µi

log(
µi

1− µi
) = fmethylation(xi)

Var(yi/ni) = θ ·
µi(1− µi)

ni
,

where the scale parameter θ > 0 models dispersion. The model was
applied on only one tile with a width of 120 kb, reproducing Figure 2A
of Smallwood et al. (Smallwood et al., 2014) (Fig. 4). Further parameter
details are given in Supplementary Table S1.

Results

Testing for differential occupancy with GenoGAM with
controlled type I error

To assess the performance of GenoGAM for calling differential occupancy,
we re-analyzed histone H3 Lysine 4 trimethylation (H3K4me3) ChIP-
Seq data of a study (Thornton et al., 2014) comparing wild type yeast
versus a mutant with a truncated form of Set1, the H3 Lysine 4 methylase.
H3K4me3 is a hallmark of promoters of actively transcribed genes.
Thornton and colleagues (Thornton et al., 2014) have reported genome-
wide redistribution in the truncated Set1 mutant of H3K4me3, which is
depleted at the promoter and enriched in the gene body. This dataset is
interesting for differential occupancy analysis because it is not about the
overall number of counts, but about the redistribution of H3K4me3 within
the gene. Hence, methods must be sensitive to differences at any location
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within the gene. We expect such redistribution of the mark at all genes that
are transcriptionally active for yeast cells grown in rich media.

We modeled the two replicate IPs for mutant and for the wild type with
GenoGAM using one smooth function fWT for the wild type reference
occupancy, and one further smooth function fmutant/WT for the differential
effect (Methods). The offsets were computed to control for variations in
sequencing depth between replicates and overall genome-wide H3K4me3
level (Methods). This yielded base-level log-ratio estimates and their 95%
confidence bands genome-wide (Methods, Fig. 2a for data and fit at the
gene YNL176C consistent with the report of reduced binding at promoter
regions).

Confidence bands of GAMs are formally Bayesian credible intervals
(Methods). However, previous studies based on simulated data showed
that these confidence bands have close to nominal coverage probabilities
and can, in practice, be used in place of frequentist confidence intervals
(Marra and Wood, 2012). We estimated base-level p-values using the
point-wise estimates and standard deviations (Methods). To empirically
verify that the p-values were at least conservative, we created a negative
control dataset by per-base-pair independent permutation of the counts
between the four samples. The offsets were set to 0 and the smoothing
and dispersion parameters were estimated again. This non-parametric
permutation scheme makes less assumptions than previous simulation
studies (Marra and Wood, 2012). Nonetheless, per-base-pair p-values in
this negative control experiment were slightly overestimated (Fig. 2b).
These results show that GenoGAM can be used to identify individual
positions of significant differential occupancies with controlled type I error.
Here, correction for multiple testing can either be done using the Benjamini
and Hochberg procedure (Benjamini and Hochberg, 1995) or procedures
that exploit dependencies between adjacent positions (Wei et al., 2009).

Complementary to de novo identification, predefined regions, such as
genes, can be tested for differential occupancies. To test for differences at
any position in a region using GenoGAM, we propose to apply Hochberg’s
procedure to correct the pointwise p-values for multiple testing, and to
report the smallest of these corrected p-values (Methods). We confirmed
by permutation analysis that this approached conservatively controlled for
type I error rate (Supplementary Fig. S2).

Higher sensitivity in testing for differential occupancy

We first compared GenoGAM to csaw, which is its most directly
comparable method because only GenoGAM and csaw can model flexible
factorial designs and assess differences in overall read counts and in shape.
One fundamental difference is that csaw is based on a sliding window
approach requiring an a priori defined window size. In contrast, the
smoothing parameter of GenoGAM is learnt from the data by maximizing
the out-of-sample likelihood in cross-validation (Methods). Across all
investigated window sizes, the csaw algorithm reported a maximum of
863 significant genes at FDR < 0.1 (Fig. 2c). Moreover, the number of
identified genes depended strongly on the choice of the window size (Fig.
2c). In contrast, GenoGAM reported 4,717 significant genes at the same
FDR cutoff, which is much closer to the number of transcriptionally active
genes (Xu et al., 2009). The genes reported by GenoGAM included all the
genes reported by csaw except two, indicating that GenoGAM captured
the same signal but with a higher sensitivity (Fig. 2d). The genes reported
only by GenoGAM showed a differential occupancy pattern similar yet
weaker to the genes common to csaw and GenoGAM, with depletion in
the promoter and enrichment in the gene body (Fig. 2d), indicating that
GenoGAM captured true biological signal.

We next compared GenoGAM against a comprehensive set of
differential occupancy methods that proved to be competitive in a recent
benchmark (Steinhauser et al., 2016). These methods were DESeq2
(Anders and Huber, 2010), MMDiff2, the current version of MMDiff

(Schweikert et al., 2013), csaw (Lun and Smyth, 2014), diffReps (Shen
et al., 2013), and PePr (Zhang et al., 2014). Two more methods highlighted
by Steinhauser and colleagues (Steinhauser et al., 2016) were excluded:
ChIPComp, as the R package is hardcoded to be used on mouse and human
datasets only, and DiffBind, which is redundant, since it is essentially a test
for differences in overall counts based on either DESeq2 (already present)
or edgeR (used by csaw). We furthermore included the more recently
published HMM-based method THOR (Allhoff et al., 2016) (Methods).

The least number of significant genes (FDR < 0.1 or the respective
default threshold set by the method) were identified by DESeq2 (735) csaw
(863) and diffReps (1193). The most were reported by THOR (2687), PePr
(3248) and MMDiff2 (3482), closer to GenoGAM. To make sure that i) the
reported genes indeed corresponded to transcriptionnaly active genes (also
see Supplementary Fig. S6) and ii) that these results did not depend on
FDR cutoffs we performed receiver operating characteristic (ROC) using
expressed genes as a proxy for true positives (Methods). GenoGAM had the
largest Area Under the ROC curve, when considering that the 15% of the
genes with lowest expression levels in Xu et al. (2009) are not expressed
(Fig. 3a, Methods). Moreover, GenoGAM consistently had the largest
AUC for any gene expression cutoff up to 60% genes to be not expressed
(Fig. 3b). These results indicate that GenoGAM is more sensitive than
current methods for testing differential occcupancy, while still controlling
for type I error rate.

Comparison of GenoGAM fit with sliding window smoothing

In the uncommon situation where a benchmark is available as for the
Thornton et al. dataset, one can objectively define an optimal window size
for sliding window approaches. The log-ratios estimated by GenoGAM fit
well to log-ratios computed in sliding windows of size 184bp, the window
size maximizing the area under curve for csaw for a gene expression
quantile cutoff of 0.15 (Fig. 2a). Also, the GenoGAM 95% confidence
ribbon captures very well the short-range fluctuations of the sliding window
estimates. Hence there is a general agreement between the two approaches.
However, the benefits of GenoGAM are clear: First, the GenoGAM fit is
smooth and differentiable. Second, unlike in the window-based approach,
the amount of smoothing is solely estimated from the ChIP-seq data,
without prior knowledge from the benchmark.

Application to DNA methylation data

Generalized additive models are based on the generalized linear modeling
framework and thus allow any distribution of the exponential family for
the response. Therefore, GenoGAM can be also used to model continuous
responses, for instance using the Gaussian distribution, and proportions
using the Binomial distribution. For ChIP-Seq data, a log-linear predictor-
response relationship of the form (Equation 2) is justified by the fact that
effects on the mean are typically multiplicative. However, other monotonic
link functions could also be used. Moreover, quasi-likelihood approaches
are supported, allowing for the specification of flexible mean-variance
relationships (Wedderburn, 1974).

To test the flexibility of GenoGAM, we conducted a proof-of-principle
study on modeling bisulfite sequencing of bulk embryonic mouse stem
cells grown in serum (Smallwood et al., 2014). Bisulfite sequencing
quantifies methylation rate by converting cytosine residues to uracil,
leaving 5-methylcytosine residues unaffected. At each cytosine, the data
consisted of the number ni of fragments overlapping the cytosine and the
number yi of these fragments for which the cytosine was not converted to
uracil. The quantity of interest was the methylation rate, i.e. the expectation
of the ratio yi/ni. In the original publication, single nucleotide position
methylation rates were estimated using a sliding window approach with
an ad-hoc choice of window size of 3 kb computed in steps of 600 bp.
Figure 4 reproduces an original figure showing the fit in a 120kb section
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Fig. 2. Statistical testing for factorial designs. (a) Read counts (dots) and fitted rates with 95% confidence bands for wild-type (black) and mutant (blue) and the log-ratio of mutant over
wild-type with confidence band (bottom row, green) around YNL176C. For comparison, log-ratios computed in sliding windows of size 184bp (bottom row, gray, optimized window size,
see section ’Comparison of GenoGAM fit with sliding window smoothing’). (b) Empirical (y-axis) versus theoretical (x-axis) p-values in base-level permuted count data (Supplementary
Methods). P-values at every 200 bp positions are shown. (c) Number of genes with significant differential occupancies in mutant over wild type (FDR< 0.1) reported by GenoGAM (orange)
and by csaw (blue) as function of window size (x-axis). (d) Fold-change of counts in mutant over wild-type in 150 bp windows for all 6607 yeast genes in the -1 to 5 kb region centered on
TSS (vertical black line). The genes are sorted into four groups (separated by the black horizontal lines) according to which method reports them significant. From top to bottom: csaw only
(2 genes), csaw and GenoGAM (861 genes), GenoGAM only (3,856 genes) and none (1888 genes). Within each group genes are ordered by p-values (lowest to highest from top to bottom).
The “csaw and GenoGAM” group is sorted by GenoGAM p-values. Comparisons to all other methods can be found in Supplementary Figure S3 - S5

Fig. 3. GenoGAM identifies differential regions with greater Recall. (a) Area under the curve (AUC) for all possible quantile cutoffs from 0 to 1 in steps of 0.01. Up to a cutoff of 0.6,
GenoGAM (red) performs consistently better than all competitor methods by around 0.03-0.04 points above the second best method (csaw and DESeq2, green and pink, respectively). The
entire range of quantile cutoffs is shown out of completeness, reasonable values are between 0.15 and 0.25. (b) ROC curve based on a quantile cutoff of 0.15 (see Figure S7 for other cutoffs).
GenoGAM has a constantly higher recall with a lower false positive rate. The partially straight lines for THOR, PePr and diffReps are stemming from tied genes with no significance value.
(c) Boxplots showing gene expression levels for significant and not significant genes according to the respective threshold of the method (0.1 for FDR based methods and 1e-5 for PePr).
Gene expression levels are clearly distinct between the group of significant and not significant genes across all methods

of chromosome 6. We modeled this 120 kb section with GenoGAM
using a quasi-binomial model, where the response was the number of
successes yi out of ni trials, the log-odd ratio was modeled as a smooth
function of the genomic position, and the variance was equal to a dispersion
parameter times the variance of the binomial distribution. Smoothing and
dispersion parameters were determined by cross-validation (Methods).
The GenoGAM fit was consistent with the original publication (Smallwood
et al., 2014), but did not rely on manually set window sizes and provided

confidence bands (Fig. 4). As expected, wider confidence bands were
obtained in regions of sparse data and tighter bands in regions with a lot
of data (Fig. 4).

Calling ChIP-seq peak summits

The smooth function estimates and their representation as P-splines
provided by GAM offer new opportunities for subsequent analyses: First
and second order derivatives can be computed immediately. Those can be
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Fig. 4. Application to DNA methylation data. Estimated DNA methylation rates in a 120 kb region of chromosome 6 of the mouse (cf. Smallwood et al.Smallwood et al. (2014)). Shown
are the data for bulk embryonic mouse stem cells grown in serum; ratios of methylated counts for each CpG position (black dots), with point size proportional to the number of reads. The
estimated rates are shown for the moving average approachSmallwood et al. (2014) of 3,000 bp bins in 600 bp steps (blue line) and for the GenoGAM (orange line) with 95% confidence
band (ribbon).

used to infer summits of ChIP-seq peaks (as positions xwhere f ′(x) = 0

and f ′′(x) < 0). Supplementary information shows how a peak caller
can be therefore built, including a test for statistical significance of the
peaks (Supplementary Figure S8). Comparison of this approach to a few
widely used peak callers (MACS (Zhang et al., 2008), JAMM (Ibrahim
et al., 2015) and ZINBA (Rashid et al., 2011)) on small size data sets
(Human chromosome 22 and yeast) indicates reasonable performance
(Supplementary Figures S9 - S12).

Implementation and current computational limitations

We implemented the method in the freely available Bioconductor
R package GenoGAM. Given a configuration file of the BAM files,
experiment design matrix and model formula, it will automatically
estimate all parameters of the model. Alternatively, users can provide their
own size factors or smoothing and overdispersion parameters. GenoGAM
provides downstream analysis functions for differential binding and peak
calling as described above. GenoGAM supports a number of parallel
backends through the Bioconductor parallel framework BiocParallel.

The genome-wide analysis on yeast, which is 12 Mb long, presented in
this paper took around 20 hours on 60 cores including parameter estimation
by cross-validation. Once the smoothing and overdispersion parameters are
estimated, the runtime reduces to around an hour. Nonetheless, running
time for whole human genome, which is about 3 Gb is long, is at this stage
not practical. Our main focus so far has been to establish the framework
and to evaluate its statistical properties, which we present in this paper.
Solutions to these computational limitations are currently being addressed
with promising results, in order to extend GenoGAM to genome-wide
application for larger genomes.

Discussion
We have introduced a generic framework based on generalized additive
models to model ChIP-Seq data. Unlike most other methods for ChIP-Seq

analysis, GenoGAM is a data generative model, which gives an explicit
likelihood of the data. This in turn yields an objective criterion to set the
amount of smoothing. Smoothing and dispersion parameters were obtained
by cross-validation, i.e. they were fitted for the accuracy in predicting
unseen data. This criterion turned out to provide useful values of smoothing
and dispersion for inference. Moreover it led to reasonable uncertainty
estimates since confidence bands of the fits were found to be only slightly
conservative. To our best knowledge, GenoGAM is the first method so
far that has addressed the setting of the amount of smoothing for ChIP-
Seq data. The possibility exists to estimate the smoothing and dispersion
parameters separately for each sample, which would result in more robust
estimates at the cost of some flexibility. However, in our analyses the
samples within an experiment were all similar enough to estimate the
parameters globally.

The utilization of genome-wide GAMs comes with a number of
advantages: First, we flexibly model factorial designs, as well as replicates
with different sequencing depths using size factors as offsets. More
elaborate usage could include position- and sample-specific copy number
variations, or GC-biases. Second, applying GAMs yields confidence bands
as a measure of local uncertainty for the estimated rates. We showed
how these can be the basis to compute point-wise and region-wise p-
values. Third, GAMs outputs analytically differentiable smooth functions,
allowing flexible downstream analysis. We discussed how peak calling can
be elegantly handled by making use of the first and second derivatives.
Fourth, various link functions and distributions can be used, providing the
possibility to model a wide range of genomic data beyond ChIP-Seq, as we
illustrated with a first application on DNA methylation. Hence, we foresee
GenoGAM as a generic method for the analysis of genome-wide assays.

Scalability to fit very long longitudinal data such as whole
chromosomes at base-pair resolution was made possible by parallelization
over the data and allowing approximations rather than exact computation
of the fit (Heinis, 2014). Nonetheless, practical usage of our current
implementation remains limited to organisms with small genomes such
as yeast or bacteria, or to selected subsets of larger genomes, such as
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promoters. Despite the present limitations in runtime and genome size,
we are confident that GenoGAM is of importance to the bioinformatics
community. Future research direction includes improving the computing
time, for instance leveraging on recent progresses for fitting large GAMs
(Wood et al., 2016).
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