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Abstract 23 

 Metacommunity matrices contain data on species incidence or abundance across sites, 24 

compactly portraying community composition and how it varies over sites. We constructed 25 

models based on an initial metacommunity matrix of either species incidence or abundance to 26 

test whether such data suffice to predict subsequent changes in incidence or abundance at each 27 

site. We then tested these models against extensive empirical data on vascular plant incidence 28 

and abundance collected from 156 forested sites in both the 1950s and 2000s. Predictions from 29 

these models parallel observed changes in species incidence and abundance in two distinctly 30 

different forest metacommunities and differ greatly from null model predictions. The abundance 31 

model shows greater power than the incidence model reflecting its higher information content. 32 

Predictions were more accurate for the more diverse forests of southern Wisconsin which are 33 

changing faster in response to succession and fragmentation. Simulations demonstrate that these 34 

results are fairly robust to variation in sampling intensity. These models, based only on the 35 

metacommunity matrix, do not require data on site conditions or species' characteristics. They 36 

thus provide a useful baseline for assessing more complex models incorporating data on species' 37 

functional traits, local site conditions, or landscape context. They may also prove useful to 38 

conservation biologists seeking to predict local population declines and extinction risks.  39 
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Introduction   40 

 Ecologists seek to understand community assembly in terms of external forces (e.g., 41 

disturbance, edaphic factors, etc.), adaptations to local environmental conditions ("species 42 

sorting"), competitive niche-based processes, trophic interactions, and stochastic factors. Shmida 43 

and Wilson (1985) first sought to identify the overall mechanisms affecting community structure 44 

and diversity. Their first mechanism reflects differences among species in local resource use, or 45 

niche differences. Their second concerns environmental differences among sites in abiotic 46 

habitat conditions. Traditional plant ecology has focused on these two, but Shmida and Wilson 47 

also noted two additional mechanisms reflecting the stochastic processes that occur within and 48 

among sites. When sites are connected via dispersing individuals, within-site species dynamics 49 

are affected by "mass effects" related to regional site occupancy and abundance. They defined 50 

mass effects as occurring when species establish in sites where they cannot maintain themselves 51 

and when individuals flow from areas of high success to less favorable areas. These ideas also 52 

emerged in the "rescue effect" of Brown and Kodric-Brown (1977). They further noted that even 53 

ecologically equivalent species could stably coexist under certain conditions, anticipating the 54 

neutral models of Bell (1991) and Hubbell (1997, 2001). Those authors developed these ideas to 55 

explore how neutral models based on ecologically equivalency can be used to predict community 56 

structure and diversity. These predictions match patterns observed in many plant and animal 57 

communities (Chave et al. 2002, Hubbell 2006) despite limited empirical support for certain key 58 

assumptions (McGill et al. 2006). This may reflect the fact that ecological mechanisms often 59 

operate to reduce species to similar fitness levels (Chave 2004). 60 

 Metacommunities represent an ensemble of the communities similar enough to share a 61 

common species pool and close enough to influence each other's composition via dispersal and 62 

colonization (Wilson 1992). In general, we expect patch heterogeneity and dispersal to influence 63 
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local patterns of occupancy and abundance. Such effects have been observed in experimental 64 

microcosms (Davies et al. 2009) and field plant populations (Turnbull et al. 2000) but not 65 

populations of tree hole mosquitoes (Ellis et al. 2006). In reviewing bird and reptile distributions, 66 

Driscoll and Lindenmayer (1979) found no consistent metacommunity response. Logue et al. 67 

(2011) further concluded that "At present, [our] understanding of metacommunity dynamics is 68 

predominantly theoretical in nature."  69 

 Leibold et al. (2004) also identified four major metacommunity paradigms that included 70 

mass effects, neutral models, species interactions (within-site dynamics driven by niche-based 71 

competitive interactions – e.g., Gravel et al. 2006), and patch-dynamics driven by dispersal-72 

competition trade-offs among species. They and Leibold and Miller (2004) explicitly associate 73 

mass effects with high dispersal and heterogeneous habitat conditions. Having a high regional 74 

abundance can lead to both greater occupancy, as empty sites are more quickly colonized, and 75 

unsuitable sites may support sink populations. Heterogeneity in site conditions is invoked as the 76 

mechanism driving variation in species abundances. Variable site conditions, in turn, drive 77 

individuals to emigrate from densely occupied sites to unoccupied or low density sites. Note, 78 

however, that stochastic colonization, population growth, and random disturbances also drive 79 

variation in species abundances even among homogenous sites. Thus, we need not invoke habitat 80 

differences among sites or differences among species in dispersal ability to explore how mass 81 

effects, or source-sink dynamics, affect meatacommunity dynamics.   82 

 In his review of metacommunity concepts, Vellend (2010) portrayed community ecology 83 

as a "black box" that focuses more on pattern than process, reiterating Lawton's (1999) criticism 84 

that community ecology remains a "mess." To simplify the vast complexity of potential models 85 

and clarify similarities and differences among concepts and theories, he proposed that ecologists 86 
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analyze community assembly as the outcome of four fundamental processes:  selection, drift, 87 

speciation, and dispersal. Selection reflects the deterministic action of species sorting and 88 

filtering along environmental gradients and competitive interactions within habitats – the 89 

traditional domain of plant ecology and two of the four mechanisms in both Schmida and 90 

Wilson's (1985) and Leibold et al.'s (2004) schemes. Drift refers to the stochastic forces acting 91 

on population and community dynamics, driving some species to higher abundance and others to 92 

extinction. Speciation also affects community diversity but generally over periods of thousands 93 

of generations. Dispersal represents processes acting among sites that are fundamental to mass 94 

effects and all metacommunity approaches (Holyoak et al. 2005). Dispersal combines with local 95 

selective ecological processes to create a "vast" range of potential outcomes (Vellend 2010).  96 

 Given this rich body of work on metacommunity theory and models, we can ask how 97 

successful has this work been for predicting species gains and losses (turnover) and shifts in 98 

abundance? Such predictions would be particularly valuable to conservation biologists concerned 99 

with knowing where to focus their limited resources to conserve species most efficiently. 100 

Higgins et al. (2006) and Azeria and Kolasa (2008) both suggested using nestedness in 101 

metacommunity matrices to predict future colonizations and extinctions. Azeria and Kolasa 102 

(2008) had some success, finding that extinctions of invertebrates in tropical rock pools 103 

decreased with predicted occupancy. In contrst, Azeria et al. (2006) found extinction 104 

probabilities for birds in the Dahlak archipelago to peak at intermediate occupancy probabilities. 105 

Donlan et al. (2005) found that community nestedness patterns failed to predict historical 106 

Holocene extinctions of mammals, leading them to conclude that tools developed from 107 

biogeography principles should be "evaluated critically" before being used in conservation 108 

planning.  109 
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 Others appear even more disappointed at prospects for using metacommunity patterns to 110 

predict species turnover. Keith et al. (2011) recorded changes in a southern English woodland 111 

metacommunity across 86 ancient semi-natural woodlands over a 70-year interval. They found 112 

metacommunity structure to be stable despite declines in beta diversity and concluded that 113 

"metacommunity structure would not be a good landscape-scale indicator for conservation 114 

status." Others seeking to apply metacommunity models also express frustration in trying to 115 

predict patterns of species loss and colonization. Fleishman et al. (2002), in analyzing bird and 116 

butterfly occurrences, conclude that the factors influencing their distribution differ from place to 117 

place and among taxonomic groups, preventing us from using results from one group as 118 

following a general patterns that could apply to other groups. Fisher and Lindenmayer (2005) 119 

also found quite different patterns in studying the effects of fragmentation on the distributions of 120 

birds, arboreal marsupials and lizards in Australia. This led them to recommend autoecological 121 

studies of particular taxa over approaches based on metacommunity patterns. In studying beetle 122 

metacommunities in Tasmania, Driscoll (2008) also found that only certain subsets of the fauna 123 

followed any particular metacommunity model and that only about a third of the species showed 124 

evidence of deterministic metapopulation patterns. Driscoll and Lindenmayer (2009) went even 125 

further to assess predictions from six different theories against three classes of data on bird and 126 

reptile distributions over hundreds of sites in Australia. They found little consistent support for 127 

any of the theories as different species responded differently (and often temporarily) to 128 

differences in environmental conditions and geographic distance. Reflecting on these complex 129 

responses, they conclude that "metacommunity ideas cannot yet be used predictively in a 130 

management context." Finally, Lessard et al. (2012), after comparing local ecological processes 131 

among regions and highlighting the dangers of not considering differences in species pools when 132 
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assessing the relative importance of species sorting and ecological filters, conclude that "there is 133 

no ‘proper’ scale with which to delineate the species pool, because species pools are shaped by 134 

multiple processes operating at different spatial and temporal scales, each of which can influence 135 

local patterns and processes."  This represents a thorny issue and a serious criticism of previous 136 

efforts to analyze metacommunity dynamics. 137 

 The models we develop here accept the complexity and ambiguity inherent in trying to 138 

analyze metacommunity dynamics. Rather than trying to penetrate the community "black box" to 139 

dissect the several mechanisms at work, their scales of action, and their relative strengths and 140 

interactions, we instead capitalize on the rich information inherent in the metacommunity matrix 141 

itself to make predictions that we then rigorously test against empirical data. In that sense, our 142 

models resemble other classic approaches to analyzing ecological patterns in that they 143 

consciously ignore the complexities of species interactions and species responses to local site 144 

conditions. Simplifying assumptions, stochastic models, and dispersal are central to many 145 

theories of community organization that nevertheless have proved useful when tested against 146 

empirical data (Diamond 1975, Whittaker 1975). In introducing their theory of island 147 

biogeography, MacArthur and Wilson (1967) deliberately treated species as ecologically 148 

equivalent and assumed that islands differ only in area and isolation. Despite these simplifying 149 

assumptions, their theory continues to yield remarkably accurate predictions for species numbers 150 

and turnover across a huge number of archipelagos and fragmented terrestrial habitats (e.g., 151 

Newmark 1987). The simple models from island biogeography and Bell (1991) and Hubbell's 152 

(2001) neutral theory also serve as reliable points of departure for building more elaborate 153 

models that incorporate more deterministic mechanisms like species differences affecting how 154 
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they sort along environmental gradients, interact with other species (competition, herbivory, 155 

disease, etc.), and disperse across complex landscapes.  156 

 Here, we develop models of metacommunity dynamics to predict changes in species 157 

occurrence and abundance within particular sites based only on the metacommunity matrix. 158 

These models present certain advantages including simplicity, the need for no initial data beyond 159 

the metacommuity matrix, and that they make clear testable predictions. They resemble other 160 

simple models like those reviewed above by intentionally ignoring many details known to affect 161 

ecological patterns and outcomes. These include differences in the ecological characteristics of 162 

species (beyond their incidence or abundance) and differences in site condition or location 163 

(beyond site richness or total plant abundance). Our models thus most obviously reflect the 164 

action of mass effects and dispersal in that they use each species' regional prevalence or 165 

abundance (row sums in the matrix) to make their predictions and in assuming that these affect 166 

species' local incidence or abundance. In addition, the models reflect some effects of 167 

deterministic factors like species sorting or competition/herbivory/disease in that they use 168 

information on how species richness (or total plant abundance) varies across sites (the column 169 

sums). Aside from these implicit (and assumed additive) effects, our models ignore mechanisms 170 

and ecological details including species characteristics, site effects, proximity and landscape 171 

effects, and all potential interactions among these. Our models differ from island biogeography 172 

in taking no account of island or patch area or distance. Like neutral models, our models predict 173 

no overall shifts in incidence or abundance. Unlike neutral models, our models predict 174 

directional changes in species incidence and abundance for individual sites rather than identical 175 

random walks for all species and sites.  176 
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 To evaluate these models, we test their predictions against long-term changes in plant 177 

species incidence and abundance observed across 156 forested sites in southern and northern 178 

Wisconsin, USA in the 1950s and 2000s. These extensive datasets provide considerable power 179 

and a long interval for testing predictions from these models. We also formulate randomized null 180 

models to ensure fair tests of the models' predictions and to confirm that our results do not reflect 181 

any artifacts of model assumptions or the structure of these data.  Finally, we use over-sampled 182 

data from the northern sites to assess how limiting sampling to fewer quadrats or the most 183 

abundant species can affect the accuracy and power of the models' conclusions. Together, these 184 

efforts demonstrate both the power and limitations of this approach. Finally, we discuss how 185 

such models might be used both by ecologists seeking to understand the particular forces 186 

affecting community dynamics and by conservation biologists eager to predict site-specific 187 

population dynamics. 188 

Methods 189 

Metacommunity incidence and abundance models 190 

 The two models we present are identical in structure and assumptions but make 191 

complementary predictions regarding species dynamics.  The incidence model outlined in Fig. 1 192 

uses only data on species' presence and absence to predict expected changes in species incidence 193 

via local colonizations and extinctions. In contrast, the abundance model predicts changes in 194 

species abundance but only for those species that persist at sites. Both models use the products of 195 

row and column totals in the metacommunity to make predictions. In using products of the 196 

marginal sums in these models, we clearly assume that:   197 

1. The likelihood that a species will occupy a site can be estimated from the product of its 198 

overall prevalence across the metacommunity and the richness of species at that site. 199 
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2. Changes in the abundance of a species persisting at a site can be estimated from the 200 

product of its overall abundance across the metacommunity and the total abundance of all 201 

species occurring at that site. 202 

3. These effects of species prevalence (or abundance) and site richness (or total plant 203 

abundance) are additive and thus do not interact. 204 

4. Any mechanisms acting to change patterns of species incidence (or abundance) across the 205 

metacommunity in these models must act through these row and column totals.   206 

Thus, we acknowledge that the marginal sums are influenced by several factors, possibly 207 

including local site favorability, environmental and biotic filtering, landscape connectivity, 208 

dispersal limitation, and ecological drift. Although none of these factors appear explicitly in the 209 

models, they likely incorporate both mass effects and some combination of these other factors. 210 

We see the implicit structure of our models as a strength, however, in that they require no 211 

explicit information on any of these processes and make no assumptions about their relative 212 

importance or how they combine and interact. Rather, the models implicitly integrate effects of 213 

these mechanisms via the row and column totals to generate their predictions.  214 

A metacommunity can be represented by a matrix containing data on either species 215 

incidence or estimates of species abundance (Fig. 1). Species are generally arranged as rows and 216 

sites as columns. Cells within an incidence matrix, O, reflect the presence or absence of species 217 

at sites with Oij = 1 if species i was observed at site j and 0 otherwise (Fig. 2a). Cells within an 218 

abundance matrix, F, reflect species abundances with Fij equal to the observed or estimated 219 

abundance of species i at site j (Fig. 3a). We develop and test models for both types of matrix. 220 

Our incidence model predicts the likelihood that any given species will occur at any given site 221 
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from the product of its row and column totals. In particular, the expected probability that species 222 

i will occur at site j is: 223 

Eij = Pij * N = Pi · Pj * N 224 

where Pi is the row sum for species i divided by the matrix sum, Pj is the column sum for site j 225 

divided by the matrix sum, and N is the matrix sum (an example appears in Supplementary Table 226 

S-1a). Note that this model weights the likelihood that any given species will occur at a given 227 

site identically by both its overall incidence across all sites and by the number of species that 228 

occur at that site (matching how Chi-squared tests calculate expected values in contingency 229 

tables). Expected values for the abundance model (EFij) are calculated in the same way except 230 

that the weightings reflect products of each species' total abundance across all sites (row sum Fi•) 231 

and the total abundance of all species within each site (column sum F•j – Fig. 3a) so that EFij A = 232 

Fi• · F•j /Ftot, where Ftot is the total abundance summed across species and sites (Fig. 3c).  233 

Field surveys at an initial time A generate the data used to compute the original 234 

metacomunity matrix (O or F) that is then used to predict these expected values (matrix E – Fig. 235 

1). These expected values are then compared to a second observed metacommunity matrix 236 

derived from re-surveys of the same sites at a later time B. A difference matrix is then computed 237 

between the two successive observed incidence or abundance matrices with elements: 238 

ΔOij = Oij B - Oij A  or  ΔFij = Fij B - Fij A 239 

(Fig. 2d). Values in the incidence difference matrix can be 1 (reflecting colonization of a 240 

previously unoccupied site), -1 (local extinction), 0 (persistence), or NA (cells where a species 241 

did not occur at either time A or B). The analogous abundance difference matrix records changes 242 

in observed abundance. These are most meaningful for species present at both times A and B at a 243 

site.  244 
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 Note that no set time period is explicitly assumed in these models. To make useful 245 

predictions, the time period needs to be long enough to allow biological turnover, but not so long 246 

that major disturbances occur, restarting the successional clock, or that great changes in 247 

community composition or abundance occur. Because predictions of the models depend only on 248 

conditions at a single previous time, these are Markov models (Feller 1968).  249 

 Note also that these models predict no overall changes in incidence or abundance – 250 

colonizations and increases in abundance are balanced by local extinctions and declines (see row 251 

and matrix sums in Table S-1).  Initially rare species remain rare, common species remain 252 

equally common. Sites also retain the same overall richness or total abundance that they had 253 

originally (evident in the stable column totals in Table S-1). Most real metacommunities violate 254 

this assumption including the ones we use to test these models. Nevertheless, this assumption is 255 

parsimonious in not assuming or predicting any systematic changes in abundance or species 256 

richness. The models could easily be adapted to incorporate systematic changes in overall 257 

incidence or abundance for species, sites, or overall by multiplying all predicted values by the 258 

observed shifts in row, column, or matrix totals, respectively. These models differ from neutral 259 

models in not assuming local random increases or decreases in abundance or incidence that 260 

might change overall abundance (see Neutral model matrix, Table S-1). 261 

Testing predictions of the models 262 

 These models make specific predictions. For the incidence model, species that do not 263 

occur at sites at time A where they are expected to (Eij, >  Oij A), we expect colonizations may 264 

occur. For species that occur at sites where they are not expected to at time A (Eij < 1), we expect 265 

appreciable rates of local extinction. Likewise for the abundance model, species already present 266 

at a site will likely increase in abundance there when their abundance at time A is less than 267 
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expected (Fij A < Eij) and vice versa. Specifically, we calculate differences between the actual 268 

observed initial frequencies and those expected on the basis of row and column sums :  269 

 DFij  = Fij A - EFij A   (Fig. 3d) 270 

Positive values of DFij reflect cases where species i at site j had a higher abundance than 271 

expected at time A under the model while negative values reflect the opposite.  272 

 We evaluate these predictions for the incidence model by binning values of Eij into ten 273 

intervals and examining how the proportion of local extinctions and colonizations varies as these 274 

values of Eij increase (Fig. 2e). We quantify the strength of these trends by fitting a slope to these 275 

values via linear regression. Abundance model predictions mirror those of the incidence model 276 

but instead predict how species that persist at a site are likely to shift in abundance. As noted, the 277 

expected abundance at time A, EFij A, reflects the product of the abundance of species i across all 278 

sites at time A (row sum Fi•) and the abundance of all species at site j (column sum F•j – Fig. 3a). 279 

Specifically, EFij A = Fi• · F•j /Ftot, where Ftot is the total abundance summed across species and 280 

sites (Fig. 3c). We then generate predictions from this model by calculating differences between 281 

the actual observed initial abundances and those expected on the basis of row and column sums : 282 

DFij  = Fij A - EFij A (Fig. 3d). Positive values of DFij reflect cases where species i at site j had a 283 

higher abundance than expected at time A while negative values reflect the opposite. To test the 284 

model, we compute the observed difference matrix reflecting how species that persisted at each 285 

site shifted in abundance over the interval:  ΔFij = Fij B - Fij A (Fig. 3e). We expect ΔFij to decline 286 

with increases in DFij allowing us to assess predictions of the model using linear regression (Fig. 287 

3f). 288 

Null model randomization tests 289 
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To provide reliable statistical tests of these predictions, we created null models to 290 

estimate the random shifts in incidence or abundance that might be expected in metacommunities 291 

experiencing no systematic local extinctions, colonizations, or shifts in abundance (Fig. 1). Null 292 

models for static species x site matrices exist (Ulrich 2007, Ulrich and Gotelli 2010), but null 293 

models for community change do not. To create a null model for species incidence, we 294 

separately randomized species occurrences across rows in proportion to each species' overall 295 

incidence in the metacommunity (Pi). In particular, for each species, we first shuffled observed 296 

values (the 0's and 1's for that species) among the cells that lacked that species in the original 297 

row (i.e., where Oij A = 0). We restricted changes in these cells to be either a colonization event 298 

(0 � 1) or never present (NA). We then performed a similar randomization over the initially 299 

occupied cells in that row (Oij A = 1), restricting these changes to reflect either a local extinction 300 

(1 � 0) or persistence (1 � 1). We imposed no row or column total restrictions on these 301 

randomizations or on the resulting presence/absence matrices. Imposing such restriction would 302 

bias the resulting pattern making it less than fully random. 303 

To test for significant departures of the observed incidence data from the randomized null 304 

model, we compare slopes of lines fit to the observed data (signal) to those fit to the null models 305 

(noise) for both local extinctions and colonizations (Figs. 1 and 2e).  The slopes of these best-fit 306 

lines provide a statistic to evaluate trends in local extinction and colonization across successive 307 

Pij classes. If the slopes fitted to the observed data are steeper than 95% of the slopes derived 308 

from the null model, we interpret the observed changes as systematic.  309 

 We test predictions from the abundance model using a similar null model. Specifically, 310 

we compared the relationship between the observed changes in abundance, ΔFij, to the changes 311 

expected from random processes, DFij (Fig. 3f). To generate random values for these null model 312 
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matrices (ΔFij-sim), we shuffle all the observed values for a species among the subset of cells that 313 

that species occupied in either sample period leaving other cells at zero. This procedure assumes 314 

that species only occur at sites where they were observed and that changes in a species' 315 

abundance are random and independent of the abundance of that species in the landscape and the 316 

total abundance of species found at any given site. This random shuffling could assign a large 317 

decrease in abundance to cells originally at low frequency, resulting in a negative frequency. 318 

Similarly, a large increase in abundance might be assigned to cells already at high frequency. To 319 

prevent this, we constrained abundance between a floor of 0 and a ceiling set by its maximum 320 

possible value (a frequency of 20 in the empirical tests described below). We then used the 321 

correlation coefficient and slope of the best-fit line between the observed and predicted changes 322 

(ΔFij and DFij) as statistics to compare with analogous values generated via the null models. 323 

Field data 324 

 We use empirical data on the occurrences and abundances of understory plants across 325 

156 forested sites in southern and northern Wisconsin (Fig. 4) to test predictions from these 326 

models. These two regions differ conspicuously in climate, soils, and landscape context and 327 

conditions causing their forests to differ considerably in type and composition.  They occupy 328 

distinct floristic provinces separated by a well-recognized “tension zone” (Curtis 1959). The 329 

northern and eastern portions of the state contain hardwood and coniferous forests while the 330 

southern and western portions supported prairies and hardwoods (Curtis 1959, Curtis and 331 

McIntosh 1951). Forests remain dominant in northern Wisconsin whereas agriculture and peri-332 

urban areas now dominate southern Wisconsin. There, the landscape has 12-15x higher densities 333 

of roads, people, and housing than the northern forests (Radeloff et al. 2005, Riiters and al. 334 

2002). These differences emerge conspicuously in multivariate analyses that show a perfect 335 
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primary split in a cluster analysis based on species composition (incidence) and cleanly separated 336 

clouds in ordination space based on abundance (Fig. S-1). Because they are geographically 337 

removed from each other, the potential for seeds in one region to disperse to the other is limited. 338 

Given this isolation and these conspicuous differences in forest type, landscape context, and 339 

floristic composition, we treat the northern and southern sites as separate metacommunities.  340 

 Ideal metacommunties for testing our model would consist of a relatively large species 341 

pool distributed among many sites occurring across a contiguous and relatively homogeneous 342 

region, all sampled thoroughly using standard methods. Our system approximates this case. To 343 

allow adequate time for colonization and extinction events and changes in abundance to occur, 344 

the metacommunity should be resurveyed after a span of time sufficient to allow some turnover 345 

(several generations). Most of the species in these metacommunities are herbaceous perennials 346 

with lifespans of 5-25 years, allowing turnover over the 50-year period we use.  347 

 For the initial baseline (time A), we use high-quality legacy data collected between 1947 348 

and 1956 (henceforth "1950s") by the Wisconsin Plant Ecology Laboratory under the leadership 349 

of J.T. Curtis (see http://www.botany.wisc.edu/PEL/). They developed quantitative methods to 350 

survey plant communities and applied these to hundreds of forested sites (Fig. 4) in both 351 

southern and northern Wisconsin. Curtis and colleagues sampled stands that were relatively 352 

undisturbed, uniform in topography, and >6ha in area. They characterized the overstory at these 353 

sites using plotless methods and sampled the understory by recording all vascular species present 354 

in each of 20 replicate 1 m2 quadrats spaced every 20-30m around a large square covering about 355 

1 ha. They estimated plant abundance as the frequency of each species among these 20 quadrats. 356 

We then resurveyed many of these sites in the 2000s using similar but more intensive methods, 357 

again estimating abundance as the frequency at which species occurred among sampled quadrats 358 
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(80 to 120 in these resurveys). We only resurveyed sites lacking recent disturbance and changes 359 

in land-use, placing new surveys as close as possible to the originals (within 50m). Wiegmann 360 

and others resurveyed 62 sites in northern Wisconsin in 2000 and 2001 using six 20x1m strip 361 

transects, resulting in 120 sampled quadrats (Rooney et al. 2004, Wiegmann and Waller 2006). 362 

Rogers et al. (2008, 2009) resurveyed the 94 southern Wisconsin sites in 2004 and 2005, 363 

sampling 80 spaced quadrats per site. To match sample sizes between periods, we subsampled 364 

the 2000s data using results from every sixth quadrat in the northern forests, creating six 365 

replicate samples each containing 20 spaced quadrats with similar spacing as the original 366 

surveys. In the southern forests, we used every second quadrat from the sampled square judged 367 

closest to the original survey site, again providing samples of 20 quadrats of similar spacing and 368 

extent as the original survey.  We synchronized species lists between periods to reflect changes 369 

in nomenclature and possible misidentification, lumping taxa in a few cases. Species 370 

nomenclature follows Gleason and Cronquist (1991). 371 

Applying the model  372 

 We applied both the incidence and frequency models to both the southern and northern 373 

metacommunities using data from the 1950s surveys to generate predictions for subsequent shifts 374 

in incidence and abundance (Fig. 1). We first trimmed the full data set of rare species. Rare 375 

species present a potential source of bias in that they are easy to miss in limited samples leading 376 

to overestimates of both colonizations and extinctions. To reduce this bias and ensure more 377 

accurate abundance estimates, we only include species that are above the median (top 50%) in 378 

regional (metacommunity) abundance.  This resulting metacommunity matrices contain 64 and 379 

100 species distributed among 62 and 94 sites in northern and southern Wisconsin, respectively. 380 

We assessed the effect of using this threshold on our results via simulations that repeated our 381 
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analyses over higher minimum abundance thresholds in the northern dataset requiring a total 382 

frequency in both periods of at least 0.005, 0.01, or 0.05 (Table 1). To confirm that our tests 383 

reveal true changes rather than pseudo-colonizations and extinctions from limited samples, we 384 

also used the six sets of replicates from the 2000s resurvey in N Wisconsin to simulate the 385 

sampling variance generated by resurveying the same plant communities using different samples. 386 

We then used each sample to generate a prediction of the "change" expected at the other five.  387 

We then compared the fits from these 30 pairs ("noise") to the six independent fits of our model 388 

predictions to the 2000s data ("signal") for both the incidence and frequency models using these 389 

three frequency cutoffs.  The outcomes of these simulations assure us that the results we present 390 

are robust and not a sampling artifact. 391 

 392 

Results  393 

 Species incidence and abundances in both forest metacommunities remained broadly 394 

similar between the 1950s and 2000s (Fig. 5). The mean incidence of species declined between 395 

the 1950s and 2000s in both regions even as the total frequency of plant species (our index of 396 

abundance) increased (Table 2).  Overall species richness increased in southern sites but 397 

decreased in the North while mean frequency did the reverse. In northern Wisconsin, overall 398 

patterns of relative species incidence and frequency remained stable between the two periods 399 

(autocorrelations of ρ = 0.722 and ρ = 0.782, respectively, both P<0.001). Species incidence and 400 

frequency were less auto-correlated in the more dynamic southern forests (ρ= 0.516 and ρ= 401 

0.489, respectively, P<0.01). Despite this stability, these communities declined in diversity with 402 

local plant richness per site, based on 20 quadrats, down ~15% in northern and ~25% in southern 403 
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forests. They also shifted considerably in composition (Rooney et al. 2004; Rogers et al. 2009, 404 

Rogers et al. 2008).  405 

 The incidence and the abundance models both served to predict changes in these 406 

communities across the 50-year interval (Fig. 6). Predictions from the incidence model paralleled 407 

observed changes in site occupancy with occupancy and colonizations increasing and local 408 

extinctions declining as the model predicted they would (Fig. 6a, b). These trends are all highly 409 

significant in Cochran-Armitage tests (all P<0.001). In fact, in the richer southern forests, the 410 

best-fit slope to the observed vs. predicted trend in colonizations was a remarkable 0.94, far 411 

higher than any of the 100 slopes generated by the null model (range: -0.23 to 0.58, with a mean 412 

of -0.034; Fig. 6b). Observed local extinctions also declined sharply as predicted occupancy 413 

increased (slope = -0.66) whereas the slopes generated by the null model range from 0.28 and 414 

+0.23 (mean: -0.0083; Fig. 6b).  415 

The occupancy model also served to predict metacommunity colonizations and 416 

extinctions in the northern forests (Fig. S-2 a). Actual colonizations increased sharply in cells 417 

with higher predicted probabilities of occupancy with all slopes exceeding those generated by 418 

any of the null models using species with frequencies above 0.5% or 1% (Fig. S-2 a and b). The 419 

model's predictions weakened, however, when rarer species (with a frequency <5%) were 420 

excluded (Fig. S-2c). Actual local extinctions also declined strongly as predicted occupancy 421 

increased. These mean slopes decreased only slightly (from -0.63 to -0.61) in moving from the 422 

0.5% to the 1% frequency threshold and remained highly significantly different from the mean 423 

slopes for the null models (0.012 & 0.003). Again, the pattern weakened when all species with 424 

frequencies below 5% were excluded. 425 
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The abundance models had even more predictive power than the incidence models with 426 

observed changes in species frequency over the past 50 years tracking predictions of the models 427 

(Figs. 6c and S-3a). Species locally more abundant in 1950 than expected in the model tended to 428 

decline in abundance and vice versa (signal biplots). These slopes (ΔFij vs. DFij) were again far 429 

steeper than those of the null models (Fig. 6d and S-3a). In the southern forests, the correlation 430 

was -0.60 and the slope -0.77, again far exceeding those generated by the null models (r: -0.28 to 431 

-0.19, slopes: -0.28 to -0.18; differences all P<0.01, Fig. 6d).  Predictions for abundance in the 432 

northern forests showed similarly dramatic differences from the null models and these 433 

differences persist even when all species with a frequency below 5% are excluded (Fig.S-3).  434 

In applying these models, we pruned the rarest species in order to reduce the influence of 435 

random fluctuations. However, pruning species also reduces sample size, potentially limiting our 436 

ability to test these models. Because most species are rare, increasing the minimum frequency 437 

necessary to be included in the analysis from 0.05% to 1% reduced the number of species by 25-438 

27%. Increasing the threshold to 5% (including only common species) dropped sample size far 439 

more – from 77 (89) species in the N (S) Wisconsin metacommunity in the 1950s (2000s) to just 440 

26 in both. Despite including a third or fewer of the species, these drops in the threshold hardly 441 

affected the signal (or noise) in the abundance model.  The observed change in frequency 442 

continued to closely track model predictions (r = -0.46, -0.46, and -0.45) across all three 443 

abundance thresholds, always exceeding correlations in null models (means: -0.20, -0.21, -0.22, 444 

Fig. 7a vs. 7b vs. 7c). Likewise, ΔFij tracked the DFij values closely (signal means: -0.67, -0.67, 445 

and -0.66 for the three thresholds), and again far exceeded values observed in the null models 446 

(means: -0.22, -0.23, -0.25) or in the replicated spatial noise data (means: -0.084, -0.082, -0.082). 447 

We conclude that the abundance model (based here on species frequencies) is quite robust to 448 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 8, 2016. ; https://doi.org/10.1101/047696doi: bioRxiv preprint 

https://doi.org/10.1101/047696


21 

 

partial sampling that only includes more abundant species. It is also robust to spatial variation in 449 

sampling, providing high signal to noise in all cases. Thus, the models' success in predicting the 450 

changes actually observed among these communities is real and neither an artifact of sampling 451 

common species nor of pseudo-colonizations and extinctions generated via incomplete sampling.   452 

In contrast, raising the species abundance threshold reduced power in the incidence 453 

model – as might be expected given the fewer species included. Null model predictions remained 454 

stable but the observed signal declined (Fig. S-2a vs. b and c). Pruning rare species greatly 455 

reduces sample sizes for estimating colonizations and local extinctions. The highest abundance 456 

threshold (a frequency of >5%) excludes over two thirds of the species from the analysis. In this 457 

case, the local extinction signal slope (-0.31) remains somewhat greater than the null model 458 

slopes (mean -0.015) but colonization slopes (mean: 0.075) barely exceed these (means: 0.025 459 

and 0.03; Fig 6c). We conclude that to use the incidence model, we need thorough sampling 460 

(enough to detect species at an overall frequency of 1% or less) to ensure model power.  461 

We also used replicate samples from the northern forests to assess how sampling 462 

variation affects our estimates of local shifts in incidence and abundance. The observed local 463 

extinction slopes of -0.63 and -0.61 are far steeper those generated by the noise models (means: -464 

0.29 and -0.28, Figs. S-2 & S-3, "noise" rows). Thus, the success of the incidence model does not 465 

reflect sampling artifacts. For colonizations, the patterns are similar except that slopes for the 466 

“noise” tests vary more, partially overlapping the “signal” slopes (Fig. S-2a, b colonization 467 

panels). The difference between the observed and noise colonization rates is greatest in the 468 

highest occupancy class, as expected given that the more abundant species provide more power 469 

to distinguish signal from noise.  470 

  471 
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Discussion 472 

The models of metacommunity change that we introduce and test here demonstrate the 473 

power that the information contained within the metacommunity matrix itself has for predicting 474 

changes in species incidence and abundance.  The accuracy and significance of these predictions 475 

for the many sites and species in these two, largely distinct, metacommunities surprised us. 476 

These models contained no explicit information on species' functional or behavioral traits, nor 477 

any data on site conditions, proximity, or landscape context. Nevertheless, the models served to 478 

predict changes in plant species incidence and abundance over the succeeding 50 years in the 479 

forests of southern and northern Wisconsin. The abundance models accounted for 35% of the 480 

variation in observed shifts in frequency in the forests of southern Wisconsin (vs. <6% for the 481 

null model) and 23% (vs. 4%) in the northern forests. All four models generated predictions with 482 

high statistical significance showing no overlap with the predictions generated by the matched 483 

null models (Figs. 5 and 6). Given the many site, landscape, and species characteristics known to 484 

affect species and community dyanmics, it is remarkable to find so much predictive power in 485 

such a simple model.  486 

 Predictions from these models independently fit two quite different metacommunities that 487 

differ greatly in forest type, soils, climate, and landscape context. The abundance models had 488 

more predictive power than the incidence models. This should be expected given that abundance 489 

data contain more information than species presence / absence. Predictions for both the incidence 490 

and abundance models also proved to be more accurate in the far more fragmented oak-hickory 491 

forests of southern Wisconsin than in the continuous mixed deciduous / coniferous forests in the 492 

North. This was particularly true for predicted colonizations. This could reflect the higher 493 

number of species in the South, the greater number of sites, and/or the greater changes in 494 
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landscape conditions that have occurred there, increasing species losses and turnover (Rogers et 495 

al. 2009, Rogers et al. 2008, Rooney et al. 2004). The resulting species losses reflect an 496 

extinction debt related to habitat area and isolation (Rogers et al. 2009). This may explain why 497 

the more continuous forests in northern Wisconsin show fewer shifts in the relative rankings of 498 

the row and column totals. It is also remarkable that the models succeeded well given that they 499 

assume no net change in local species richness while each site actually lost, on average, 15% or 500 

25% of its species in the northern and southern forests, respectively (Rooney et al. 2004; Rogers 501 

et al. 2008). 502 

 The success of our models may reflect the quality and quantity of data available for these 503 

forests. The surveys and resurveys incorporated quantitative data for 64 and 100 species across 504 

62 and 94 sites in northern and southern Wisconsin, respectively, over a 50-year period. Such 505 

extensive data provide reliable row and column totals and a biologically meaningful interval long 506 

enough to allow appreciable turnover. Communities sampled at fewer sites, with fewer species, 507 

or with fewer quadrats could reduce the accuracy of model predictions. Likewise, more closely 508 

timed surveys would show fewer and smaller changes. While we urge others to test these models 509 

in other systems, long-term resurvey data remain scarce (Waller and Rooney 2004, 2008).  510 

 Oversampling during the 2000s resurveys of the northern sites allowed us to assess re-511 

sampling noise associated with the pseudo-colonizations and extinctions inevitable in resurvey 512 

data. These had minor effects relative to the strong signals from our models and the actual 513 

changes observed. The replicate sampling further allowed us to assess effects of including more 514 

or fewer rare species. These thresholds had little qualitative or quantitative effect on results from 515 

the abundance models, perhaps reflecting the fact that such models focus on species present at 516 

both sampling periods which tend to be common. In contrast, performance of the incidence 517 
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models – particularly for colonizations – declined when we only used the 26 most abundant 518 

species. Given that colonizations and extinctions occur mostly among rarer species, this is not 519 

surprising. Additionally, focusing on more abundant species produces a fuller overall matrix, 520 

creating fewer opportunities for colonization than extinction. This may account for the fact that 521 

we witnessed stronger slopes for extinctions than for colonizations. Researchers eager to apply 522 

the incidence model should be cautious when applying it to metacommunities with few species. 523 

 The accurate predictions of these models in two distinct metacommunities suggest that 524 

these models may prove useful in additional regions. Alternatively, their success here might 525 

reflect a fortuitous selection of relatively undisturbed sites and a dynamic set of sites resurveyed 526 

over an ideal interval. Before concluding that they are general and useful, these models should be 527 

applied and tested in other contexts. Following several such tests, we could compare studies to 528 

identify particular conditions under which these models perform better or worse. For example, 529 

communities with more species, more sites, or longer intervals between surveys might provide 530 

better fits to these models. Our results comparing northern to southern sites and trimming species 531 

in the simulations suggest that predictions based on smaller metacommunities may be less 532 

powerful than those from larger ones, at least for the incidence model. Likewise, we predict that  533 

incidence models will be more sensitive to sample size than the abundance models.  534 

These incidence and abundance models lack explicit information about species 535 

characteristics or site or landscape conditions, yet species gains and losses are hardly random 536 

with respect to the species or sites involved. Verheyen et al. (2004) found that species with low 537 

seed production and short-distance seed dispersal had lower rates of colonization and extinction 538 

in the forests of central England and were more likely to show effects of patch age and 539 

connectivity than other species. Such findings motivate the more complex models that ecologists 540 
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often apply to metacommunities. These include information on species, sites, and/or 541 

(meta)community structure. Assembly rule models explicitly incorporate differences among 542 

species in dispersal, competitive ability, or other traits (e.g., Cornwell et al. 2006, Duckworth et 543 

al. 2000, Feeley 2003, Grover 1994, Messier et al. 2010). Successional and microsite models 544 

focus instead on site conditions and disturbance to predict community composition (e.g., 545 

Matthews 2004, Wethered and Lawes 2005). Community nestedness has also been used to 546 

predict changes in community composition (e.g., Azeria et al. 2006, Báldi 2003, Baselga 2010, 547 

Cook and Quinn 1995, Cutler 1991, Fischer and Lindenmayer 2005, Lomolino 1996, Maron et 548 

al. 2004, Patterson and Atmar 1986), as have patterns of species co-occurrence (e.g., 549 

Sfenthourakis et al. 2006). All these models are more elaborate than the models we present here 550 

in that they rely on specific data or assumptions regarding how species interact with abiotic or 551 

biotic conditions.  552 

 Our models most obviously reflect the action of mass effects in using each species' 553 

regional abundance (the row sums) to make predictions. That the models work well suggests that 554 

mass effects are an important part of metacommunity dynamics. However, these models also 555 

implicitly contain latent information on species and site characteristics. For example, species 556 

differences in regional abundance (the row sums) reflect in part differences among species in 557 

local resource use (niche differences), a clearly deterministic mechanism in Velland's (2010) 558 

scheme and one of the four metacommunity mechanisms apart from mass effects recognized by 559 

Shmida and Wilson (1985) and Leibold et al. (2004). Likewise, differences in site richness (or 560 

total abundance) must often reflect differences in site conditions. The models thus incorporate 561 

mass effects reflecting differences among both species and sites. The site differences (based on 562 

column sums) implicitly incorporate effects related to differences among sites in environmental 563 
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conditions and site proximity or history that affect community size. The "black box" nature of 564 

our models means they have the capacity to (implicitly) include various kinds of information on 565 

the factors likely affecting community assembly without having to explicitly include any 566 

information on them or make assumptions about which are the most important.  This approach 567 

yields a pair of potentially powerful models based only on the empirical information about the 568 

distributions (or abundance) of species over sites. The models do, however, assume 569 

independence between species and site effects, excluding all non-additive interactions between 570 

whatever factors affect the row versus column sums. 571 

 Research to date has not distinguished species mass effects from site mass effects to 572 

assess their relative importance or how they might interact. It might be possible to do this by 573 

modifying the models presented here. For example, one might construct a species mass effect 574 

model based only the variation in species incidence values (or abundance) while excluding 575 

column totals from the model (and thus the effects of site richness or total plant abundance).  576 

Such a model would test the idea that any species that is present (or abundant) at a site above its 577 

meatacommunity mean incidence (or abundance) would tend to disappear (decrease in 578 

abundance) at that site while those missing (or less abundant) should colonize (increase in 579 

abundance).  The accuracy of the predictions of this species effect model could then be compared 580 

to those from the two-way model we present. Likewise, one could construct a site effect model 581 

based only on variation in species richness (or total plant abundance) among sites. Both one-way 582 

models would tend to homogenize species incidence / abundance over species (or site richness / 583 

abundance over sites) but might provide a way to assess the relative size of species vs. site 584 

effects. It might also be of interest to analyze variation in how individual site x species cell 585 

values depart from predicted values. These deviations could, for example, be summed up across 586 
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rows or columns, allowing us to compare the extent to which individual species (or sites) depart 587 

from overall expectations to species' functional traits (or local site conditions). This could 588 

generate insights into which mechanics may be driving the dynamics we observe. 589 

 Assessing the relative roles of site and landscape conditions, species traits, and stochastic 590 

forces on regional metacommunity processes remains a major challenge in community ecology. 591 

Actual patterns of colonization, local extinction, and local shifts in abundance surely represent a 592 

complex interplay between stochastic and deterministic forces acting at various scales (Germain 593 

et al. 2013). Untangling these has proved to be difficult. Simple models like those presented here 594 

are useful in that they provide a baseline and standard for judging other, more complex models 595 

that incorporate data on species and/or site characteristics. These more complex models are 596 

valuable in allowing us to explore how particular assumptions and these ecological details can 597 

affect outcomes. We encourage comparing predictions from the models presented here to those 598 

with more realistic details on:  a) differences among species in niche characters and functional 599 

traits; b) differences among species in dispersal ability; c) differences among sites in local 600 

environmental conditions, and/or c) differences among sites in landscape conditions or spatial 601 

proximity. Like neutral theory (Bell 1991, Hubbell 2001) and other null models (Gotelli and 602 

Graves 1996, Hausdorf and Hennig 2007, Stark et al. 2006, Ulrich 2007, Ulrich and Gotelli 603 

2010), the models developed here provide a standard for comparison. To be worth the extra data 604 

and effort that more detailed models demand, they should significantly outperform simpler 605 

models like the incidence and abundance models presented here. 606 

 Ecologists and conservation biologists seeking to exploit metacommunity patterns to 607 

predict species turnover and threats to particular species or populations have often been 608 

frustrated. Initial hopes that patterns of metacommunity nestedness would serve to predict 609 
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colonizations and extinctions met with only limited success (Azeria et al. 2006; Donlan et al. 610 

2005; Azeria and Kolasa 2008). Our models do not rely on nestedness and, in fact, performed 611 

well in two metacommunities lacking significant nestedness (Mudrak 2010). After their 612 

exhaustive but frustrating effort to apply six theories to three classes of data on bird and reptile 613 

distributions at hundreds of sites in Australia, Driscoll and Lindenmayer (2009) stated that 614 

"metacommunity ideas cannot yet be used predictively in a management context." Similarly, in 615 

studying changes among 86 southern English woodlands over a 70-year interval, Keith et al. 616 

(2011) found metacommunity structure to be stable (like ours) despite declines in beta diversity, 617 

concluding that "metacommunity structure [is] not a good landscape-scale indicator for 618 

conservation status." We find these conclusions premature and urge others to apply the models 619 

developed here before dismissing metacommunity approaches in general. Because species 620 

groups respond differently to differences in site / landscape conditions and competitive 621 

interactions, we should expect that general patterns will be hard to find.  622 

 The models presented are Markovian, but were only tested through a single time interval. 623 

We can, in turn, use the 2000s metacommunity matrices to predict the changes expected over the 624 

next several decades. Data sets continuing two successive intervals would allow us to compare 625 

model accuracy over two intervals of change within a single metacommunity. With stationary 626 

transition probabilities, most Markov models converge after multiple intervals to a stable state 627 

(e.g., the stable age distribution in Leslie matrix models of population growth). However, we 628 

expect stochastic processes acting within sites to regenerate local variability and reset 629 

community dynamics before the metacommunity reaches any global equilibrium. Predictions at 630 

each time step could still prove valid even though no overall metacommunity convergence 631 
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occurs. These stochastic forces include storms and other disturbances, local demographic 632 

stochasticity, and continual invasions, epidemics, and patchy variation in predation. 633 

Predictions from these models should be tested for their generality in other contexts 634 

where extensive repeated survey data exist. If predictions from these models prove to be reliable, 635 

ecologists will have gained a useful tool for predicting community change, improving our ability 636 

to test hypotheses about the forces driving community assembly. We can test our understanding 637 

further using these models as a baseline to see whether and how including additional information 638 

on species traits, site conditions, and landscape context in more complex models improves their 639 

ability to predict changes in species incidence or community composition. If these models prove 640 

to be accurate, conservation biologists could use them as simple tools to predict risks of local 641 

species declines or extinctions for particular sites even when they lack data on species and site 642 

characteristics. Alternatively, they might conclude that it is best to expend their limited resources 643 

to protect sites or recover populations at those sites predicted to be more viable in terms of 644 

supporting healthy future populations.  It may also prove interesting to compare species in terms 645 

of their sensitivity to mass effects inferred from the row or column totals and to compare the 646 

accuracy of predictions from these models among landscapes that differ conspicuously in 647 

disturbance dynamics or habitat fragmentation. 648 
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Table 1.  Number of species retained for analysis after removing rare species at each of three 793 

cutoff levels.  794 

 795 

 Northern 

 (62 sites) 

 Southern  

(94 sites) 

 

Cutoff 1950s  2000s 1950s  2000s 

0.05% 77 89   

1% 58 65 98 100 

5% 26  26   

  796 
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Table 2.  Summary statistics for the Wisconsin forest plant community samples.  Values 797 

here reflect the means across sites calculated from the metacommunities used here.  These values 798 

pertain only to the more abundant species included here. 799 

 800 

Variable Southern Forests  Northern Forests  

 1950s 2000s 1950s 2000s 

Mean species richness 20.83 27.40 21.71 18.63 

Mean incidence  0.329 0.274 0.339 0.291 

Mean frequency when present 1.351 1.084 1.438 1.550 

Total frequency  86.69 108.44 92.03 96.19 

  801 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 8, 2016. ; https://doi.org/10.1101/047696doi: bioRxiv preprint 

https://doi.org/10.1101/047696


39 

 

Figure captions 802 

Figure 1. Modeling process.  The diagram shows steps in the analysis.  Data on species 803 

incidence (shown here) or abundance obtained from the metacommunity at an initial time A are 804 

used to generate a metacommunity matrix (A-Observed). The row and column totals from this 805 

matrix, in turn, are used to generate a matrix of predicted values (matrix E-Predicted with values 806 

Eij) for either expected occupancy (the probability that species i will occur at site j) or their 807 

expected abundances. Values from matrix A-Observed are also used to generate 100 matrices 808 

with randomly shuffled values subject to certain constraints (see text). These represent expected 809 

values if changes in the metacommunity occur randomly (the Null model) rather than according 810 

to the incidence or abundance predictive models presented.  811 

Figure 2. The incidence model.  (a)  An observed species incidence (presence/absence) matrix, 812 

Oij A, in initial year A based on fictional data representing a small number of species that are 813 

relatively common but differ in abundance as they might occur across a small set of sites that 814 

differ in diversity. Cells are black if species i was observed at site j, and white otherwise. We sort 815 

the matrix by row totals (Oi• or the number of sites where species i was observed = total species 816 

incidence) and by column totals (O•j, or the number of species observed at site j = site richness) 817 

but this is not a necessary part of the model.  (b)  The observed presence/absence matrix for Year 818 

B, Oij B, again sorted by row and column as in (a). (c) Expected probabilities of occupancy Eij = 819 

Pi · Pj, * N where Pi is the proportion of sites occupied by species i (bars to the right), Pj is the 820 

proportion of species in the dataset found at site j (bars at the top), and N is the overall matrix 821 

sum.  Cells are shaded by prediction bands, rounded to the nearest tenth.  (d) Matrix showing 822 

local extinctions, colonizations, and persistence between periods for the two incidence matrices.  823 
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(e) Proportion of available sites at each probability of occupancy class that were either colonized 824 

between periods (filled circles) or experienced a local local extinction (open circles).  825 

Figure 3. The abundance model.  (a) Fij A, observed frequency matrix in initial year A (fictional 826 

data). (b) Fij B, observed frequency matrix for Year B. (c)  Expected frequency for species i at site 827 

j for Year A, EFij = Fi• * F•j * Ftot , where F•j and Fi• are as above, and Ftot is the sum of all 828 

quadrat occurrences across species and sites. (d) Change in frequency over the two time periods, 829 

ΔFij = Fij B – Fij A. (e) Departures of observed from expected frequencies in each matrix cell, DFij 830 

= Fij - EFij. (f) Comparing matrix cell values of ΔFij to those of DFij. The solid line shows the 831 

linear best fit while dotted lines reflect limits on the values possible due to sampling 20-quadrats. 832 

Matrices are sorted by row and column totals to aid visual interpretation. 833 

Figure 4. Forest site locations.  Map showing the 62 sites in northern Wisconsin (squares) and 834 

94 sites in southern Wisconsin (circles). The map also shows land cover across the state 835 

demonstrating the difference between the primarily forested landscape matrix in northern 836 

Wisconsin and the far more fragmented forests in southern Wisconsin (cover map from 837 

http://dnr.wi.gov/maps/gis/datalandcover.html). 838 

Figure 5. Species x site metacommunity matrices. (a) Sorted presence-absence matrices (Oij) 839 

for sites in northern (showing 1% cutoff) and southern WI in both the 1950s and 2000s. Matrices 840 

are sorted by row totals (the number of sites each species occupies) and column totals (site 841 

richness) within each metacommunity. (b) Analogous frequency matrices (OFij; sorted by row 842 

and column totals). Cells colored darker gray indicate more quadrats occupied at a site. Southern 843 

matrices appear finer-grained as they reflect both more site and more species. 844 
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Figure 6.  Tests of the incidence and frequency models.  Results shown reflect tests on the 845 

larger data set from southern Wisconsin. (a) The observed (“signal”) and one example of a “null” 846 

simulation of the local extinction trends (empty circles) and colonization trends (filled circles) 847 

across Pij classes. (b) Histograms of values for the slope of the best-fit line to the colonization 848 

and local extinction trends for the 100 simulations of “null” data. The value for the observed 849 

“signal” is shown with a heavy dotted line. (c)  Scatter plot of ΔFij vs. DFij for the observed 850 

(“signal”) and one of the simulated null model data sets. (d) Histograms of values for the 851 

Pearson’s correlation coefficient r and slopes of the best-fit lines between ΔFij and DFij for the 852 

100 simulations of the null data sets. The value for the observed “signal” is shown with a heavy 853 

dotted line.    854 
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Figure 1. 855 
 856 

857 
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Figure 2. 858 

 859 
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Figure 3. 860 

 861 
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Figure 4 862 

 863 
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Figure 5. 865 
 866 
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Figure 6. 868 
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