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Abstract

Motivation: Ancestry and Kinship Toolkit (AKT) is a statistical genetics tool for analysing large cohorts of
whole-genome sequenced samples. It can rapidly detect related samples, characterise sample ancestry,
calculate correlation between variants, check Mendel consistency and perform data clustering. AKT
brings together the functionality of many state-of-the-art methods, with a focus on speed and a unified
interface. We believe it will be an invaluable tool for the curation of large WGS data-sets.
Availability: The source code is available at https://illumina.github.io/akt
Contact: joconnell@illumina.com, rudy.d.arthur@gmail.com

1 Introduction
As whole genome sequencing (WGS) costs decrease, it is becoming
common to have re-sequencing data for cohorts of thousands of
individuals (Taylor et al., 2015; Lek et al., 2015; Gudbjartsson et al.,
2015). Such large cohorts will often have cases of sample duplication,
cryptic relatedness and heterogeneous ancestry. These data sets require
careful curation before further analysis. In the DNA-microarray world, a
range of high-quality tools are available to perform principal component
analysis (PCA), kinship coefficient calculation and other routine quality
control analyses (Chang et al., 2015). While the algorithms implemented
in such tools remain relevant, they require custom formats that are not
well suited to WGS data. The conversion between the standard WGS
format (VCF/BCF) and these custom formats can be time consuming and
error prone for end-users. Additionally, the larger number of rare variants
and false-positives in WGS data require some care to handle correctly.

In this note we present AKT, a software suite designed to perform
routine analyses of large re-sequencing data sets. We envision AKT being
applied to large multi-sample BCFs to identify related samples, detect
sample swaps and ascertain the spectrum of ancestry in a cohort. Our
focus is on speed and simplicity with the hope that this toolkit can become
a standard part of the bioinformatician’s arsenal when investigating large
cohorts of WGS samples. AKT is freely available under the GPLv3
license. It is implemented in C++ using HTSlib (Li et al., 2009) for
fast reading of VCF/BCF files and the Eigen matrix library for matrix
manipulations (http://eigen.tuxfamily.org).

2 Methods
AKT follows the popular bioinformatics convention of combining
many sub-functions into a single binary, analyses are run via:
akt subcommand input.bcf. Many of the algorithms we describe do not
require the entire dense set of variants that will be present in a WGS
cohort. Indeed, some of the estimators assume variants are in linkage
equilibrium. A standard way of achieving this is to thin variants. We
provide thinning/pruning functionality, but this involves decompressing
an entire BCF which is time consuming. For example, the final release
of the 1000 Genomes Project (1000GP) has 84.8 million variants (The
1000 Genomes Project Consortium, 2015). Our preferred approach is to
provide AKT with a pre-determined well behaved sparse set of common
SNPs, AKT can then use tabix indexing (Li, 2011) which substantially
reduces file reading time. We distribute appropriate site-only VCFs with
AKT.

Fast principal component analysis PCA is a common method to detect and
classify ancestry (Patterson et al., 2006). Plotting the first few principal
components will identify large population structure present in a cohort.
Reducing a large genotype matrix with M markers and N samples to
principal components requires calculating its singular value decomposition
(SVD). Exact SVD is quite slow, O(MN2) when M>N . However it is
often sufficient to compute an inexact SVD and obtain the first and most
important principal components. We implement the very fast randomised
approximate SVD routine described in Halko et al. (2011). We also provide
options to compute the exact SVD using the Jacobi algorithm and to project
samples onto pre-computed principal components.
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Kinship coefficients and average IBD sharing Estimating the proportion
of the genome that is identical-by-descent (IBD) between two samples
allows us to ascertain the degree of relatedness between them or to check
if the samples are duplicates. We calculate the same IBD estimators used
in PLINK by default which require population allele frequencies. Users
can either estimate frequencies from their data or provide pre-computed
frequencies from a reference panel such as 1000GP. The latter option can
be especially useful when sample sizes are small. We also provide the
option to calculate the KING estimator (Manichaikul et al., 2010) which
is robust to population structure and the genetic-relatedness metric which
is popular in the mixed effect model community (Yang et al., 2011).

Detecting cryptic pedigrees We implement a similar routine to Staples
et al. (2014). First order relationships (parent-child and sibling) have IBD
patterns which allow easy classification. When both parents in a nuclear
family are assayed, pedigrees can be reconstructed unambiguously. In
cases where only one parent is assayed, a parent-child relationship can be
established but not which sample is the parent. Grandparent-grandchild
relationships and sibling relationships (when no parents are assayed) can
also be detected.

Other functions We also include code for data clustering using k++-
means, Gaussian mixtures and density based methods (Rodriguez and
Laio, 2014), calculation of LD metrics including correlation and LD
score (Bulik-Sullivan et al., 2015), transforming principal component
projections to ancestry fractions (Zheng and Weir, 2016), tag SNP
selection, LD-pruning, simple association testing and profiling of
Mendelian inheritance patterns for pedigrees.

3 Results
We demonstrate the speed and ease-of-use of AKT on publicly available
1000GP data. We test AKT on two data-sets:

• 1000GP phase 3 release (2504 unrelated samples, 84.8M variants)
• 433 high-coverage samples (including 129 trios and 9 duos, 34.4M

variants).

The first data set is perhaps the most commonly analysed WGS cohort, the
latter allows us to evaluate the pedigree analysis components of AKT.

Table 1 lists the commands used and respective timings. On the
larger N=2504 dataset, PCA took 47 seconds and kinship coefficient
calculation took 51 seconds. Re-constructing pedigrees on the smaller
data set, took <7 seconds. All trios were correctly reconstructed
and all parent-child relationships were identified (we acknowledge this
is a fairly straightforward example). Profiling Mendel error rates on
these pedigrees across all 34.4M sites took 238 seconds. All results
were performed using a single-threaded process (some subcommands
accommodate multithreading for faster processing).

Supplementary section 1 includes some cursory timing comparisons
with other popular routines, demonstrating AKT contains competitive
implementations. Supplementary section 2 compares our approximate
PCA routine to the exact routine available in PLINK and shows the first
nine principal components are essentially identical.

4 Conclusion
AKT is a convenient tool for for bioinformaticians who routinely deal with
large numbers of WGS samples. AKT will help in cases where meta-data
about the samples may be missing or unreliable, allowing easy inference
of ancestry and relatedness from the data itself. We expect to expand the

functionality of AKT with time, however the software will already enable
rapid and accurate curation of WGS data. This short analysis gives a feel
for the power and speed of AKT for some common problems.
Funding: All authors are employees of Illumina Inc., a public company
that develops and markets systems for genetic analysis, and receive shares
as part of their compensation.

Table 1. Timing results for a subset of AKT functionality on an Intel
Xeon E5-2670 CPU. Analysis was performed on the 1000 Genomes
Phase 3 BCF (n2504.bcf) and on a separate set of 433 high-coverage
samples (n433.bcf). Where appropriate, we perform analysis using a thinned
list of 17535 common SNPs (snps.vcf.gz).

Algorithm Command line Time (s)

PCA akt pca -R snps.vcf.gz n2504.bcf > n2504.pca 46.56

kinship akt kin -R snps.vcf.gz n2504.bcf > n2504.kin 51.25

Finding cryptic akt kin -R snps.vcf.gz n433.bcf > n433.kin 5.49
pedigrees akt relatives n433.kin -p n433.fam <1

Mendel profile akt mendel n433.bcf -p n433.fam 237.65
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